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Preface

In 1956, Otto Heinrich Warburg published seminal research wherein he described a novel
process by which cancer cells survive, the process of relying on aerobic glycolysis rather than
oxidative phosphorylation, used by normal differentiated cells. This novel process has been
termed “the Warburg effect.” Since then, researchers have been working on discerning how
cancer cells adapt some and bypass other metabolic processes, in order to fulfill their high
energy needs. Some more recent studies have also illuminated processes by which cancer
cells utilize external energy sources to generate building blocks required for their high
energy turnover. This volume of Methods in Molecular Biology series is designed to provide
common experimental approaches in studies designed to illuminate various processes stud-
ied in cancer metabolism. Each chapter opens up with the theory behind the method being
described. Every laboratory protocol chapter includes chemicals and reagents necessary to
carry out a given protocol. Each methods section of laboratory protocol chapters contains
detailed step-by-step description for successful completion of that method. The book is
divided into three compartments. The first part of the book focuses on specific protocols
commonly utilized in cancer metabolism studies, such as protocols comprising stable
isotope labeling methods, protocols for studying glycolysis, gluconeogenesis, and mito-
chondrial metabolism. This portion of the book also includes chapters containing imaging
tools to study cellular metabolism, as well as descriptions of tools to study macrophages and
autophagy and their relevance in cancer. The second part of the book is geared toward
describing methods used for generating hypotheses and identifying cancer markers, such as
mass spectrometry- and NMR-based profiling tools, as well as a protocol with a description
of tools for studying the human microbiome. This portion of the book also contains two
protocols utilizing Seahorse, a commonly used laboratory platform for studying cell metab-
olism. The last part of the book is designed to describe an overview of vital and actively
researched topics in the field of cancer metabolism, as well as computational methodological
approaches. We hope that this book will become an essential compilation of protocols
utilized in many laboratories that conduct this type of research.

North Bethesda, MD, USA Majda Haznadar
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Chapter 1

Metabolic Labeling of Cultured Mammalian Cells for Stable
Isotope-Resolved Metabolomics: Practical Aspects
of Tissue Culture and Sample Extraction

Daniel R. Crooks, Teresa W.-M. Fan, and W. Marston Linehan

Abstract

Stable isotope-resolved metabolomics (SIRM)methods are used increasingly by cancer researchers to probe
metabolic pathways and identify vulnerabilities in cancer cells. Analytical and computational advances are
being made constantly, but tissue culture and sample extraction procedures are often variable and not
elaborated in the literature. This chapter discusses basic aspects of tissue culture practices as they relate to
the use of stable isotope tracers and provides a detailed metabolic labeling and metabolite extraction
procedure designed to maximize the amount of information that can be obtained from a single tracer
experiment.

Key words Tissue culture, Stable isotopes, Metabolomics, Metabolite extraction, Glutamine, Glucose

1 Introduction

At present, numerous publications and protocols exist in the litera-
ture detailing the theoretical and practical aspects of conducting
stable isotope tracer experiments in mammalian cells, 3D organoid
cultures, tumor tissue slices, animal models, and even in human
patients [1–5]. Recent work has demonstrated that in vivo tumor
metabolism can differ significantly from that observed in tumor cell
monoculture [5–9]. Nevertheless, two-dimensional cell monocul-
ture stable isotope tracer experiments are still heavily relied upon to
draw conclusions about the nature of metabolic pathways in mam-
malian cells and tissues [10–14]. The continued reliance of
researchers on 2D monoculture cell culture systems for stable
isotope tracer experiments is due to a variety of factors, including
the experimental power conferred by the ready control of the
extracellular environment, the feasibility of extensive genetic
manipulations, the lower cost and simple infrastructure needed
for performing tissue culture experiments relative to animal

Majda Haznadar (ed.), Cancer Metabolism: Methods and Protocols, Methods in Molecular Biology, vol. 1928,
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and/or human patient work, and the ability to rapidly test a large
variety of experimental conditions [1].

On a practical basis, access to analytical platforms, data analysis,
and biological interpretation typically comprise the bottleneck in
metabolomics workflows. Given the enormous amount of time that
must be invested for data analysis and interpretation, careful and
thorough consideration should be applied to the practical aspects of
design and execution of stable isotope tracer experiments. Other-
wise, subsequent in-depth analyses and interpretation efforts will be
compromised by avoidable flaws in experimental design and execu-
tion. The purpose of this chapter is to provide a simple and practical
laboratory protocol for stable isotope labeling of cultured mamma-
lian cells in 2D culture in the typical cancer research laboratory
setting. The growing number of cancer researchers wishing to
conduct targeted stable isotope tracer experiments with their cells
often do not possess the analytical instrumentation and expertise to
perform mass spectrometry and NMR analyses of metabolites in
their own labs. Thus, it is becoming increasingly common for
researchers to perform the tracer labeling experiments in their
own lab and send the resulting samples or quenched metabolite
extracts to a core facility or company to perform the subsequent
analyses. Data acquisition and targeted analysis in stable isotope
experiments will not be discussed here, but these topics are well
covered by other comprehensive literature, e.g., [3, 15–17].

The protocol detailed in Subheading 3.1 covers the practical
aspects of the stable isotope labeling procedure for adherent mam-
malian cells. The subsequent metabolite quenching and extraction
procedures tend to vary significantly between different laboratories,
academic core facilities, and commercial metabolomics companies.
For reference, a robust metabolite extraction protocol is detailed in
Subheading 3.2; this procedure was developed and refined by
Teresa W.-M. Fan, Andrew N. Lane, and Richard Higashi and
represents a careful and comprehensive approach to the quantita-
tive recovery of polar and nonpolar metabolites as well as total
cellular protein from mammalian cells. This extraction procedure
has several attractive features, including:

1. Initial rapid and complete inactivation of intracellular enzymes
using cold 100% acetonitrile.

2. Quantitative and reproducible recovery of a broad complement
of polar and nonpolar intracellular metabolites from a single
sample using a sequential combination of acetonitrile, water,
chloroform, and methanol.

3. Safeguards for minimizing degradation of labile polar and non-
polar metabolites during the extraction and sample reduction
steps,

2 Daniel R. Crooks et al.



4. Versatile use of the resulting polar and nonpolar metabolite
extracts and protein residues, e.g., analysis by both NMR and
multiple modalities of mass spectrometry, as well as Western
blotting and other proteomic analyses.

Although this metabolite extraction procedure is more labori-
ous than most metabolite extraction protocols, the above features
maximize the amount of information that can be obtained from a
single stable isotope tracer experiment. Finally, Subheading 3.3
outlines two simple extraction procedures for deproteinization
and recovery of culture medium extracts for subsequent metabo-
lomics analysis.

1.1 Experimental

Design

Excellent summaries of the theoretical and analytical considerations
involved in the design and interpretation of SIRM experiments can
be found in the following references [2, 3, 18]. A discussion of
preclinical cancer models that extend beyond 2D monoculture of
tumor cell lines has also been published recently [1]. Briefly, exper-
imental design considerations include consideration of which meta-
bolites are of greatest interest for measurement, selection of a tracer
molecule that is best suited to answer the questions at hand [18],
selection of a sample preparation and extraction method best suited
to observe the desired metabolites [19], and choice of duration of
the labeling period [2, 20].

Many researchers aim to obtain a broad complement of infor-
mation about the metabolic transformations of a common fuel
molecule such as D-glucose or L-glutamine in their cancer cells,
which can be achieved by using fully 13C-labeled glucose or gluta-
mine tracers. Doubly labeled 13C5-,

15N2-glutamine can also be
utilized to gain even more information about the transformed
products of glutamine; however, use of doubly labeled tracers
necessitates the use of advanced analytical methods that can distin-
guish the two isotope labels, such as NMR and ultrahigh-resolution
mass spectrometry, e.g., [21, 22]. Other tracers are particularly
useful for evaluating specific pathways such as the pentose phos-
phate pathway (13C2–1,2-glucose; [18, 23]), fatty acid biosynthesis
(13C3-glycerol,

13C8-octanoic acid; [12]), and reductive carboxyla-
tion of glutamine (13C1–1-glutamine; [24]). In a sophisticated
study on the compartmentalization of NAD(P)H-dependent path-
ways in different cellular compartments, several deuterated (2H)
forms of glucose, serine, and glycine were employed to explore the
directionality of the pyridine nucleotide redox cycles [25]. A more
comprehensive listing of various isotope tracers and their utility in
tracer experiments has recently been published [17].

In addition to evaluating cells in the basal metabolic setting,
experiments can be designed to assess perturbations in metabolic
pathways caused by addition of a drug, a genetic manipulation,
nutrient availability, or altered physiological parameters such as

Practical Aspects of Tissue Culture and Sample Extraction for Metabolomics 3



hypoxia and acidosis. In most cases, such questions can be
addressed by aiming for pseudo-steady-state isotopic labeling of
the metabolites of interest [2, 17, 20]. If subsequent steady-state
metabolic flux modeling analysis is desired, a general rule of thumb
of the tracer studies is to allow for cells to be grown in the presence
of the tracer molecule for sufficient time for at least one population
doubling to occur. This allows for many of the central metabolic
pathways of interest to approach pseudo-steady-state isotope
enrichment [2, 26]. For example, uridine-diphosphate N-acetyl
glucosamine (UDP-GlcNAc), an activated form of N-acetyl glucos-
amine used for N- and O-linked protein glycosylation, derives
carbon from glycolysis, the pentose phosphate pathway, hexosa-
mine and pyrimidine biosynthetic pathways, and the Krebs cycle
[26]. In a study utilizing a prostate cancer cell line with a doubling
time of ~40 h, it was determined that 13C incorporation in
UDP-GlcNAc did not approach steady state until 30 h of growth
in the presence of 13C6-glucose [26]. However, macromolecules
such as proteins and cellular lipids require many population dou-
blings to approach steady-state labeling patterns [20], and this
must be taken into account if these macromolecules are evaluated
for stable isotope incorporation. In contrast, intermediates of cen-
tral metabolism such as glycolysis, the pentose phosphate, and most
components of the Krebs cycle reach isotopic steady state much
more quickly, and for dynamic studies, rather short exposure times
can be used [17].

The choice of number of treatment groups and number of
experimental replicates per group must be balanced between statis-
tical considerations and practical workflow considerations. In gen-
eral, a minimum of three replicate samples should be included per
treatment group. More biological replicates may be needed to
detect more subtle differences in metabolite labeling patterns.
Before drawing scientific conclusions, it is always important to
repeat the experiment to ensure that the results are independent
of cell passage numbers, density, or other subtle differences in
growth conditions. It can also be very helpful to include an unla-
beled sample for each treatment group, which is grown in the
presence of the natural abundance form of the tracer molecule.
Analysis of this additional sample allows for qualitative comparisons
of the fate of the 13C tracer carbons, e.g., in overlays of 1H-{13C}
HSQC NMR spectra [14], and as a technical control to discern
incorrectly assigned isotope-labeled peaks during curation of mass
spectra. This additional unlabeled sample can also be included as a
replicate in measurement of total abundance of metabolites in the
treatment group. However, the unlabeled sample should not be
used to manually correct for the presence of natural abundance
isotopologues of the metabolites of interest in mass spectrometry
data [2], as formal algorithms must be applied for such corrections
[2, 27].
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A reasonable number of 10 cm dishes with cells to process in
1 day using the extraction method detailed here range from 12 to
18, and the procedure runs much more efficiently with two people
working together. More dishes can be processed if desired; how-
ever, staggering of the tracer additions may be needed so that the
tracer labeling period is consistent across all dishes. Example exper-
imental setups are provided in Fig. 1, which include several config-
urations for different kinds of experiments, including blank “t ¼ 0”
plates with no cells but containing tracer-labeled or unlabeled
medium (see Fig. 1).

1.2 Nutrient

Requirement, Growth

Kinetics, and Tracer

Medium Choice

Cultured tumor cells exhibit different nutritional requirements
depending on cell type, genotype, tissue of origin, and numerous
other factors. For assessing pseudo-steady-state labeling patterns of
intracellular metabolites, it is important to design the experiment
such that nutrient supplies remain adequate throughout the course

Fig. 1 Examples of experimental setups for stable isotope tracer experiments. (a) Sample dish configu-
ration for simultaneous 13C6-glucose labeling of four cell lines, including unlabeled replicate plates (#13–16)
incubated with 12C-glucose, as well as a blank replicate plate incubated with media but no cells. (b) Sample
dish configuration for evaluation of metabolic perturbations induced by two drugs separately or in combina-
tion. Note that pilot experiments should be performed to determine the IC50 of each drug as well as the
combination of both drugs, which may act antagonistically or synergistically. (c) Sample dish configuration for
the comparative labeling of two cell lines with two different tracers, including unlabeled control replicates and
the blank plate incubated with media but no cells
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of the experiment. For example, if the culture medium is depleted
of 13C6-glucose by the cells before the end of the tracing period,
the resulting intracellular 13C metabolite labeling patterns will
likely reflect a state of altered growth and/or metabolic adaptation
to alternative energy sources rather than glucose-driven labeling
patterns observed during pseudo-steady-state growth. Similarly,
premature depletion of glutamine tracer by cells during a glutamine
tracer experiment might result in the diversion of glucose-derived
carbon into pathways normally fueled by glutamine in the cultured
cells. Significant unintended changes in nutrient levels and the
resulting compensatory changes in cellular metabolism will make
biological interpretation of metabolite labeling patterns exceed-
ingly difficult.

Population doubling times and metabolic rates can vary greatly
between different cell lines even of the same nominal origin (e.g.,
MDAMB231 cells double in 18 h, whereas ZR75–1 double in 80 h
in rich media) [12]. Mouse cells typically double faster than analo-
gous human cells, and the rate of metabolism reflects this difference
[28]. In order to minimize the confounding effects of changing
nutrient availability during the tracer experiment, preliminary
experiments should be conducted in order to assess the growth
rate (doubling time) and bulk utilization of the major fuels of
cultured cancer cells, i.e., glucose and glutamine. These measure-
ments can be performed using cell counting and relatively inexpen-
sive enzymatic methods, ready-made kits, mass spectrometry, or
NMR. We routinely measure the concentrations of glucose, lactate,
and glutamine in both freshly prepared culture medium and in
spent culture medium supernatants from experiments using immo-
bilized enzyme electrode amperometry (YSI 2950 Bioanalyzer),
which allows direct measurement of metabolites in culture medium
without the need for extraction/deproteinization. The results of
these simple analyses help to determine optimal cell seeding den-
sities for stable isotope tracer experiments and can also aid in the
determination of whether initial cell extracts from a stable isotope
tracer experiment should be further processed and submitted for
NMR and mass spectrometry analyses or discarded due to loss of
adequate nutrient supplies. It is important to keep in mind that true
steady-state maintenance of the extracellular environment can
never be achieved in a standard culture dish [29]. Quantitative
metabolite flux experiments require complex control of medium
components to maintain steady-state conditions using a chemostat,
sampling of multiple time points, and in-depth computational
modeling of metabolic network kinetics [2, 30–32].

Another factor to take into consideration is whether a genetic
manipulation or drug treatment might result in reduced cell
growth rate. For instance, treatment with a cytostatic drug will
result in reduced cell numbers at the end of the experiment. If
this is the case, cell dishes in the “treated” group may need to be
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seeded at a higher density than the control group in order to obtain
sufficient cell biomass for metabolite extraction at the end of the
experiment. Careful consideration of the effects of decreased cellu-
lar proliferation on isotope labeling patterns will need to be
included during subsequent data analysis [2].

Although the majority of routine mammalian tumor cell cul-
ture work is performed using either DMEM or RPMI 1640 culture
medium with the desired tracer nutrient replaced by the
corresponding stable isotope-enriched counterpart at the identical
concentration, recent studies have underscored the influence of the
nonphysiological nutrient concentrations and lack of certain meta-
bolites in these culture media on cellular metabolism in culture
[33]. In addition to containing nonphysiological concentrations
of vitamins and amino acids [28], culture media including
DMEM and RPMI 1640 also lack metabolites that are found in
human plasma [34], which have been shown to influence cell
metabolism and drug susceptibility [33]. These findings led to
the development of a new medium formulation, human plasma-
like medium (HPLM), which better recapitulates the in vivo human
setting [33]. However, preparation of customized media is both
tedious and costly, and to date HPLM is not commercially avail-
able. In most cases, cancer researchers aim to incorporate the data
obtained from SIRM experiments into a larger dataset encompass-
ing other biological outcomes such as gene and protein expression,
drug susceptibility studies, analysis of invasion potential, protein
subcellular localization studies, gene knockdown or overexpres-
sion, functional analysis of gene mutations, hypoxic response, res-
piration studies, etc. Thus, if all possible, the stable isotope tracer
experiment should be performed under identical culture conditions
as those employed for other biological experiments.

1.3 Dialyzed FBS vs

Non-dialyzed FBS

Dialyzed FBS is a preferred additive for stable isotope tracer experi-
ments with mammalian cells because it retains most of the growth
factors and lipids present in FBS but lacks the small molecule
metabolites present in non-dialyzed serum. Depending on the
stable isotope tracer and associated pathways being evaluated, the
natural abundance metabolites present in non-dialyzed FBS could
confound the interpretation of both extracellular and intracellular
metabolite labeling patterns. Table 1 lists natural abundance con-
centrations of some commonly evaluated metabolites found in two
separate lots of FBS obtained from two different commercial
sources, measured amperometrically using a YSI 2950 Bioanalyzer.
When used at the standard supplementation rate of 10%, these
non-dialyzed FBS reagents would contribute ~0.4–0.8 mM natural
abundance glucose and ~0.8–1.8 mM natural abundance lactate to
the tracer medium. The presence of these unlabeled substrates and
products of glycolysis would need to be considered in the interpre-
tation of pseudo-steady-state labeling patterns of both intracellular
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and extracellular metabolites. This issue would be avoided with
dialyzed FBS, as the concentrations of natural abundance glucose
and lactate in two separate lots were 50–100-fold lower than the
non-dialyzed FBS (Table 1). Also notable is the persistence of small
amounts of carbohydrate and lactate in the municipal water supply,
underscoring the need to utilize double-deionized water for experi-
ments and to avoid the contamination of dishes and sample tubes
by stray pieces of ice from the ice tray.

In our own experience with tumor cell lines that are deficient in
Krebs cycle enzymes and/or respiratory chain components, we
have found that some cell lines exhibit attenuated growth in dia-
lyzed FBS, an effect that is likely due to auxotrophy for one or more
small molecule metabolites present in FBS such as uridine, uric
acid, etc. Many cell lines require an adaptation period of several
days in the presence of dialyzed FBS, presumably to allow for
transcriptional changes and metabolic adaptation, before the
growth rate is restored to suitable levels. For these reasons, it is
important to perform pilot experiments to test the growth char-
acteristics of the cell line of interest in dialyzed FBS. It may also be
important to test whether gene expression in the pathway(s) of
interest is modulated by growth of the cells in dialyzed FBS, as
metabolic compensation might occur in the absence of small mole-
cule nutrients supplied in non-dialyzed FBS. As a rule of thumb,
the same batch of dialyzed and non-dialyzed FBS should be utilized
for all experiments in a project to maintain consistency of experi-
mental results [28]. Finally, in tracer studies where extracellular
vesicles such as exosomes are to be isolated or their influence on
cell metabolism studied, exosome-free FBS (either non-dialyzed or
dialyzed) should be adopted. Exosome-free FBS can be prepared
using ultra-centrifugation or purchased commercially.

Table 1
Total metabolite concentrations measured amperometrically (YSI 2950 Bioanalyzer) in non-dialyzed
and dialyzed FBS samples as well as laboratory water sources

Standard heat-inactivated FBS Dialyzed FBS Water sources

Mfg #1,
batch
#1

Mfg #1,
batch
#2

Mfg #2,
batch
#1

Mfg #2,
batch
#2

Mfg #1,
batch
#1

Mfg #1,
batch
#2

Tap H2O,
Bethesda,
MD, USA ddH2O

D-glucose, mM 7.95 4.74 3.82 2.75 0.05 0.08 0.04 0.00

L-lactate, mM 18.2 8.25 14.44 17.9 0.17 0.18 0.03 0.00

L-glutamine, mM 0.38 0.1 0.65 0.47 0.01 0.01 0.00 0.00

L-glutamate, mM 0.87 0.57 0.67 0.75 0.00 0.00 0.02 0.03

K+, mM 10.7 n/a n/a 10.5 n/a n/a 0.2 0.0

NH4+, mM 2.9 n/a n/a 2.2 n/a n/a 0.01 0.0
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1.4 Other

Considerations

of Tissue Culture

Experiments

Other practical factors are also important to consider in minimizing
variations in tissue culture conditions. Adequate humidity in the
incubator should be maintained by ensuring that ample water is
present in the incubator water tray or by acquiring an incubator
that has an active humidification system. If possible, the stable
isotope tracer experiment should be conducted in a dedicated
incubator that is free of vibrations and will not be opened and
closed excessively during the experiment. Excessive opening and
closing of the incubator door leads to transient decreases in CO2

concentration, resulting in fluctuations in culture medium pH due
to changes in bicarbonate concentration and drying of the internal
environment due to injection of dry CO2 gas to restore CO2 levels.
Fluctuation in humidity is especially pertinent in tri-gas incubators
operating at O2 concentrations that are far below the ambient
(~21% O2), as large quantities of dry nitrogen gas are injected
into the incubator to decrease the O2 concentration. Table 2
shows the results of an experiment in which triplicate 10 cm dishes
without cells were filled with 15 mL of DMEM/10% non-dialyzed
FBS medium and allowed to incubate at 37 �C unperturbed in a
95% room air/5% CO2 atmosphere, in either a well-humidified
incubator or in an incubator in which the water tray was allowed
to become dry. Plates incubated in the non-humidified incubator
for 40 h showed an approx. 5% decrease in total mass, indicative of
significant culture medium evaporation. In contrast, the dishes
incubated in the humidified incubator lost only 1.3% of their mass
over the same incubation period. The evaporative losses in the
inadequately humidified incubator showed significant effects on
the observed concentrations of glucose, lactate, and glutamine in
the spent culture medium samples. Namely, glucose and lactate
concentrations increased by 16–17%, while glutamine concentra-
tions decreased by 1.3% in samples incubated in the non-humidified

Table 2
Evaporation and changes in metabolite concentrations in culture dishes incubated in humidified
versus non-humidified incubators

t ¼ 0 Humidified Non-humidified

Plate mass, % ctl 100% 98.7% 95.1%

[glucose], mM 11.5 12.1 13.4

[glucose], % t ¼ 0 100% 104.9% 115.8%

[lactate], mM 1.76 1.86 2.06

[lactate], % t ¼ 0 100% 106.0% 117.0%

[glutamine], mM 2.94 2.67 2.90

[glutamine], % t ¼ 0 100% 91.0% 98.7%
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incubator. In contrast, glutamine concentration decreased signifi-
cantly by 9% in the well-humidified incubator, likely reflecting the
conversion of glutamine to NH4

+ and pyroglutamate [35], an
effect that was masked in the non-humidified incubator due to
evaporative loss of water in the dish. Differences in medium metab-
olite fluxes in non-humidified versus humidified growth conditions
can also be attributed to altered cell physiology (e.g., reduced
growth rate; Fan, unpublished data) and are likely to involve
increases in culture medium osmolality. Thus, a poorly controlled
incubator environment can considerably influence the interpreta-
tion of apparent metabolite uptake and secretion rates (Table 2).

Finally, other general good practices in tissue culture are of the
utmost importance in metabolomics experiments, in order to jus-
tify the significant cost, time, and effort involved in acquisition,
analysis, and interpretation of metabolomics data. Cell lines should
be regularly tested for mycoplasma, as this cryptic and antibiotic-
resistant contaminant microbe can go unnoticed indefinitely in
tissue cultures [28], and by nature of its physical attachment to
cells in tissue culture, mycoplasma is very likely to significantly alter
cellular metabolism [36]. Unless specifically desired for differentia-
tion or other physiological strategies, cells should be seeded evenly
across the dishes and should not be allowed to become 100%
confluent before quenching and extraction, as some cell lines
undergo contact inhibition and thus will not be in log-phase
growth at the time of harvest. In some cases, cells may also show
dramatic differences in intracellular metabolite levels depending on
their state of confluence [37]. Cell size can vary greatly across
different cell lines; thus, initial cell seeding numbers and the num-
ber of cells present at 100% confluence can be very different. In
general, it is a good practice to perform initial experiments to
determine the number of cells required for seeding of culture dishes
such that the cells are at 70–90% confluence at the time of harvest.

1.5 Sample

Preparation for Stable

Isotope-Resolved

Metabolomics

Numerous protocols exist for metabolite quenching/extraction
frommammalian cells [3, 19, 25, 38, 39]. There is no single sample
preparation technique that can quantitatively recover all intracellu-
lar metabolites, as some metabolites are inherently labile and prone
to degradation, and some others are less extractable using a univer-
sal solvent system. Notable examples of metabolites that can be
degraded during extraction procedures include NADPH and to a
lesser extent NADH, both of which show decreased stability in
acidic conditions [40]. Glutamine is inherently unstable in culture
medium [35], and metabolite extraction procedures can cause
marked conversion of glutamine to pyroglutamate [41]. Issues
with glutamine degradation can also arise as a direct result of
ionization in the mass spectrometer [42]. Direct, in-cell derivatiza-
tion of labile metabolites has been shown to be useful for detection
of unstable carbonyl- and aldehyde-containing metabolites
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including oxaloacetate, dihydroxyacetone phosphate, glyceralde-
hyde 3-phosphate, and acetoacetate [21, 43]. Derivatization has
also been shown to be useful for resolving multiple labeled amino
acids by direct infusion and ultrahigh-resolution mass
spectrometry [22].

Careful studies in E. coli have demonstrated that significant
metabolite decomposition can occur as an artifact of the extraction
procedure [44] and that acetonitrile is a superior solvent for metab-
olite extraction in E. coli, especially in the case of the preservation of
nucleoside triphosphates [45]. Such improvements in extraction
techniques were employed in the quantitative evaluation of total
metabolite concentrations and metabolite enzyme occupancy in
E. coli [46]. In mammalian cells, acetonitrile-water was also found
to be a superior polar metabolite extraction solvent [19]. When
acetonitrile-water extraction is combined with a second
chloroform-methanol extraction, this single procedure can yield
extracts suitable for analysis of polar metabolites, total cellular
lipids, and cellular proteins all from one sample, e.g.,
[7, 14]. This metabolite extraction procedure, termed the Fan
extraction method by the first author, is outlined below in Sub-
heading 3.2.

2 Materials

1. Laminar flow biosafety cabinet for tissue culture work.

2. Dual-gas (CO2) or tri-gas (CO2, N2) humidified, temperature-
regulated incubator.

3. 37 �C heated water bath

4. 10 cm tissue culture treated culture dishes (see Note 1)

5. Electric pipettor and serological pipettes (5, 10, 25 mL).

6. Vacuum aspirator fitted with tubing and disposable 2 mL plas-
tic aspirator pipettes.

7. 15 mL polypropylene conical vials (Sarstedt)

8. 50 mL polypropylene conical vials (Sarstedt)

9. 1.5 mL polypropylene Eppendorf tubes

10. 2.0 mL polypropylene screw-top vials

11. 0.5 mL polypropylene screw-top vials

12. 2.0 mL screw-top glass vials

13. Basal DMEM: DMEM without glucose, glutamine, pyruvate,
and phenol red (see Note 2).

14. Dialyzed FBS (see Note 3) [or exosome-depleted FBS (e.g.,
Gibco# A2720801) if you are studying exosomes].

15. 0.5% phenol red solution (see Note 4)
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16. Stable isotope tracer (e.g., 13C6-D-glucose,
13C5-L-glutamine,

13C5,
15N2-L-glutamine, etc.) (see Notes 5 and 6).

17. DMEM tracer media (see Notes 7 and 8).

18. HPLC-grade acetonitrile (see Note 9).

19. HPLC-grade methanol (see Note 9).

20. HPLC-grade chloroform (see Note 9).

21. 2:1 chloroform/methanol-BHT solution (see Note 9)

22. Disposable plastic cell lifters (corning costar #3008) (see
Note 10).

23. Ice buckets.

24. Rectangular anodized metal plate of at least 14 � 28 cm (e.g.,
Biocision, Inc. #BCS-123).

25. Phosphate-buffered saline (PBS), pH 7.4: 1.06 mM KH2PO4,
2.97 mM Na2HPO4, 155 mM NaCl.

26. Fine-tipped transfer pipettes (e.g., Samco scientific #235).

27. Freezer lyophilizer equipped for handling organic solvents (see
Note 11).

28. Vacuum centrifuge (Eppendorf Vacufuge plus, fitted with
rotors for both 1.5 mL tubes and for 2.0 mL glass vials) (see
Note 12).

3 Methods

3.1 Metabolic

Labeling of Adherent-

Cultured Mammalian

Cells

1. Perform preliminary experiments using tracer medium
prepared with the desired natural abundance 12C tracer coun-
terpart to ensure that the tracer medium composition is suit-
able to support cell growth and that nutrient levels remain
adequate throughout the duration of the experiment. Consid-
erations include (1) assessment of adequate cell growth rate in
tracer medium, (2) determination of the target cell seeding
density such that cells will reach 70–90% confluence at the
time of quenching/harvest, (3) selection of a tracer incubation
time that equals or exceeds the cell population doubling time in
order to approach pseudo-steady-state labeling of many intra-
cellular metabolites, and (4) determination of bulk metabolite
uptake and secretion at the end of the labeling period to ensure
that the major nutrients (e.g., glucose and glutamine) are not
depleted at the end of the labeling period.

2. Seed cells in 10 cm dishes in 10–25 mL tracer medium (see
Note 13) containing natural abundance tracer compound (i.e.,
12C-glucose and 12C-L-glutamine) 1 or 2 days prior to the
labeling experiment, and allow them to attach and proliferate
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(see Notes 14 and 15) (see Note 19 for alternative protocol
for non-adherent cells).

3. Prepare tracer media freshly and equilibrate to 37 �C several
hours prior to addition to the culture dishes. Also, prewarm a
sufficient quantity of basal DMEM (without FBS or any other
added compounds) to allow for washing each plate once with
10 mL basal DMEM (see Note 16).

4. Remove the culture dishes from the incubator, and aspirate the
12C tracer medium using vacuum aspiration. Gently add 10mL
of warm DMEM basal medium, rock the plate by the hand
several times, and then aspirate. Finally, add 10–25 mL of
prewarmed 13C tracer medium to each plate, remove 0.2 mL
of medium (T ¼ 0), and weigh plate on a three-place balance
before returning plates to the incubator. For each type of tracer
medium used, include one blank plate in which no cells are
seeded but tracer medium is added. This plate is incubated
alongside the plates with cells and serves as the blank plate
(see Fig. 1, Subheading 1.2, and Notes 17 and 18).

5. On the next day, set up the lab bench for medium harvest and
cell quenching by obtaining several trays of ice and pre-labeling
all of the tubes that will be needed. In one ice tray, place a slab
of rectangular metal of at least 14� 28 cm (e.g., Biocision, Inc.
#BCS-123) horizontally, tilted toward the front of the bench
by approximately 35�. Precool a bottle of HPLC-grade aceto-
nitrile to �20 �C.

6. At the end of the incubation period, weigh plates using the
same balance, and remove the plates from the incubator in
groups of three at a time. Place the dishes on the metal slab,
with the pen mark on the side of the dish facing you. Transfer
1 mL of medium from each plate to a snap-cap microcentrifuge
tube, and set the tube aside on ice for subsequent processing
and extraction. Aspirate the remainder of the tracer medium
using a fine-tipped transfer pipette into a 15 mL conical centri-
fuge tube if the medium is to be harvested or using the vacuum
aspirator fitted with a disposable 2 mL plastic aspirator pipette
if the medium is to be discarded (for non-adherent cells, see
Note 19).

7. Wash the dishes three times with 10 mL ice-cold PBS by gently
adding the PBS to the side of the dish where the mark is and
aspirating from the dish wall slightly above the same spot each
time to minimize cell loss. Make sure that the entire circumfer-
ence of the dish wall and the entire surface of the plate are
rinsed by each of the three washes by gentle rocking of the dish
during each wash. After the third wash, allow the dish to
remain tilted toward you at ~35� on the metal block with the
pen mark facing toward you. Carefully observe the walls of each
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dish, and aspirate any residual liquid that might remain on the
walls of the circumference of the plate while residual liquid on
the plate is collecting near the pen mark. Finally, aspirate again
any additional residual fluid from the bottom of the plate (see
Notes 20 and 21).

8. Immediately add 1 mL cold (�20 �C) acetonitrile to quench
cell metabolism. Ensure that the solvent covers the entire sur-
face of the dish by gently but rapidly shaking the plate horizon-
tally. Place the culture dishes on a shelf in a�20 �C freezer, and
incubate for 5–20 min.

9. Remove the dishes from the freezer, and return to the ice-cold
metal block. Add 0.75 mL ice-cold ddH2O, and gently rock
the dish to ensure mixing of the water and acetonitrile (see
Note 22).

10. With the plate angled at ~35� toward you resting on the
ice-cold metal, scrape the cells and solution toward the bottom
of the dish using a cell lifter with firm circular motions until all
material has been scraped to the lower end of the dish. Next,
rotate the dish by 90� and scrape the remaining cells and fluid
to the bottom of the dish (see Note 23).

11. Transfer the quenched cells and solvent to a 15 mL conical
centrifuge tube, and then repeat steps 8 and 9 but omit the
�20 �C incubation step. The resulting volume in the 15 mL
conical vial is typically� 3.2 mL. The final solvent composition
is 2:1.5 (acetonitrile-water). This solution can be kept on ice
for several hours before proceeding to chloroform extraction
or stored at �80 �C for up to 1 week pending chloroform
extraction.

12. After all dishes of cells have been quenched and scraped, cen-
trifuge the 1 mL culture medium samples at 3000 � g for
10 min at 4 �C in a microcentrifuge to remove any floating
cells and large debris.

13. Transfer 900 μL of the resulting culture medium supernatant
to a new pre-labeled tube for storage at �80 �C until metabo-
lite extraction. A 100 μL of this culture medium sample can be
stored separately for direct acetone extraction. Culture
medium metabolite extraction procedures are outlined in Sub-
heading 3.3.

3.2 Cell Metabolite

Extraction Using

the Fan Extraction

Method

1. Pre-label all tubes to be used during the phase separation and
extraction:

(a) Aqueous/polar fraction: 5 mL snap-cap Eppendorf tube,
pre-weighed to 0.1 mg precision. Label simply and clearly
with sample number; it will be discarded after aliquoting
of the polar phase.
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(b) Nonpolar/lipid fraction: 2 mL screw-cap glass vial with
Teflon-faced liner, wrap with clear scotch tape around the
side of the vial to protect labeling.

(c) Protein fraction: 1.5 mL snap-cap Eppendorf tube
(pre-weighed to 0.01 mg precision if protein dry mass is
desired), taped around the side to protect labeling (see
Note 24).

2. Add 1 mL ice-cold chloroform to the acetonitrile-water cell
extracts in their 15 mL conical tubes, using a pre-wetted 1 mL
polypropylene micropipette tip. Seal the tubes tightly, and
shake the extracts vigorously up and down at least 60 times
manually or on a vortexer (see Note 25).

3. Centrifuge the extracts in a refrigerated swinging-bucket cen-
trifuge at maximum speed (typically 3000–4650 � g, depend-
ing on the model of the centrifuge), 4 �C, 30 min. The extracts
will separate into three phases: An upper aqueous phase con-
taining polar metabolites, a lower nonpolar chloroform phase
containing lipids, and a middle phase containing denatured
proteins and other macromolecules. Gently transfer the tubes
to an ice bucket, taking care not to disrupt the phase separation
(see Note 26).

4. Transfer ~90% of the aqueous phase to pre-tared (�0.1 mg)
5 mL Eppendorf tube using a fine-tipped transfer pipette,
taking care not to disrupt or transfer any of the denatured
protein layer along with the aqueous phase. The remaining
aqueous phase will be recovered during the second extraction.
Save the transfer pipette for the second extraction.

5. Transfer ~90% of the lower chloroform phase to a 2 mL glass
vial until the vial is filled to the neck, using a gel-loading 200 μL
pipette tip; save the tip for a second transfer (see Note 27).

6. Place the 2 mL glass vial in a vacuum centrifuge, and reduce the
volume of the chloroform fraction by vacuum centrifugation
for 30 min without heating.

7. Centrifuge the 15 mL conical vial containing the remaining
polar and nonpolar fractions as well as the protein fraction for
5 min at maximum speed at 4 �C. if more than ~400 μL of
nonpolar fraction remains in the 15 mL vial, transfer more
nonpolar fraction to the respective 2 mL glass vial after the
volume has been reduced sufficiently by vacuum centrifuga-
tion, until <100 μL of nonpolar fraction remains.

8. Using a 1 mL pipettor set to 500 μL, mix the protein fraction
along with the polar and nonpolar fractions until the protein
fraction is sufficiently dispersed to allow for the transfer of the
remaining contents of the 15 mL tube to the 1.5 mL protein
fraction tube. Set aside this pipettor with the tip still attached.
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Using a separate 1 mL micropipette, add 350–500 μL ice-cold
chloroform-methanol/1 mM BHT to the 15 mL vial. Then
use the first pipettor and tip to pipette the solution up and
down, washing the residual protein residue from both the walls
of the tube and the inner surfaces of the pipette tip. Transfer
the protein and chloroform-methanol/BHT wash to the pro-
tein fraction tube (see Note 28).

9. Vigorously shake and vortex the protein fraction tube for
>1 min and then centrifuge the tube at maximum speed in a
refrigerated microcentrifuge for 20 min at 4 �C, with the
hinges of the tubes facing away from the center of the rotor.

10. Transfer as much of the upper aqueous layer in the protein
fraction tube as possible to the 5 mL polar phase Eppendorf
tube using the transfer pipette from step 4 while avoiding
disruption or transfer of the middle protein layer. Weigh the
resulting polar fraction, and subtract the initial tube weight to
determine the total weight of the polar metabolite fraction (see
Note 29).

11. Transfer all but ~10–20 μL of the lower nonpolar lipid fraction
to the 2 mL glass lipids vial, and return the lipid vials to the
vacuum centrifuge, and evaporate to dryness. As soon as the
lipid fractions are dry, add 300 μL of chloroform-methanol/
BHT solution to them, cap the glass tube tightly, vortex gently,
and store at �80 �C until analysis (see Note 30).

12. Add 500 μL of cold methanol to the protein fraction, vortex
briefly, and then centrifuge the tube at maximum speed in a
refrigerated microcentrifuge for 10 min at 4 �C with the hinges
of the tubes facing away from the center of the rotor. Carefully
aspirate the supernatant using a gel-loading tip via vacuum
suction or a 1 mL pipette, taking care not to disrupt the protein
pellet (see Note 31).

13. Evaporate the protein residues to dryness by vacuum centrifu-
gation (~25–30 min). Subsequently, on the same day, measure
and record the mass of the protein fraction tube with the dried
protein residue to 0.01 mg and subtract the tare weight of the
same tube to obtain the mass of the dry protein residue, if
desired. The expected residue mass is 0.5–2 mg (see Note 32).

14. The polar fraction can be sub-aliquoted into many fractions
and stored in polypropylene screw cap or Eppendorf tubes for
different analyses. Half or more of the polar fraction in the
5 mL tube is suitable for analysis by high-field NMR spectros-
copy [14, 15]. One eighth of the polar fraction in a 2 mL glass
vial is suitable for MTBSTFA derivatization for analysis by
GC-MS [14, 16] or ion chromatography (IC)-FTMS analysis
[7, 14, 47]. One 16th of the polar fraction in a 2 mL screw-cap
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tube is suitable for multiple direct infusion FT-MS analyses
[16, 22, 48] (see Note 33).

15. Cap all aliquot tubes with screw caps or snap caps containing
3–6 small perforations on top, and freeze all tubes upright in
flexible 9 � 9 cardboard racks by placing them in ~1 cm of
liquid nitrogen in a Styrofoam or other cold-resistant tray.
After all aliquots reach liquid nitrogen temperature, rapidly
transfer the racks to a suitably sized lyophilization can and
apply vacuum as quickly as possible. Lyophilize to dryness for
18–24 h; the polar aliquots should remain frozen under the
vacuum for the duration of the lyophilization period (see Note
11). After lyophilization, replace the perforated caps with
tightly sealed pre-labeled caps and store at �80 �C until
analysis.

3.3 Acetone

Extraction of Culture

Medium

Proteins in culture medium are chemically precipitated using cold
80% acetone and removed by centrifugation, and the supernatant is
collected for downstream analyses.

1. Add 400 μL of ice-cold acetone to a 100 μL aliquot of culture
medium in a microcentrifuge tube.

2. Vortex vigorously and then incubate the samples in a �80 �C
freezer for >30 min.

3. Remove the precipitated samples from the freezer, and centri-
fuge them at maximum speed (15–20 K � g) for 10 min at
4 �C.

4. Transfer the clarified supernatant to a new tube(s), and remove
the solvent using either a vacuum microcentrifuge, or freeze-
dry using a lyophilizer fitted with a liquid nitrogen pre-trap (see
Notes 34 and 35).

3.4 Culture Medium

Protein Removal Using

Ultrafiltration

Proteins are removed by centrifugal ultrafiltration using
10,000 molecular-weight-cutoff dialysis membranes, and the flow-
through is collected for downstream analyses.

1. 300–400 μL of culture medium is added to the top of an
ultrafiltration spin column (e.g., Millipore Ultracel YM-10)
after extensive wash with ddH2O.

2. Centrifuge the spin column at 5000 � g for 30 min at 4 �C in a
microcentrifuge.

3. Collect 100 μL of the filtrate flowthrough, and remove the
solvent using either a vacuum microcentrifuge, or freeze-dry
using a lyophilizer fitted with a liquid nitrogen cold trap (see
Notes 35 and 36).
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4 Notes

1. Poly-D-lysine or collagen-coated plates can be used for cells
that are poorly adherent.

2. Some cell lines, including mtDNA-deficient rho-0 cells and
patient-derived fumarate hydratase-deficient (FH�/�) tumor
cell lines, grow poorly or not at all in culture medium made
with dialyzed FBS without supplementation of 1 mM pyruvate.
The necessity for the presence of pyruvate in the culture
medium should be evaluated prior to the tracer experiment;
we typically do not supplement with exogenous pyruvate unless
it is necessary for cell proliferation.

3. The part number given here is for pre-dialyzed FBS; however,
dialyzed FBS can be prepared in-house with substantial savings
in cost.

4. While not required for tissue culture, phenol red is an invalu-
able tool that allows the researcher to continuously monitor
the pH of the culture medium. An excessively pink color indi-
cates greater alkalinity, usually due to loss of bicarbonate buff-
ering by prolonged exposure of the medium bottle to room air
atmosphere. Yellowing of the culture medium is frequent in
highly glycolytic tumor cell cultures and is indicative of sub-
stantial acidification due to lactate secretion and possible deple-
tion of glucose in the culture medium. Yellowing of the culture
medium can also be an early indicator of bacterial contamina-
tion. Finally, changes in the color of phenol red sometimes
occur after additions of drugs or other chemicals, immediately
indicating the need for pH adjustment of the agent before
addition to the culture medium. Caution must be taken with
cells that are estrogen-sensitive, as phenol red has been
reported to be a weak estrogen mimetic [49], though this
may be due to lipophilic impurities in certain phenol red pre-
parations rather than the pH indicator itself [50].

5. The choice of the tracer to be used depends on the goals of the
project. Some strategies for tracer selection in mammalian cell
tracer experiments are presented in the following references
[3, 12, 18, 22, 25].

6. Prepare all tracer solutions using double-deionized water
(ddH2O, 18.2 M Ω). Sterile water for injection can be used if
ddH2O water is not available.

(a) Prepare 46.5% (w/v) 13C6-glucose (2.498 M) volumetri-
cally using a volumetric flask. For example, for a 10 mL
solution, weigh 4.65 g of 13C6-glucose powder into the
flask, and bring up to 10 mL volume line with
ddH2O. 45% (w/v) 12C-glucose solution (2.498 M) is
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prepared in the same way using 4.5 g of natural abundance
D-glucose. The solutions should be sterile filtered using a
0.22 μm syringe filter and stored in a Parafilm-wrapped
vial at 4 �C for several months or in aliquots in tightly
sealed vials at �80 �C for years.

(b) Prepare 200 mM L-glutamine solutions using the appro-
priate molecular weight of the tracer compound in
ddH2O (e.g., 12C-L-glutamine MW ¼ 146.14 g/Mol,
13C5-L-glutamine MW ¼ 151.11 g/Mol). The solution
should be sterile filtered using a 0.22 μm syringe filter and
immediately aliquoted in vials and stored at �80 �C for at
least 1 year. Repeated freeze and thawing of the stock
solution should be avoided.

(c) Dialyzed FBS can be stored in aliquots of 10–45 mL in
sealed polypropylene conical vials at �20 �C or �80 �C.

7. For a typical tracer experiment such as the schemes shown in
Fig. 1, prepare 300 mL basal tracer medium by combining
30 mL dialyzed (or exosome-depleted) FBS with 270 mL
basal DMEM and optional 300 μL of 0.5% phenol red solution.
Sterile filter using a disposable 500 mL 0.2 μm filter unit.
Dialyzed FBS tends to show flocculence following freeze-
thaw cycles; sterile filtration of the final solution ensures that
any particulate matter is removed from the tracer medium.
Prepare tracer media as required by the experimental design.
We typically supplement basal DMEM media with 11 mM D-
glucose (0.2%) and 2 mM L-glutamine (e.g., 11 mM 13C6-D-
glucose plus 2 mM 12C-L-glutamine or 11 mM 12C-D-glucose
plus 2 mM 13C5-L-glutamine).

8. Unless it is explicitly part of your downstream analysis strategy
(e.g., [22]), never include more than one tracer molecule in a
given tracer medium preparation. Also, doubly labeled tracers
such as 13C5- and 15N2-L-glutamine should not be utilized
unless downstream analyses will include platforms that are
able to distinguish the two heavy isotopes (e.g., 1H/13C/15N
NMR or ultrahigh-resolution Orbitrap or ion cyclotron
Fourier-transform mass spectrometry). Be sure to prepare
~3–5 mL excess of each type of tracer medium for sufficient
distribution into each plate, and remember to include enough
medium for the blank plates with no cells.

9. Store all solvents in a flammable-certified �20� freezer in the
dark.

(a) Decant 100 mL of HPLC-grade acetonitrile into an
amber bottle and store at �20 �C.

(b) Decant 100 mL of HPLC-grade methanol into an amber
bottle and store at �20 �C.

Practical Aspects of Tissue Culture and Sample Extraction for Metabolomics 19



(c) Decant 100 mL of HPLC-grade chloroform into an
amber bottle and store at �20 �C.

(d) Prepare 100 mL of chloroform/methanol-BHT solution,
prepare a 100mMbutylated hydroxytoluene (BHT) stock
solution in HPLC-grade methanol, and then prepare
100 mL of 2:1 chloroform/methanol-1 mM BHT in an
amber bottle by combining 66 mL chloroform with
32 mL methanol and 1 mL of 100 mM BHT stock solu-
tion in an amber bottle. Seal tightly, and store at �20 �C.

10. The cell lifter is superior to hinged cell scrapers because more
force can be applied at a 45� angle to scrape the solvent and
quenched cells.

11. This metabolite extraction procedure calls for freeze-drying/
lyophilization of the resulting polar fraction aliquots. Freeze-
drying allows for the removal of solvents and water from the
polar fraction while maintaining the sample at below freezing
temperature and minimizing exposure of the sample to oxygen
during the drying process by the maintenance of high vacuum
[51] and is far superior to vacuum centrifugation for the quan-
titative preservation of the maximum number of metabolites.
However, depending on the stability of the metabolite(s) of
interest, other evaporative techniques could be utilized for
sample concentration, including vacuum centrifugation or dry-
ing under a flow of nitrogen gas.

The liquid nitrogen pre-trap is important for lyophilizers
fitted with oil-containing pumps, as the solvents with very low
melting points (e.g., methanol, acetone) derived from the
sample will degrade the pump oil over time and lead to prema-
ture failure of the pump.

An alternative currently being evaluated by D.R.C. is to
utilize a � 86 �C lyophilizer with a Teflon-coated condenser
chamber and coils, attached to an oil-free Edwards scroll pump
with silencer kit, with the open ballast venting into a chemical
fume hood.

12. A vacuum centrifuge fitted with an oil-free diaphragm pump
(e.g., Eppendorf Vacufuge plus™) is desirable for the evapora-
tion of solvents such as methanol and chloroform, as
oil-containing vacuum pumps are subject to the same solvent
issues as discussed above.

13. The standard quantity of 10 mL of tracer medium per 10 cm
dish is used for routine experiments. However, for very rapidly
growing cells such as HEK293 or cells exhibiting extraordi-
narily high levels of aerobic glycolysis (e.g., mtDNA-depleted
cells or Krebs cycle enzyme-deficient tumor cells), greater
amounts of medium may be needed to sustain adequate
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nutrient levels during routine culture and during the tracer
labeling period.

14. The metabolite extraction procedure outlined in this protocol
allows for obtaining a protein residue for subsequent quantifi-
cation and normalization of metabolite levels. If you choose a
different metabolite extraction protocol that does not allow for
recovery of cellular protein, then additional dishes can be
included to allow for cell counting and/or cellular protein
determination for inferred normalization of metabolite con-
centrations [3]. However, this practice is imprecise, as each
plate will be seeded somewhat differently and should not for-
mally be used for normalization of a separate plate.

15. Many cell lines require 24 h or more to adhere, stabilize, and
enter into log-phase growth. Do not seed the cells, and initiate
the tracer labeling period simultaneously.

16. If the medium is excessively pink (alkaline) due to loss of
bicarbonate to the air as CO2, the media can be left in the 5%
CO2 incubator for several hours to overnight with the lid
loosened to allow for re-equilibration of the bicarbonate buff-
ering system.

17. At the beginning of the experiment, use a permanent marker to
mark the lower outer wall of the culture dish indicating where
aspiration and additions will occur throughout the subsequent
steps of culture and quenching. This, together with aspiration
slightly above the mark, will help to minimize cell loss and keep
the loss more consistent across the dishes and treatment groups
during the course of experiment.

18. If an inverted phase-contrast microscope with a camera is
available, then take a picture of one or more regions of the
dish from at least one replicate of each treatment group before
and after the tracer incubation period. This will reveal any
morphological or cell number changes in the tracer
experiment.

19. For non-adherent cells or cells that are very poorly adherent, an
alternative harvesting procedure is as follows:

(a) Collect cells and medium from each dish in a conical tube,
and centrifuge at 350 � g, 5 min, 4 �C. Weakly adherent
cells can be collected by gentle trituration of the tracer
medium over the plate until cells are detached.

(b) Collect 1 mL of culture medium supernatant, and set
aside for subsequent processing and extraction.

(c) Vacuum aspirate the remainder of the tracer medium with
a fine pipette tip, add 10 m L of ice-cold PBS, and gently
triturate the cell pellet. Centrifuge at 350 � g, 5 min,
4 �C, and then vacuum aspirate the supernatant.
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(d) Repeat step 3 once, taking care to vacuum aspirate as
much PBS as possible during the second aspiration.

(e) Immediately add 1 mL cold (�20 �C) acetonitrile, and
vortex the mixture in pulses to resuspend the cells. If
clumps of cells are still visible, then triturate up and
down with the 1 mL pipette tip to break up the clumps.

(f) Add 0.75 mL ice-cold ddH2O and vortex, then add an
additional 1 mL of acetonitrile and 0.75 mL ddH2O, and
proceed to step 11 in Subheading 3.1.

20. Work quickly, and minimize the time between which the cul-
ture dishes leave the incubator and the cells are quenched with
solvent, thus minimizing the time that elapses between
removal of the dish from the relative equilibrium of the incu-
bator to the time when cellular enzymatic activities are elimi-
nated by the 100% acetonitrile quench.

21. Prior to metabolite quenching and extraction, it is important
to minimize the salt contribution to the final extracts, which
can interfere with metabolomics analysis, particularly by mass
spectrometry. Residual sodium, chloride, and phosphate ions
can interfere with MS analyses via ion suppression and
decreased signal-noise ratios in NMR analyses [52]. Be sure
to aspirate as much liquid as possible after the last wash.

Greatly reduced salt interference can be achieved by a brief
rinse of the dish with Nanopure water (30 s to 1 min) right
after removing the medium components with PBS. We have
found that this water rinse significantly improved Fourier-
transform mass spectrometry performance without loss of cel-
lular metabolites. The water rinse is aspirated rapidly, and the
quenching solvent is added immediately.

22. An internal standard can be included in the ddH20 at this step.
53.3 μM tris, pH 8.0 can be included in the first 0.75 mL
ddH20 addition, as a convenient internal standard in 1H NMR
analyses.

23. Think of the cell lifter as a squeegee being used to move all
liquid and cell material to the bottom of the plate, reminiscent
of squeegeeing a window or windshield after washing it.

24. High-quality gloss-finish scotch tape is used to protect the
writing on the tube from being smeared by solvents during
pipetting, centrifugal evaporation, and lyophilization.

25. This is the commitment step in the metabolite extraction pro-
cedure. Once chloroform is added, the fractionation procedure
must be completed in the same day, as the chloroform will
slowly degrade the polypropylene tubes. Never use polystyrene
tubes for metabolite extractions.
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26. If the protein interphase looks excessively thick, fuzzy, or
uneven, then centrifuge for an additional 20 min.

27. If the protein interphase layer is sufficiently abundant and
forms a solid white layer, a 1 mL pipette set to 900 μL with a
non-filtered polypropylene tip can be carefully teased along the
side of the tube, past the protein layer, and down into the
chloroform phase. If the protein layer is less abundant or
more fluffy, a 200 μL micropipette fitted with a gel-loading
tip must be used, with the tip carefully inserted through the
protein layer along the side of the tube. In either case, take care
not to pipette the aqueous layer by first depressing the pipette
plunger down to its first resistance point before inserting it into
the tube, then slowly insert the tip past the aqueous and
protein phases into the chloroform phase, and then depress
the plunger slightly further to expel any aqueous phase until a
small air bubble is passed. Then begin to draw the chloroform
phase into the tip. Take care to minimize the amount of protein
that sticks to the outer wall of the pipette tip.

28. Loss of some of the protein fraction due to adherence to the
walls of the 15 mL conical vial as well as adherence of the
protein to the inner and outer walls of the pipette tip is inevi-
table. The chloroform/methanol-BHT helps to reduce this
loss; however, protein recovery is never 100%. Work hard to
minimize this fractional loss of protein residue, but most
importantly, try to keep the degree of loss consistent across
all of the samples.

29. The net mass yield of the polar fraction can be used to assess
consistency between samples and to determine split ratios for
polar metabolite fraction aliquots. After weighing, the entire
polar metabolite fraction can be stored at �80 �C for several
days before thawing, sub-aliquoting, and lyophilization.

30. Avoid excessive drying time and exposure of the lipid fraction
to heat/air. BHT is a preservative used in the food industry to
stabilize fats; it is added here to slow the peroxidation of
unsaturated lipids and fatty acids.

31. Make sure that the hinges of the microfuge tubes face outward
from the center of the microcentrifuge rotor, so that the result-
ing protein residue pellet is located at the same position at the
bottom of every tube.

32. Loss of protein residue during vacuum centrifugation can be
minimized by attaching a separate cap cut from additional
Eppendorf tubes with 4–8 perforations made using an
18-gauge needle or other perforation tool. Proteins can subse-
quently be redissolved in lysis buffer and their concentration
measured by BCA or Bradford assay.
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33. Record the mass of each polar aliquot as it is pipetted in order
to determine the exact fraction represented by the aliquot, by
dividing the fraction mass by the total mass of the polar frac-
tion. Aliquoting into the polar fraction tubes can be performed
directly on an analytical balance and the polar fraction masses
recorded as they are being aliquoted.

34. Approximately 50–75% of the dried culture medium extract is
sufficient for analysis by 1H NMR, and 1/8–1/16 quantity of
the extract is suitable for mass spectrometry applications.

35. The choice of solvent removal method for culture medium
samples depends on the lability of the metabolite(s) of interest.
For example, while lactate and glucose are relatively stable to
temperature and pH, other metabolites of potential interest
such as glutamine and pyruvate will degrade during vacuum
centrifugation.

36. Approximately 50–75% of the dried extract is sufficient for
analysis by 1H NMR.

37. Centrifugal ultrafiltration membranes contain significant
amounts of glycerol that will end up in the sample. If this is
an issue, then prerinse and spin the membranes with ddH2O
prior to addition of your medium samples to the membranes.
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Chapter 2

Imaging Cancer Metabolism with Positron Emission
Tomography (PET)

Timothy H. Witney and David Y. Lewis

Abstract

Positron emission tomography (PET) enables the noninvasive spatiotemporal analysis of cancer metabolism
in vivo. Both natural and nonnatural PET tracers have been developed to assess metabolic pathways during
tumorigenesis, cancer progression, and metastasis. Here we describe the dynamic in vivo PET/CT imaging
of the glucose analogue [18F]fluoro-2-deoxy-D-glucose (FDG), taking into consideration the methodology
for alternative metabolic PET substrates.

Key words Fluorodeoxyglucose, FDG, Positron emission tomography, PET, Mouse, Imaging, Car-
bon-11, Fluorine-18

1 Introduction

Positron emission tomography noninvasively measures the uptake
and retention of radiolabeled metabolites with picomolar sensitivity
and submillimeter resolution, providing a three-dimensional view
of cancer metabolism in living subjects. The most common radi-
olabeled metabolite is 2-[18F]fluoro-2-deoxy-D-glucose (FDG),
which is used as a surrogate for aerobic glycolysis, an often reported
metabolic feature in cancer cells. FDG is taken up by glucose
transporters, phosphorylated by hexokinase, and trapped intracel-
lularly; it cannot be further metabolized and therefore measures the
rate of glucose utilization rather than fluxing through the whole
glycolytic pathway. FDG is used in the clinic to diagnose cancer,
image invasion (staging), and monitor the effectiveness of cancer
therapy [1].

To probe cancer metabolism, numerous other PET radiotracers
have been developed in addition to FDG, including tracers that
image fatty acid synthesis, fatty acid oxidation, oxidative stress,
choline uptake and metabolism, amino acid uptake, and protein
synthesis rate [2] (Fig. 1). These radiotracers tend to be, like FDG,
either fluorinated analogues which are taken up by specific
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mechanisms but not extensively metabolized or carbon-11-labeled
versions of endogenous substrates which are transported into the
cell and metabolized via native pathways. There are advantages and
disadvantages of each approach, for example, carbon-11 radiotra-
cers require careful metabolic validation to determine what infor-
mation can be obtained from the PET image, as PET provides no
information of the chemical nature of the labeled metabolites.
Similarly, great care needs to be taken when considering

Fig. 1 A schematic of the metabolic pathways and enzymes responsible for the intracellular trapping of key
PET substrates for imaging cancer metabolism. Radionuclides and PET substrates are shown in red. ACLY ATP
citrate lyase, ACSS2 acetyl CoA synthetase short-chain family member 2 cytosolic, ASCT2 neutral amino acid
transporter (SLC1A5), Ala alanine, CPT1 carnitine palmitoyltransferase I, CTL choline transporter-like proteins
(SLC44A), Cys cysteine, FASN fatty acid synthase, FATP fatty acid transport protein, Gal galactose, GALK1
galactokinase 1, GLS1 glutaminase 1, Gluc glucose, Gln glutamine, Glu glutamate, GLUT glucose transporter,
GYS1 UDP-glucose-glycogen glucosyltransferase, HK2 hexokinase 2, LAT1 L-type amino acid transporter
1 (SLC7A5), LDH lactate dehydrogenase, MCT monocarboxylate transporter, SNAT sodium-coupled neutral
amino acid transporter, XC

- anionic amino acid transporter light chain, system xc- (SLC7A11), TCA tricarbox-
ylic acid cycle, VDAC voltage-dependent anion channel. Reproduced with permission from [2]
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non-natural substrates as surrogates as these tracers may not reflect
genuine metabolic pathway flux due to their different affinities for
cognate transporters or enzymes and retention may reflect atypical
metabolism (see Note 1). The final choice of metabolic PET imag-
ing will also be dictated by tracer availability (see Note 2).

This chapter takes you through a preclinical FDG PET/CT
experiment, with special consideration given to nonstandard PET
tracers, where relevant, in the Notes section. We describe the steps
required for a successful FDG PETexperiment, including PET/CT
scanner, animal and radiotracer preparation, animal injection,
PET/CT image acquisition, reconstruction, and analysis.

2 Materials

2.1 PET/CT Scanner

Preparation

1. Small animal PET/CT scanner (e.g. Mediso NanoPET/CT)
with integrated heated bed and animal respiratory and temper-
ature monitoring.

2. Phantoms and calibration sources (Hounsfield, normalization,
image quality, sodium-22 point source, 1 mL syringe with
3.7 MBq FDG).

2.2 Animal

Preparation

1. Tumor-bearing mice or non-tumor-bearing control mice (see
Note 3).

2. Absorbent paper.

3. Small animal heating chamber (e.g. small warm air system,
Vet Tech).

4. Small animal heating plate (e.g. UNO controlled heating
system).

5. Isoflurane anesthetic machine with medical air supply via cen-
tral distribution system or by pressurized tank.

6. 1 mL syringes

7. 30 G needles

8. Polyethylene tubing (0.28 mm Ø).

9. 0.9% NaCl saline solution in water (bag of 100 mL)

10. Heparin sodium 1000 IU/mL solution for injection, 5 mL
ampoule.

11. Needle forceps.

12. Zinc oxide tape (1.25 cm wide).

13. Animal balance.

14. Infrared heat lamp.

15. Topical skin adhesive.
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2.3 Radiotracer

Preparation

and Animal Injection

1. FDG (or other metabolic PET radiotracer).

2. 5-cm-thick lead isotope workstation (e.g. Von Gahlen)

3. Contamination monitor (Geiger-Muller or plastic
scintillator type).

4. 0.9% NaCl saline solution in water (bag of 100 mL)

5. Heparinized saline solution (bag of 100 mL; 50 IU/mL hepa-
rin sodium).

6. 1 mL syringes

7. Luer tip syringe caps.

8. Dose calibrator.

9. Isoflurane anesthetic machine with medical air supply via cen-
tral distribution system or by pressurized tank.

10. Timer.

2.4 Image Analysis 1. DICOM database manager.

2. Image analysis software (VivoQuant, PMOD, Inveon research
workplace, etc.)

3 Methods

3.1 PET/CT Scanner

Preparation (Prior

to Experiment)

1. PET/CT calibrations including Hounsfield calibration, activity
calibration, normalization, and PET/CT alignment should be
performed on a regular (minimum biannually) basis in advance
of the imaging study (see Note 4).

2. PET/CT quality control (QC) also needs to be performed
regularly (recommended intervals provided in parenthesis):
PET detector check (daily), Hounsfield QC (weekly),
PET/CT co-registration (weekly), image quality phantom
(monthly), PET activity QC with Na22 point source (weekly),
and F18 syringe (monthly).

3.2 Animal

Preparation (the Day

Prior

to the Experiment)

1. Fast animals overnight the day prior to imaging (see Note 5).
Water must be provided ad libitum.

3.3 PET/CT Scanner

Preparation (on Day

of Experiment)

1. X-ray tube conditioning of the CT scanner (or similar, depend-
ing on make/model) should be performed on the day of
imaging at least 30 min prior to receiving radioactivity.

2. Perform daily PET detector QC using a Na22 point source.

3. The animal bed should also be prepared in advance of receiving
the radioactivity.

4. Select the correct bed for single mouse imaging (see Note 6).
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5. Line bed with absorbent paper.

6. Heat the animal bed to 37 �C.

7. Attach and position the animal breathing rate monitor and
rectal temperature probe.

8. Turn on the isoflurane scavenger for the PET/CT scanner.

9. Enter the experiment and animal identification information
into the study planner section of the PET acquisition software.

3.4 Animal

Preparation

1. Switch on and set to 37–40 �C the small animal heating cham-
ber 20–30 min prior to use.

2. Line with absorbent paper.

3. Switch on the small animal heating plate and set to 37 �C.

4. Prepare anesthesia machine by filling the isoflurane vaporizer,
switching on the medical air delivery, and lining the induction
box with absorbent paper (see Note 7).

5. Prepare heparinized saline by injecting 5 mL sodium heparin
solution (5000 IU) into 100 mL bag of saline (0.9% NaCl).

6. Injection cannulas can be prepared (one cannula per mouse)
using two 30G needles and a 10–15 cm length of polyethylene
tubing (0.28 mm Ø). break one needle by holding with needle
forceps and twisting repeatedly until the needle breaks at the
plastic end. The blunt end of this broken needle can then be
placed into one end of the polyethylene tubing. The second
30G needle can then be placed needle end first into the other
end of the polyethylene tubing. Finally, ensuring that no bub-
bles are present, fill a 1 mL syringe with 200 μL heparinized
saline, and place into the plastic port of the 30G needle
(Fig. 2b).

7. Bring mice to the imaging laboratory, and place in the heating
chamber for 10–30 min prior to cannulation in order to dilute
the tail vein in preparation for cannulation (see Note 8).

8. Attach the induction chamber to the isoflurane vaporizer and
switch on. The isoflurane concentration should be set to 3% for
the induction of anesthesia.

9. Once the induction chamber is filled with isoflurane, remove
one mouse at a time from the heating box, and place into the
chamber.

10. When the mouse is fully anesthetized, remove from the cham-
ber, and place on its side on the small heating plate, ensuring
the nose is placed fully in the anesthetic nose cone. Change the
concentration of isoflurane to 2%.

11. Weigh and record the mouse weight by briefly transferring to
an animal balance before placing back on the anesthesia.
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Fig. 2 Mouse tail vein cannulation procedure for i.v. injection of FDG. (a) Schematic of mouse tail anatomy
showing path of needle insertion. Reproduced with permission from [12]. (b) Assembled tail vein cannula; (c)
cannula is inserted into the lateral tail vein; (d) cannula in place secured using tissue adhesive shows blood
flashback. Images courtesy of Dr. De-en Hu, University of Cambridge, UK

34 Timothy H. Witney and David Y. Lewis



12. The heat lamp can also be used to ensure the mouse is warm
and tail veins are fully dilated prior to inserting the cannula.
Care must be taken not to place to heat lamp too close to the
tail in order to prevent damage to the tail tissue.

13. Stroke the tail moving from a proximal to distal direction to
further dilate the vein. Begin cannulation attempts as distal as
possible, allowing more proximal attempts as necessary.

14. To insert the cannula, grasp the mouse tail using the thumb
and index finger of the non-dominant hand, and bend the tail
slightly so that the needle and the vein are parallel to each other
(Fig. 2a). Then holding the needle of the cannula in the
dominant hand with the bevel up, insert the needle into the
lateral tail vein of the mouse, and advance the needle a few
millimeters (Fig. 2c). When the cannula is inserted into the
vein, blood may flash back into the cannula (Fig. 2d). Correct
placement can be checked by flushing a small amount of saline
into the vein; there will be little resistance if the cannula is in
the correct place. If there is resistance and the tail around the
injection site blanches white, then the needle should be with-
drawn, and cannulation can be attempted again.

15. Once the cannula is inserted, secure it to the tail using topical
skin adhesive (Fig. 2d).

16. Turn on the scanner’s isoflurane vaporizer; set at 2% isoflurane.

17. Transfer the animal onto the PET scanner bed. Care must be
taken to support the cannula and associated syringe during
transfer so it does not become dislodged.

18. Place the mouse into the scanner headfirst in the prone posi-
tion, ensuring the nose is placed fully in the anesthetic nose
cone. Check that the respiratory pad is positioned on the chest
of the mouse.

19. Secure the mouse to the bed with a piece of tape around the
midriff, tight enough to put pressure on the breathing pad and
to reduce excessive movement but loose enough to allow
unrestricted respiration.

20. Secure the cannula tubing to the animal bed with tape.

21. Outstretch all of the limbs and secure these to the bed
with tape.

22. Place the temperature probe into mouse rectum and secure
with tape.

23. The isoflurane can be reduced to ~1% for maintenance; this will
be model- and stain-dependent; however, the depth of anes-
thesia can be monitored using the respiration pads and moni-
toring system. The respiration rate should be maintained at
about 60–100 breaths/min. If the breathing rate falls outside
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these limits, then the concentration of isoflurane can be raised
or lowered accordingly.

24. Similarly, the mouse body temperature should be maintained at
35–37 �C by changing the set temperature on the animal bed
as necessary.

25. Position the bed in the scanner’s center field of view using the
CT’s scout view by changing the bed’s table height and exten-
sion into the scanner.

26. Metabolic tracers other than FDG may require different
animal handling conditions to those described here for FDG
(see Note 9).

3.5 Radiotracer

Preparation

1. Collect FDG directly from the supplier or temporary storage
location; as F18 and C11 have short half-lives, there is a neces-
sity to work quickly.

2. Prepare radioactive doses inside a 5-cm-thick lead isotope
workstation for radioprotection, and check regularly for per-
sonal and laboratory contamination using a monitor.

3. Following FDG collection, the exact concentration of activity
in MBq/mL needs to be calculated. This can be achieved by
placing 100 μL of the stock solution into the dose calibrator
and measuring the total radioactivity. It is important to note
the time of this measurement, so all calculations can be decay-
corrected.

4. Estimate the time of scan, and using the following equation,
calculate the amount of activity at the time of scan:

A tð Þ ¼ A0 � e�λt ð1Þ
A(t)—Radioactive dose at time t (MBq).

A(0)—Original radioactive dose at time zero (MBq).

t—Elapsed time from initial radioactivity measurement (min).

λ—Decay constant:

λ ¼ ln 2ð Þ
t1=2

ð2Þ

t1/2—Radioactive half-life (min); 109.7 min for F18 and
20.4 min for C11.

5. From the measured stock activity, calculate the amount of
activity required to make a stock solution of 18.5 MBq/mL
at the time of scan. 3.7 MBq is required per animal, and a
maximum of 10 mL/kg should be injected per mouse.

6. Once the activity doses have been calculated for 3.7 MBq of
injected activity, add the exact dose volume required into a
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1 mL syringe, accounting for ~60 μL dead volume, and place a
Luer tip syringe cap on the end.

7. Using the dose calibrator, measure the syringe activity noting
the time A1(t1) (see Note 10).

3.6 Animal Injection

and PET/CT Scanning

1. Under the scout view tab, drag the scan area to cover the whole
mouse, and conduct a scout (X-ray) scan of the mouse for
positioning.

2. Using the scout view as a guideline, select the PET imaging
volume making sure the tumor and any other regions of inter-
est are central to the FOV (see Note 11).

3. For the PET acquisition parameters, set the radionuclide to
F18 and the termination conditions to dynamic data collection
over 90 min (see Notes 12 and 13).

4. Static PET imaging can also be conducted with FDG (see
Note 14).

5. Set a timer for 15 s.

6. Remove the syringe containing heparinized saline from the end
of the cannula, remove the Luer tip cap from the activity
syringe, and place it to one side. Place the activity syringe on
the end of the cannula taking care not to introduce any air into
the injection volume.

7. When ready, start the scan (t0) and the timer simultaneously.

8. After 15 s inject the mouse with radiotracer over a period ~3 s.

9. Remove the activity syringe and replace the Luer tip cap. Put
the syringe containing heparinized saline back into the cannula
again taking care not to introduce air, and flush the cannula
with 100 μL of heparinized saline.

10. Measure the remaining radioactivity within the activity syringe
noting the time, A2(t2).

11. While the first scan is being performed, the next mouse can be
prepared for scanning. During this 90-min period, other mice
can be cannulated, and syringe radioactive doses can be drawn
up and measured.

12. After the PET scan, acquire the CT over the same FOV as the
PET using the following settings: Same scan range as PET
acquisition, helical scan, 360 projections, 55 kVp, and
1100 ms exposure time (or similar depending on make and
model of scanner) (see Note 15).

13. Following CT scan, remove the dose cannula, and press absor-
bent paper onto the mouse tail to stop bleeding.

14. Reduce the isoflurane concentration to zero, and place mouse
into the heated chamber for recovery, if required.
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15. When mouse is freely moving around, it can be put back into
the home cage.

16. It may be necessary to keep the mouse in a radioactive desig-
nated area overnight, depending on the local radiation protec-
tion guidelines.

17. Alternatively, after the imaging session, place the mouse under
terminal anesthesia if tissues are required for ex vivo analysis (see
Note 16).

3.7 Reconstruction 1. Reconstruction parameters are specific to each PET scanner
manufacturer and require optimization depending on your
application. We recommend dynamic 3D iterative reconstruc-
tion with full detector modeling using four iterations and six
subsets with 0.4 � 0.4 � 0.4 mm isotropic voxels and with
decay (to the start time of the PET scan) and random, attenua-
tion, and scatter correction, with 4 � 15 s, 4 � 1 min,
17 � 5 min dynamic time bins (see Note 17).

3.8 Image Analysis 1. Reconstructed PET and CT scans can be transferred to image
analysis software through a DICOM server connection. Alter-
natively, DICOMfiles can be saved on a portable storage device
if a DICOM server is not available.

2. PET and CT image datasets are loaded, which should be
co-registered if the PET/CT alignment has been performed
correctly (see Subheading 3.1).

3. Tumor uptake can be quantified by manual drawing of regions
of interest (ROI) using structural detail from the CT scanner
(see Note 18). For novel tracers, pharmacokinetics can addi-
tionally be extracted for normal tissue by placing a spherical
ROI over these regions, as identified from the CT image.
Muscle from the hind limb is frequently used as a measure of
tracer uptake in background tissue.

4. Averaged tracer uptake across the tumor and/or tissue for each
time frame should be extracted for analysis in Microsoft excel
or similar tools.

5. Using Eq. (2) above, decay correctly the original syringe radio-
activity A1(t1) and the radioactivity remaining in the syringe
after injectionA2(t2) to the start time of the PET scan (t0). The
injected dose (ID) at t0 is then calculated:

ID t0ð Þ ¼ A1 t0ð Þ �A2 t0ð Þ ð3Þ

6. The most commonly used metric for reporting PET is the
standardised uptake value (SUV; see Note 19) and this can be
calculated from the region of interest using the following
formula:
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SUV tð Þ ¼ C tð Þ
ID t0ð Þ=BW ð4Þ

SUV(t)—Standardized uptake value at time t.

C(t)—Tissue radioactive concentration at time t in Bq/mL.

ID (t0)—Injected dose at PET scan start time (Bq).

BW—Mouse body weight (g).

7. Finally PET/CT images can be displayed, with a scale bar,
using appropriate thresholds to visualize the tumor; the skele-
ton can be surface-rendered using Otsu thresholding to give
anatomical context to the PET image (Fig. 3).

4 Notes

1. C11 tracers have the advantage that they are “true tracers” and
not analogues; therefore they follow endogenous metabolic
pathways. However, this provides the added challenge that
due to the lack of chemical resolution, there needs to be a
careful consideration of tracer metabolism. The determination
of tracer metabolism can be performed ex vivo using radioac-
tive thin-layer chromatography (TLC) or high-performance
liquid chromatography (HPLC) with radiodetection to deter-
mine the radiochemical purity. Alternatively, the metabolic
species can be determined using C13 labeling as a surrogate
for C11 and HPLC or gas chromatography (GC)-mass spec-
trometry [3]. Similarly, metabolism of F18 tracers can be fol-
lowed using nuclear magnetic resonance with F19 as a
surrogate. The caveat here is that C13 and F19 detection
requires much higher concentrations than required for analo-
gous detection of C11 and F18 by PET which may perturb the
metabolic pathway under investigation.

2. In most situations PET imaging of nonstandard tracers
requires access to specialized radiochemistry facilities as gener-
ally only FDG (and possibly a few other metabolic tracers) is
available commercially. Fluorine-18-labeled tracers have a
radioactive half-life of 109.7 min and therefore can to be
transported over short (>4 hour) distances. Carbon-11 has a
half-life of 20.4 min, so it requires a nearby cyclotron facility.

3. The applicability and relevance of the information gained from
metabolic PET imaging is proportional to the quality of the
mouse model used. Where available, always use the most
advanced cancer models for imaging such as genetically engi-
neered mice, patient-derived xenografts, somatic cell transduc-
tion, and orthotopically implanted organoids rather than
reliance on subcutaneously implanted cancer cell line
models [4].
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4. PET scanners can only be considered accurate if calibrations
and QC procedures are followed. Important calibrations
include detector functioning, normalization (to give a uniform
image in the field of view despite differing sensitivity),
PET/CT alignment, and quantification calibration [5].

Fig. 3 FDG PET/CT image of a KrasG12D/+; Tpr53 R172H/+; Pdx-1-Cre mouse
bearing a pancreatic ductal adenocarcinoma (PDAC) tumor (white arrows) with
high glucose uptake. Physiological FDG uptake in the heart, bladder, and kidneys
can also be observed
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5. Fasting mice prior to FDG PET imaging increases the tumor
and reduces physiological uptake improving tumor contrast by
reducing the plasma blood glucose level [6].

6. Depending on the size of the transaxial field of view, it may be
possible to use a multi-mouse bed for imaging up to four mice
simultaneously [7]. This can greatly improve the efficiency of
PET imaging, especially for C11 studies.

7. Imaging requires pharmacological restraint using general anes-
thesia. There have been a number of studies looking at the
effects of anesthetic and carrier gas on FDG uptake [8, 9], the
best combination to maintain high tumor, and low background
uptake is 0.5–1.0% isoflurane (or sevoflurane, if available) and
medical air. 100% oxygen as a carrier gas may be beneficial to
maintain blood oxygen saturation in long PET experiments
(>4 h) or where mice are respiratory compromised such as
autochthonous lung tumor-bearing mice.

8. Mice should be pre-warmed before a PET scan and during PET
imaging as this has a beneficial effect on FDG distribution,
reducing physiological uptake in other organs, such as brown
fat, and improving the image contrast between the tumor and
the background tissues [10]. Under anesthesia mice are unable
to regulate their core body temperature; therefore, external
support is required to keep the animal temperature at 37 �C.
External heat sources should be set to the range of 37–40 �C,
but careful temperature monitoring using a rectal probe is
required, adjusting the external heat source accordingly.
There is less evidence for temperature-dependent uptake of
other metabolic PET tracers, but animal heating is important
for consistency, animal welfare and to preserve thermoneutral
metabolism.

9. There is little data optimizing anesthesia and animal handling
regimes for metabolic PET tracers other than FDG, so careful
consideration needs to be given. Additionally, there is little data
for the benefits of fasting for the uptake of other tracers; it may
reduce tumor uptake in some cases. If mice are sick due to high
tumor burden, then fasting can push them into a torpor, which
could be considered non-relevant. To be sure of the effect of
any animal handling procedures (i.e. diet, anesthesia, or tem-
perature), PET tracer uptake should be compared under the
different proposed conditions.

10. The time recorded for the injected radioactivity dose needs to
be synchronous with the time of the PET/CT scanner as these
are used for decay correction and a few minutes’ difference can
be significant particularly with C11 imaging [11].

11. The center of the PET field of view is the point in the PET
scanner with the highest resolution and sensitivity (hence
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signal-to-noise ratio); therefore, it is important to position the
animal so that the tumor (or other regions of interest) is
central.

12. Initial PET studies with novel tracers should always be
dynamic, i.e. injection and imaging of the animal throughout
the uptake and distribution period. FDG is irreversibly bound
inside the cell, so uptake should increase until a plateau, usually
60–90 min after injection. A number of metabolic PET tracers
(e.g. FET, FSPG, FACBC) are reversible; therefore they will
wash in and out of the tumor. Here the plateau phase is
transient and varies between different models; therefore,
dynamic imaging is frequently required to determine the opti-
mal imaging time point. Often the peak of the tumor uptake is
used, but the time point with maximum tumor-to-background
ratio will improve visualization. The optimal time point also
depends on the tracer metabolism to ensure that the process of
interest is dominant in the PET image [3].

13. Dynamic PET data can be analyzed using quantitative models,
ranging in complexity from graphical methods (i.e., Patlak
plot) using image-derived input functions to fully quantitative
multi-compartment models using metabolite-corrected arte-
rial plasma samples. The advantage of PET pharmacokinetic
modeling is that it allows the derivation of in vivo flux measure-
ments, which take into account variable tracer delivery and
whole-body tracer metabolism [10].

14. The kinetics of FDG tissue distribution are well-known; there-
fore, static PET scans (~10 min) are often performed. Here,
the animal is injected with radioactivity outside of the scanner,
with imaging performed at a pre-determined time point
(s) after injection. For FDG this should be a minimum of
60 min after injection. It is important to keep a consistent
imaging time, as small variations in time may result in large
differences in tissue uptake of the radiotracer. Another point to
consider for static scans is whether the animals are allowed to
recover from anaesthesia in-between tracer injection and scan-
ning. This will have a large effect on tracer pharmacokinetics
due to the altered metabolism, breathing, and heart rates expe-
rienced during anesthesia.

15. The purpose of the CT scan is threefold: to provide anatomical
context to the PET image, to produce an attenuation map for
PET signal attenuation correction and, where possible, to
localize the tumor.

16. If tissue needs to be collected immediately after imaging for
dissection, gamma counting, and other downstream analysis,
CT scans can be performed prior to PET imaging.
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17. Most manufacturers will have their own reconstruction algo-
rithms for PET reconstruction; these can generally be separated
into 2D or 3D filtered-back projection (FBP) and 2D or 3D
iterative reconstruction. Generally, 3D iterative reconstruction
such as 3D-ordered subset expectation maximization (OSEM)
is preferable as it gives the best image quality. 3D iterative
reconstructions have high computational demands and there-
fore used to have long reconstruction times. Newer recon-
struction algorithms run on graphics processing units (GPU)
allowing dynamic 3D reconstructions in hours rather
than days.

18. There is less selection bias when performing region of interest
analysis on the CT rather than the PET image. However, as CT
soft tissue contrast is poor, visualizing autochthonous or
orthotopic tumors can be difficult. Here, image thresholding
of the PET scan may be required (i.e. selecting all the voxels
inside the tumor volume above a certain value). Due to the lack
of CT soft tissue contrast, MRI is generally a better imaging
modality for tumor segmentation.

19. SUV is the radioactivity concentration normalized to the
injected dose and the body weight and provides a semiquanti-
tative measure of metabolic activity. An SUV of 1 is equivalent
to complete and uniform distribution of radioactive signal
throughout the body. Therefore, tumor SUV >1 suggests
tumor localization, and SUV is, for the most part, proportional
to the glucose utilization rate. In addition, the percentage of
injected activity, normalized for the volume of the tissue or
organ of interest, is frequently used for data analysis in preclin-
ical imaging studies when body weights are broadly equivalent.
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Chapter 3

Radioluminescence Microscopy: A Quantitative Method
for Radioisotopic Imaging of Metabolic Fluxes
in Living Cancer Cells

Debanti Sengupta and Guillem Pratx

Abstract

Radionuclide imaging with cellular-scale resolution allows characterization of biological processes and
metabolic fluxes in single live cells. In this protocol, we describe how to image radiotracer uptake with
single-cell resolution and compare the method to conventional bulk-scale gamma counting. We describe
the utility of both techniques, give examples where each technique is recommended, and provide detailed
side-by-side instructions for both techniques.

Key words Single-cell analysis, Cancer metabolism, Radiotracer quantitation, Microscopy

1 Introduction

Radioluminescence microscopy (RLM) is an emerging modality
designed for high-resolution imaging of radionuclides. In particu-
lar, this technique can be utilized to image the uptake of biologi-
cally relevant radiotracers in single living cells. Applications of this
technique range from assessing cancer cell proliferation [1] to
characterizing metabolic fluxes [2] and measuring radiolabeled
drug uptake [3]. The technique sets itself apart because of its ability
to image small molecules quantitatively at cellular resolution.Mole-
cules such as glucose cannot accurately be imaged through conven-
tional microscopy techniques such as fluorescence microscopy but
can be radiolabeled effectively through radiochemistry. With the
increased use of in vivo positron-emission tomography (PET),
there is now an abundance of new radiotracers that can be used to
quantify metabolic processes in live cancer cells [4]. Moreover,
depending on the specific application, radioluminescence micros-
copy may also be multiplexed with fluorescence and brightfield
microscopy, allowing multi-parametric imaging of single-cell
behaviors [5].
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While other techniques exist to probe radionuclide uptake in
biological samples, the singular strength of RLM lies in its ability to
characterize radiotracer signal with high resolution. While bulk
methods such as gamma counting and liquid scintillation counting
have provided useful information regarding radiotracer uptake in
biological samples, they typically measure millions of cells at once,
which obscures the specific pattern of uptake of single cells. This is
particularly important when probing heterogeneity within a mixed
cell population or tissue–for instance, a mixture of heterogeneous
cancer cells and stromal cells.

This paper lays out techniques for measuring radionuclide
uptake in cells using both RLM and gamma counting techniques.

In general, we recommendRLM for the following applications:

l When there is significant cell heterogeneity.

l When the biological sample contains two or more cell types
(co-culture) with different responses to the radiotracer in
question.

l When the number of cells is low, as in the case of biopsy samples,
stem cells, circulating tumor cells, or other rare cell types.

We recommend bulk gamma counting for the following
applications:

l When the cell population is homogeneous, meaning that the
average is a good measure of the population as a whole.

l When the biological sample contains multiple populations of
cells with similar responses to the radionuclide in question.

l When one is not limited by the number of cells – usually, bulk
experiments require 104–106 cells.

2 Materials

1. Radiotracer (suitable isotopes include 18F, 11C, 68Ga, and
64Cu).

2. Bioluminescence microscope equipped with EMCCD camera
or custom-built low-light microscope [5].

3. Microscopy immersion oil.

4. Microscopy objectives: 40� (oil, 1.3 NA) and 20� (air, 0.75
NA).

5. Bulk gamma counter.

6. Centrifuge.

7. Eppendorf tubes.

8. Falcon tubes (15 and 50 mL).
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9. Radiation dosimeter badge/ring.

10. Glass-bottom microscopy dishes.

11. Fibronectin.

12. Scintillators (we recommend CdWO4, both sides polished,
0.5 mm thick).

13. Ethanol (70%).

14. Piranha solution (three parts concentrated sulfuric acid to one
part 30% hydrogen peroxide solution).

15. Tweezers.

16. Cell culture media (with and without glucose).

17. Camera software (MetaMorph or HCImage).

18. ORBIT software package for the reconstruction of radiolumi-
nescence images (found at http://med.stanford.edu/
pratxlab/research/downloads.html).

19. MATLAB software.

20. Live mammalian cells.

3 Methods

3.1 Experiment

Preparations (Day 1)

1. For nonadherent cells, culture cells as per standard protocol,
for instance, in cell culture flasks.

2. For RLM imaging of adherent cells, seed cells on a glass-
bottom microscopy dish the night before (Fig. 1). The dish
must be large enough for the scintillator to fit. Depending on
how quickly cells multiply, the recommended seeding density is

Fig. 1 Overview of the protocol. From left to right: Cells are seeded onto a fibronectin-coated glass-bottom
dish, then incubated overnight. A radiotracer is introduced and taken up by the cells. After washing, a
scintillator is placed above the cells and the radioluminescence resulting from individual ionization tracks is
imaged via a low-light microscope
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50,000–100,000 cells for a 35 mm dish. To increase cell adher-
ence, one may adsorb a biomaterial coating onto the dish. This
can be done prior to cell seeding by adding a fibronectin
solution to the dish at a concentration of 10 μg/mL in PBS
for 30 min at 37�C and then washing three times prior to
seeding (see Note 1).

3. For RLM imaging, sterilize scintillators by submerging in eth-
anol solution overnight.

4. For bulk gamma counting of adherent cells, seed a 6-well plate
with 105 cells per well as per standard cell culture protocol.
Seed a minimum of three wells per condition tested.

3.2 Radiotracer Cell

Labeling

1. Obtain desired radiotracer dose from radiochemistry facility
(seeNote 2). Follow institutional guidelines for handling radio-
active substances.

2. Dilute radiotracer to the desired concentration for incubation
with cells. Note that the relevant parameter for cell uptake is
radioactivity concentration, not total radioactivity per well.
Therefore, use small volumes when possible to minimize the
use of radioactivity.

3. For RLM imaging: We recommend a radiotracer concentration
of 100–500 μCi (9.3 MBq) per mL. This amount may be
adjusted depending on the cells and radiotracers being used.
Dilute radionuclide using cell medium or PBS. For [18F]FDG
experiments, we recommend diluting the radiotracer with glu-
cose-free medium with 10% FBS to facilitate rapid transport of
FDG into cells without competition from unlabeled glucose.
Incubate cells with radiotracer for a minimum of 30 min at
37 �C under 5% CO2. Incubate adherent cells directly in the
imaging dish and nonadherent cells in 6-well plates. After
incubation, remove medium (noting that it is radioactive and
thus must be allowed to decay prior to disposal), and wash cells
with PBS three times. Adherent cells should be washed directly
in the imaging dishes, and new medium should be added
afterward (use at least 1 mL of medium to avoid evaporation
during imaging). Nonadherent cells should be washed by cen-
trifugation (3 min, 1300 RPM).

4. For bulk gamma counting: We recommend a radiotracer con-
centration of 10–50 μCi/mL. Incubation with radiotracer
should be performed following the same protocol as for
RLM, but a lower activity concentration is used due to the
larger number of cells. Incubation and washing steps can be
performed directly in the 6-well plate. Cells should then be
removed from the dish by trypsinization (if adherent), washed
three times by centrifugation, and transferred into a vial to be
assayed. The radioactivity of each vial should not exceed 1 μCi
to avoid saturating the sensitive gamma counter.
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3.3 Radiolumine-

scence Microscopy

1. Using tweezers, remove the scintillator from the ethanol solu-
tion, and pat dry on a Kimwipe or lens paper. Place scintillator
gently on top of the cells in the dish so that the scintillator is
submerged in medium (Fig. 1). Avoid moving the dish. It is
important for the scintillator to be very close to the cells (i.e.,
10 μm or less). For nonadherent cells, put a 10 μL drop con-
taining 104 radiolabeled cells on a glass-bottom dish, and then
gently place the scintillator on top of the drop, allowing the
liquid to spread. Matrigel or other quick-gelling substance can
be added to the drop to immobilize the nonadherent cells
under the scintillator. Fill the dish with 1 mL medium.

2. Turn microscope on (note that the EMCCD camera requires
30 min to cool down).

3. Use the 40� oil objective for larger magnification or the 20�
air objective for larger field of view (see Note 3).

4. To focus the microscope, switch to brightfield mode. Once the
cells are in focus, move the XY stage to an area containing a
suitable density of cells (see Fig. 3, e.g.; seeNote 4). If the cells
are too sparse, little information will be obtained from the
experiment. If they are too dense, it may not be possible to
achieve accurate single-cell measurements.

5. Turn the bright-field lamp off, and set pixel binning to 4 � 4,
electron-multiplication (EM) gain to maximum value (1200),
and exposure time to 100 ms. Then turn on “live mode” to
visualize radioactive ionization tracks in the scintillator.

6. For the sharpest RLM images, the microscope must be refo-
cused so that the focal place lies exactly on the interface
between the scintillator and the cells (Fig. 2). First, move the

Fig. 2 A comparison of ionization tracks obtained using an out of focus frame (left) and in focus frame (right).
Individual ionization tracks are circled in yellow
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objective down, away from the scintillators. The radioactive
decay events (called ionization tracks) will slowly become
blurry blobs. Then, slowly move the focal plane back toward
the scintillator. At the interface, the ionization tracks should
transition from blurry back to sharp, as demonstrated in Fig. 2.
Set the focal plane to the very first position where the events
stop being blurry and become sharp. If the focal plane is moved
deeper inside the scintillator, the events will still look sharp, but
the reconstructed image will be blurry. This is because the
ionizing particles extend deep into the scintillator.

7. Note the number of ionization tracks captured per frame.
Ideally, there should be between 5 and 10 tracks per frame. If
too many tracks are being captured in each frame, reduce
exposure time. If there are too few tracks, increase
exposure time.

8. Once you are satisfied with the focusing and number of tracks
per frame, begin RLM image acquisition by acquiring a
sequence of 10,000 frames (or more, if lower noise is desired).
The total acquisition time can be estimated as (number of
frames) � (exposure per frame) (see Note 5). Data should be
saved as 16-bit TIFF (see Note 6). Acquisition of RLM images
should take between 20 and 30 min (see Note 7).

9. Once acquisition is complete, take another bright-field image
to confirm that cells are still in focus and in the same location.
Fluorescence and/or bioluminescence images can also be
acquired if desired.

10. Reconstruct the stack of 10,000 frames using the ORBIT
software package in MATLAB (Fig. 3).

11. Quantitation of RLM signal per cell can be performed by
drawing circular regions of interest (ROI) around individual
cells (Fig. 3). It is highly recommended to use the same ROI
size for all the cells (see Note 8). The number of frames
acquired, the decay time, the sensitivity of the microscope,
and the duration of the experiment must be considered to
estimate radiotracer per cell. Similar regions of interest can be
drawn to estimate background radiation levels outside of the
cells. These ROI measurements are in unit of counts per min-
ute (cpm) per cell. A calibration is required to convert these
measurements into units of radioactivity (Bq per cell). Com-
partmental kinetic modeling can also be used to estimate the
metabolic rate of glucose utilization by the cells.

12. Correct the measured data to account for radioactive decay
over the course of the experiment, using the formula:

Aref ¼ Ames � 2
t�t0
THL

50 Debanti Sengupta and Guillem Pratx



where Aref is the activity at reference time, t0, Ames is the
activity measured at time t, and THL is the half-life of the
measured radionuclide (109 min for 18F). You can also use an
online decay calculator.

13. If imaging multiple samples, start incubating the (N + 1)th
sample while acquiring the images for the Nth sample. Each
sample should be imaged promptly after the final wash to
minimize biological efflux of the tracer from the cells and to
ensure that all samples are exposed to the same radiotracer
concentration for the same amount of time prior to imaging.

Fig. 3 A sample radioluminescence image reconstructed using ORBIT (top panel). Reconstructed radiolumi-
nescence image (top left) and (top right) same image overlaid onto brightfield image showing co-localization of
[18F]FDG uptake to individual MDA-MB-231 cells. An example of ROI analysis performed to quantitate FDG
concentration in single cells as well as background radiation levels using ORBIT software (bottom panel)
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Due to radioactive decay, the volume of the radiotracer solu-
tion that is diluted with cell medium for incubation should be
adjusted to obtain the same activity concentration.

3.4 Bulk Gamma

Counting

1. Prior to imaging, a calibration ladder should be established by
preparing a series of solutions of known radioactivity. We rec-
ommend radioactivity of 0, 0.25, 0.5, 0.75, and 1 μCi. These
solutions should be prepared by diluting a stock solution
measured using the radioactive dose calibrator. Each solution
should be prepared in triplicate.

2. Follow the instructions of your specific gamma counter to
obtain readings for each individual sample. The recommended
integration time is 30–60 s per sample.

3. Gamma counters generally correct for radioactive decay
between samples but not for decay occurring between sample
preparation and sample measurement. Decay correction can be
performed as previously explained.

4. Gamma counters measure total radioactivity per vial. Radioac-
tivity measurements should be normalized to sample volume,
number of cells per vial (measured by cell counting), or amount
of protein per vial (measured using Bradford assay).

3.5 Post Experiment 1. Allow radioactivity to decay for at least 10 half-lives before
disposing of contaminated waste. For 18F, all radioactivity
decays to background levels within 24 h. Always survey radio-
activity levels before disposing of waste. Follow your institu-
tion’s protocols for safe disposal of any items that have been in
contact with radionuclides and/or biological substances.

2. Scintillators can be washed in ethanol if contact with cells was
limited. In case of extended contact or organic buildup, scin-
tillators made of CdWO4 can be cleaned using a 10-min incu-
bation in piranha solution.

4 Notes

1. If imaging cells on a plastic or coated surface, be aware that
some radiotracers may absorb onto such surfaces, producing a
high level of background signal.

2. Always order extra radiotracer prior to running your experi-
ment. Calculate the amount needed prior to the experiment,
factoring in decay time. It is preferable to obtain freshly made
radiotracer; radiotracer that has undergone significant decay
(>1 half-life) has lower radioactivity concentration and lower
specific activity. Radioactivity concentration should be at least
1 mCi/mL and preferably higher.
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3. When using a bioluminescence microscope, the effective mag-
nification is 4–5 times lower than the nominal magnification
indicated by the objective due to the nonstandard tube lens.
For instance, images acquired with the 40� objective are only
magnified 8�.

4. When imaging cells, avoid the edges of the scintillator, and try
to image near the center of the scintillator because light piping
at the edge of the scintillator will produce artificial background.

5. We do not recommend imaging samples for longer than one
half-life; 50% of the signal is measured during the first half-life,
25% during the second half-life, 12.5% during the third half-
life, and so on.

6. Invest in a fast, multiple TB hard drive, and expect raw data files
in the 1–10 GB range.

7. Depending on the software and specifications of the computer
used, budget in the time needed to save a batch of data (it can
take up to 20 min for 10,000 frames).

8. Always order extra radiotracer prior to running your experi-
ment. Calculate the amount needed prior to the experiment,
factoring in decay time. It is preferable to obtain freshly made
radiotracer; radiotracer that has undergone significant decay
(>1 half-life) has lower radioactivity concentration and lower
specific activity. Radioactivity concentration should be at least
1 mCi/mL and preferably higher.
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Chapter 4

Use of 13C3
15N1-Serine or

13C5
15N1-Methionine for Studying

Methylation Dynamics in Cancer Cell Metabolism
and Epigenetics

Alice C. Newman, Christiaan F. Labuschagne, Karen H. Vousden,
and Oliver D. K. Maddocks

Abstract

Tracing the fate of carbon-13 (13C) labeled metabolites within cells by liquid chromatography mass
spectrometry (LCMS) is a powerful analytical technique used for many years in the study of cell metabo-
lism. Conventional experiments using LCMS and labeled nutrients tend to track the incorporation of 13C
from exogenous nutrients (such as amino acids) into other, relatively proximal, cellular metabolites. Several
labs have extended this technique to track transfer of 13C from the metabolite pool onto macromolecules,
such as DNA, where methylation acts as an important functional modification. Here we describe a complete
method that integrates previously established techniques to simultaneously track the use of 13C-serine or
13C-methionine into metabolite pools of the methionine cycle and into methylation of DNA and RNA.
Given the ability to track methyl-transfer in a time-dependent way, this technique can provide temporal
information about active methyl-transfer as well as quantification of total DNA/RNA methylation levels.

Key words Methylation, Methyl-transfer, DNA, RNA, Flux, Carbon-13, One-carbon metabolism,
Methionine, Serine, Liquid chromatography mass spectrometry

1 Introduction

The generation and transfer of single carbons (referred to as
one-carbon units/methyl groups) is a vital process in mammalian
cell metabolism. One-carbon utilization can be crudely divided into
two processes: (1) biosynthetic reactions, such as nucleotide syn-
thesis, where one-carbons are used to build new molecules and
one-carbon transfer is primarily mediated by the tetrahydrofolate
(THF) cycle, and (2) functional modification reactions, such as
DNA methylation, where one-carbons are transferred onto com-
plete molecules in order to modify their function, primarily
mediated by the methionine/S-adenosyl methionine (SAM) cycle
[1, 2]. Competent one-carbon metabolism is essential for normal
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embryogenesis, growth, development, and maintenance of the
epigenome, and perturbations of one-carbon metabolism are com-
monly implicated in diseases, including cancer. Major efforts have
therefore been invested in understanding the inputs and outputs of
the methionine cycle and the potential interaction between
THF-mediated one-carbon metabolism and methionine cycle-
mediated methylation.

Standard assays using cells fed 13C labeled nutrients allow the
interconversion of one metabolite to another to be evaluated by
LCMS. Several groups have taken this technique a step further,
following the fate of nutrient-derived carbons beyond the metabo-
lome and into DNA [3–5]. By integrating a variety of previously
established techniques, including a method using acid hydrolysis
[6], we have developed an assay that allows the fate of amino acid-
derived carbons (13C) to be tracked through the methionine cycle
and into the methylation of DNA and RNA [7] (Fig. 1a, b).
Whereas epigenetic methylation was traditionally viewed as a rela-
tively stable modification (encoding heritable epigenetic informa-
tion), recent work has highlighted that DNA methylation can be
highly dynamic in some circumstances [8]. Given the ability to vary
the time during which cells are exposed to 13C-labeled amino acids,
it is possible to gain insight into the dynamics of methyl-transfer, a
major strength of this approach.

Furthermore, the methods used here can be used as a simple
assay to quantify total levels of cellular DNA or RNA methylation
(without the need for 13C labeling). Compared to other basic
techniques for assessing total DNA methylation in cells (e.g., anti-
bodies against 5-methylcytosine, 5mC), this LCMS approach is
intrinsically normalized for total cytosine levels. This is a major
benefit, as without accurate normalization for total cytosine/
DNA levels it is not possible to determine if changes in 5mC
staining represent a specific change in DNA methylation or just a
change in the total level of DNA present.

2 Materials

2.1 Materials List 1. Cell line(s) of choice, e.g., HCT116

2. Standard cell culture medium, e.g., DMEM (2 mM L-gluta-
mine, 10% FBS)

3. Assay medium; L-methionine/L-serine-free cell culture
medium

4. Phosphate buffered saline (PBS)

5. Trypsin cell dissociation solution

6. Mass spectrometry grade water

7. Mass spectrometry grade acetonitrile
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Fig. 1 (a) Cells are cultured in the presence of 13C-serine or 13C-methionine. DNA, RNA, and metabolites can
be separately extracted and analyzed for labeling. The presence of 13C labeling in cytosine and adenine (within
3 h) indicates methyl-transfer via the methionine cycle. Metabolite abundance and labeling patterns in the
methionine cycle can assist in interpretation of changes in DNA/RNA methylation, for example, whether there
is a change in levels of the methyl-donor SAM. (b) Example chromatogram peaks, including simulated and
measured masses, for the cytosine and adenine peaks shown in (a). Images adapted from [7]
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8. Mass spectrometry grade methanol

9. 6-well cell culture plates

10. Cell scrapers

11. 13C3
15N1-serine made up as a sterile filtered stock (100 mM)

solution in PBS (see Note 1)

12. 13C5
15N1-methionine made up as a sterile filtered stock

(100 mM) solution in PBS

13. L-serine

14. L-methionine

15. L-homocysteine

16. 5-azacytidine (optional control)

17. Wet ice

18. Standard 1.5 mL sample tubes

19. Mass spectrometry sample vials

20. DNA isolation kit with RNase digest step

21. RNA isolation kit with DNase digest step

22. Formic acid

23. High-temperature heat block with nitrogen blow-down dry
evaporator

24. Locking 1.5 mL tubes

25. Personal safety equipment—gloves, goggles, lab coat

26. Fume hood

27. Method to quantify DNA and RNA (e.g., Nanodrop)

28. Hemocytometer or other cell counting methods (e.g., CASY
cell counter)

29. Vortex mixer

2.2 Assay Media 1. Start with a basal medium that is analogous to standard com-
plete medium (i.e., the normal medium used to grow your
cells) but lacks methionine and serine, “MS medium.” This
can be purchased or formulated.

2. This example assay requires three types of media, made by
supplementing – MS medium with:

(a) 0.1 mM 13C5
15N1-methionine + 0.4 mMunlabeled serine

(b) 0.1 mMunlabeled methionine + 0.4 mM 13C3
15N1-serine

(c) 0.1 mM unlabeled methionine + 0.4 mM unlabeled serine
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3 Methods

3.1 Cell Culture

Setup

1. Plan the experimental conditions and plate layouts carefully
and well in advance of the experiment (Fig 2a, b).

2. Each different condition to be assessed requires three sets of
replicate wells (see Fig 2a):

(a) One set is for metabolite extraction. This requires three
replicate wells per condition, seeded as half of a 6-well
plate, with the remaining 3 wells left empty.

(b) One set (2–3 replicate wells per condition) is used for cell
counts to allow normalization of lysis solvent volume.

(c) One set is for DNA/RNA extraction. This requires 3 rep-
licate wells per condition, seeded in 6-well plates.

3. Cells are seeded in complete medium and left for 24–48 h
before the experiment is started.

4. The desirable number of cells per well depends on the cell type
and the experimental conditions, aiming for 1–2 million cells
per well (at the time of lysis) as a guide (see Note 2).

3.2 Treatment Period

(Optional)

1. If you wish to assess the effect of a treatment (e.g., drug/
starvation, etc.) and/or control treatment (e.g.,
5-azacytidine, see Note 3) on methyl-transfer, then cells can
be treated at this point. During this period you do not need to
include any labeled metabolites.

2. If comparing different cell types or isogenic cells where a gene
of interest is manipulated, then a treatment intervention may
not be necessary.

3.3 Add Assay

Medium

1. Wash all wells with 2 mL PBS.

2. Add pre-prepared assay media (see Subheading 3.1, step 2),
2 mL per well.

3. Incubate cells for 3 h (see Note 4).

3.4 Cell Count and

Normalization for

Metabolite Extraction

1. Approximately 30 min prior to metabolite extraction, begin
the cell counting process.

2. For the wells designated for counting, aspirate the media and
wash with 2 mL PBS per well.

3. Add trypsin cell dissociation reagent, and incubate at 37
�
C

until cells are fully detached.

4. Resuspend cells in culture medium to final volume of 1 mL
per well.

5. Ensure cells are fully dissociated into single-cell suspension
using a P1000 pipette.
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Fig. 2 (a) Example of experimental plate layout (using 6-well plates). In this example 13C labeled versions of
methionine and serine have been used, but the assay can also be done with 13C-methionine only. An
unlabeled (12C) control is essential to establish the background levels of natural 13C present. (b) Outline of
experimental procedures showing example time courses



6. Perform an accurate cell count (e.g., using a hemocytometer or
CASY cell counter) to determine the number of cells per well in
each condition.

7. Calculate the volume of lysis solvent required to achieve
2 � 106 cells/mL for each experimental condition, e.g., if cell
count indicates 1 � 106 cells per well, lyse cells in 500 μL; if
1.5 � 106 cells per well, lyse cells in 750 μL; etc. (see Note 2).

3.5 Metabolite

Extraction

1. Prepare wet ice, 1.5 mL sample tubes (pre-labeled), cell scra-
pers, P1000 & tips, PBS, container for waste medium/PBS,
list of pre-calculated lysis buffer volumes for each condition,
and ensure lysis solvent is pre-cooled (�20

�
C freezer).

2. Lyse each plate (i.e., 3 wells) individually; it takes approxi-
mately 5 min for each plate.

3. After 6 h labeling, take the plate from the incubator.

4. To remove the medium, tip the plate out into a suitable waste
container; do this by hand, as quickly as possible.

5. Pour excess PBS into each well, and then tip the PBS out into a
suitable waste container; do this by hand as quickly as possible.

6. Quickly remove residual PBS from each well using an aspirator
or P1000 pipette, and place the plate on ice.

7. To each well add the pre-calculated volume of cold lysis solvent
using P1000 pipette.

8. Briefly tilt the plate to ensure all cells are submerged in solvent.

9. Use a cell scraper to scrape all of the cells into the solvent; do
this for all three wells (see Note 5).

10. Using a P1000 pipette, quickly homogenize the lysate and
transfer the contents of each well into a pre-labeled 1.5 mL
tube kept on wet ice.

11. Perform the lysis process until all samples are on wet ice.

12. Vortex all samples for 1 min.

13. Allow samples to sit on wet ice for further 10 min.

14. Centrifuge samples at top speed (e.g., 14,000–18,000 � g)
at 4

�
C for 15 min.

15. Transfer cleared supernatant to clean pre-labeled 1.5 mL tubes,
and discard pellets.

16. The samples can be stored at �80
�
C until being prepared for

mass spectrometry.

17. Any mass spectrometry method that reliably detects the meta-
bolites of interest and their labeled isotopomers can be applied,
for example, see [7].
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3.6 DNA and RNA

Isolation

1. After 3 h labeling, aspirate the media and wash with 2 mL PBS
per well.

2. Add trypsin cell dissociation reagent, and incubate at 37
�
C

until cells are fully detached.

3. Resuspend the cells in PBS, and split the cell suspension from
each well into two pre-labeled 1.5 mL tubes (one for DNA, one
for RNA); depending on cell size and capacity of DNA and
RNA protocol, aim for 0.5 � 106 to 1 � 106 cells per tube.

4. Centrifuge the tubes to form cell pellets, and then aspirate the
PBS supernatant.

5. The cell pellets can be immediately used for DNA/RNA isola-
tion or stored at �80

�
C.

6. Extract DNA and RNA from the cell pellets using standard
methods (e.g., column-based kits), for DNA isolation include
RNase treatment, and for RNA isolation include DNase
treatment.

7. Elute DNA and RNA in nuclease-free water; a DNA/RNA
concentration of ~50 ng/μL is ideal. Samples can be used
immediately or stored at �80

�
C.

3.7 Acid Hydrolysis

of DNA and RNA

1. Health and safety considerations are critical when performing
acid hydrolysis (see Notes 6 and 7).

2. Determine the concentration of the DNA and RNA solutions.

3. Aliquot the appropriate volume for 1 μg of each DNA sample
and 3 μg of each RNA sample into clean pre-labeled locking
1.5 mL tubes, and spin samples into base of tubes.

4. Place the samples into a heat block (lids off) with blow-down
nitrogen dryer, and dry at 40

�
C until all moisture is removed.

5. Add 100 μL of formic acid to the dried samples, seal tubes,
quickly vortex, and incubate tubes at 130–150

�
C for 3.5 h (see

Note 6).

6. Turn down the heat block to 40
�
C, and allow tubes to fully

cool before handling tubes; there is a risk of tubes popping
open, releasing hot acid, if they are not allowed to cool.

7. Once the tubes have cooled to 40
�
C, remove from heat block,

ensure the lids are tightly secured, quickly vortex, and spin to
collect solution in base of tubes.

8. Place the samples back into the heat block (lids off) with blow-
down nitrogen dryer, and dry at 40

�
C until all moisture is

removed.

9. Once dry, add 25 μL of LCMS grade water to each tube,
quickly vortex and spin to collect solution in base of tubes,
and leave tubes at room temperature for 20 min.
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10. Add 100 μL of an ice-cold solution of LCMS grade methanol
(62.5%) and acetonitrile (37.5%), quickly vortex samples, and
centrifuge at full speed 4

�
C for 15 min.

11. Transfer supernatant directly to an LCMS vial, and samples can
be stored at �80

�
C until LCMS analysis.

12. Any mass spectrometry method that reliably detects the meta-
bolites of interest and their labeled isotopomers can be applied
(Fig. 1a), for example, using a Thermo Q Exactive (see [7]).

3.8 Data Analysis;

DNA and RNA

1. To assess methyl-transfer to DNA, the ratio of m+1 methylcy-
tosine to m+0 methylcytosine should be calculated; for RNA
the ratio of m+1 methyladenine to m+0 methyladenine should
be calculated (see Fig. 3a–c).

Fig. 3 Methyl-transfer example showing data from 13C labeled RNA; example plots of raw peak areas (a),
ratios of labeled and unlabeled peaks (b), and presentation of final average data (c). Total DNA methylation
example showing data from unlabeled DNA; example plots of raw peak areas (d), ratios of methylcytosine to
cytosine (e), and presentation of final average data (f). Images adapted from [7]
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2. The 12C control takes into account the background level of
naturally occurring 13C (i.e., an m+1 peak will be seen even
under label-free conditions). This background ratio is used as a
baseline and should be constant across independent
experiments.

3. If wishing to assess total DNA methylation levels, it is not
necessary to use labeled metabolites, and in this case the
ratio of methylcytosine to cytosine should be calculated (see
Fig. 3d–f). For total methylation levels in RNA, calculate the
ratio of methyladenine to adenine.

4. When interpreting the data, it is important to bear in mind that
perturbing cells (e.g., by drug treatment or gene knockout) can
influence basic cell properties – such as the rate of growth and
proliferation—which may have a generalized effect on
DNA/RNA methylation and/or synthesis, rather than an
effect that is specific to the treatment itself. For this reason it
is important to interpret the results of this assay in the context
of wider phenotypic data, and where possible make compari-
sons between conditions where cell growth/proliferation rates
are similar.

3.9 Data Analysis:

Metabolites

1. Standard approaches for targeted metabolomics can be applied,
for example, see [7] and also see Note 8. Figure 4a, b gives
examples of how targeted metabolomics can be reported.

4 Notes

1. We chose to use fully carbon (13C) and nitrogen (15N) labeled
serine and methionine. We find these versions give good sig-
nals for detection of labeling in metabolites (e.g., of serine
labeling in SAM, which can include the nitrogen) and of
DNA/RNA methylation. However, other labeled forms can
also be used, e.g., those without nitrogen labeling. If analyzing
DNA/RNA methylation, it is critical to ensure that the rele-
vant carbon that is transferred via SAM for methylation reac-
tions is labeled.

2. Optimal cell number depends on the size of the cells being
used. This has an impact both on the confluence of the cell
monolayer and the preferable concentration (cells/mL) at
which the cells are lysed. Using cells like HCT116, we usually
aim for cell confluence of approximately 50–75% at time of
lysis, which translates into an easily manageable volume of
metabolite extraction solvent at 2 � 106 cells/mL, e.g.,
500–1000 μL. However, if using larger cells, then the lysis
concentration can be decreased, e.g., 5 � 105–1 � 106 cells/
mL. However, it is critical that the same concentration is used
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Fig. 4 Examples of real data generated using the complete method. (a) Shows targeted metabolomics of the
methionine cycle after 13C5

15N1-methionine labeling. (b) Shows targeted metabolomics of the methionine
cycle after 13C3

15N1-serine labeling. (c) Shows the corresponding data for DNA and RNA labeling after
13C5

15N1-methionine labeling (under serine-fed or serine-starved conditions). (d) Shows data for DNA and
RNA labeling using 13C3

15N1-serine, which is only revealed under methionine-starved, homocysteine-fed
conditions. Images adapted from [7]; for specific experimental conditions, see [7]
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across all samples in a given experiment. The ideal volume of
lysis solvent used should be enough to comfortably cover the
base of the well (>300 μL), but not so large as to be difficult to
handle with a P1000 pipette (ideally<1mL). If a volume larger
than 1 mL per well is required, then initially add 1 mL per well,
scrape the cells, and then top-up with the additional solvent
after scraping. This ensures each well is lysed quickly.

3. 5-Azacytidine (e.g., 0.5 μM) treatment is a good control for
causing a decrease in methyl-transfer to DNA and a decrease in
total DNA methylation levels.

4. Longer or shorter incubation periods with the labeled serine/
methionine can be used. We chose 3 h because it is long
enough for carbon-13 to be transferred from serine/methio-
nine, but not long enough for one-carbons from serine to
enter de novo nucleotide synthesis via the THF-cycle: intro-
duction of these carbons into the purine/pyrimidine structure
would confound the ability to detect methylation when using
serine. The same issue does not apply to methionine, as, unlike
serine, its carbons are not used in de novo nucleotide
synthesis.

5. When scraping the cells, a white precipitate will be observed;
this is normal, caused by macromolecules such as proteins
precipitating. The complete lysate including precipitate should
be transferred to the 1.5 mL tube. The precipitate will be
removed by the centrifugation step.

6. Full attention to health and safety procedures is very important
when performing the acid hydrolysis step. Formic acid heated
to 130

�
C is a clear safety risk. Use of locking tubes decreases

the chance of tubes popping open. The heating block should
be placed inside a fume hood with the shield down, and per-
sonal protective equipment (gloves, lab coat, and goggles)
should be worn at all times. To prevent tubes from opening
during the high-temperature phase, we place multiple spare
metal heat blocks on top of the tubes, so the weight keeps the
tubes closed. It is important to allow the tubes to fully cool
before removing from the heat block.

7. As an alternative to acid hydrolysis, enzymatic digestion of
DNA has also been used to yield bases that can be analyzed
by mass spectrometry (see [3]).

8. This protocol provides the possibility for three outputs: tar-
geted metabolomics (focused on the methionine cycle), DNA
methylation, and RNA methylation. The assay can be run to
provide all three outputs from the same experiment or
truncated to provide only one or two of the possible outputs.
Splitting the assay (e.g., into one experiment for metabolomics
and one for DNA and RNA) can make it easier to carry out.
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Comparing the labeling and total metabolite levels within the
methionine cycle—in particular methionine and SAM – with
DNA and RNA labeling can give a more complete picture of
changes in methylation than simply viewing DNA and RNA in
isolation.
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Chapter 5

Measurement of Mitochondrial Membrane Potential
with the Fluorescent Dye Tetramethylrhodamine Methyl
Ester (TMRM)

Sarah Creed and Matthew McKenzie

Abstract

The mitochondrial membrane potential (Δψm) drives the generation of ATP by mitochondria. Interest-
ingly, Δψm is higher in many cancer cells comparted to healthy noncancerous cell types, providing a unique
metabolic marker. This feature has also been exploited for therapeutic use by utilizing drugs that specifically
accumulate in the mitochondria of cancer cells with high Δψm. As such, the assessment of Δψm can provide
very useful information as to the metabolic state of a cancer cell, as well as its potential for malignancy. In
addition, the measurement of Δψm can also be used to test the ability of novel anticancer therapies to
disrupt mitochondrial metabolism and cause cell death.
Here, we outline two methods for assessing Δψm in cancer cells using confocal microscopy and the

potentiometric fluorescent dye tetramethylrhodamine methyl ester (TMRM). In the first protocol, we
describe a technique to quantitatively measure Δψm, which can be used to compare Δψm between different
cell types. In the second protocol, we describe a technique for assessing changes to Δψm over time, which
can be used to determine the effectiveness of different therapeutic compounds or drugs in modulating
mitochondrial function.

Key words Mitochondria, Membrane potential, TMRM, Cancer cells, Osteosarcoma, Confocal
imaging, Fluorescence

1 Introduction

The mitochondrial membrane potential (Δψm) is the main driving
force for the generation of ATP by the mitochondria and consists of
a proton gradient generated by the mitochondrial respiratory chain
complexes. The reducing equivalents NADH and FADH2, pro-
duced by the tricarboxylic acid cycle, donate their electrons to
complex I (NADH-ubiquinone oxidoreductase, EC 1.6.5.3) and
complex II (succinate-ubiquinone oxidoreductase, EC 1.3.5.1),
respectively. These electrons pass through the respiratory chain,
causing complexes I, III (ubiquinol-ferrocytochrome-c oxidore-
ductase, EC 1.10.2.2), and IV (ferrocytochrome-c: oxygen
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oxidoreductase, EC 1.9.3.1) to pump protons out of the mito-
chondrial matrix into the intermembrane space. This creates a
potential across the inner membrane (Δψm) in the order of
180 mV negative to the cytosol. The Δψm provides the driving
force for proton influx through complex V (F1Fo-ATP synthase, EC
3.6.3.14), which condenses ADP and inorganic phosphate to gen-
erate ATP [1].

A number of different fluorescent dyes can be used to
assess Δψm, all of which have different properties that determine
their suitability for the type of analyses to be performed (for
review see [2]). JC-1 (5,50,6,60-tetrachloro-1,10,3,30-
tetraethylbenzimidazolylcarbocyanine iodide) can be used as a
ratiometric Δψm indicator, with the accumulation of the dye within
mitochondria resulting in aggregates with a different emission
spectra to its monomeric form (which is found at low concentra-
tions). However, this makes JC-1 signals very concentration
sensitive, with dye fluorescence also affected by other factors
including reactive oxygen species production [3]. DiOC6 (3,30-
dihexyloxacarbocyanine iodide) is commonly used to measure
Δψm during flow cytometry. However, due to its high mitochon-
drial toxicity, it has to be used at very low (<1 nM) concentrations,
making it difficult to accurately measure Δψm [4].

Other lipophilic cationic dyes, such as tetramethylrhodamine
methyl ester (TMRM), tetramethylrhodamine ethyl ester (TMRE),
and rhodamine 123, are also very useful for measuring Δψm. Due
to their positive charge, these dyes accumulate within the mito-
chondria in an inverse proportion to Δψm according to the Nernst
equation. While these dyes can be used in a “quenching” mode at
high concentrations between �1 and 20 μM, they can also be used
in non-quenching mode at much lower concentrations to ensure
mitochondrial function is not altered by the presence of the dye
[5]. At 20 nM, no significant mitochondrial binding or electron
transport chain inhibition by TMRM is apparent, making it suitable
for detailed Δψm assessment. Furthermore, TMRM can be used
simultaneously with other fluorescent dyes, for example, with Fluo-
4 to measure calcium signals within the cell [6] or with chloro-
methyldihydrodichlorofluorescein diacetate (cmH2DCF-DA) to
assess reactive oxygen species generation [7].

Interestingly, in many cancer cells, Δψm is higher than normal
and can be correlated with the malignant potential of the cancer
[8]. Lung cancer cell lines, including A549, H446, and SPC, as well
as MCF-7 breast cancer cells, have been shown to have higher Δψm

compared to healthy, noncancerous cell types [9, 10]. Furthermore,
cancer stem cells (CSCs), which are believed to drive the initiation
and recurrence of malignant tumors, have even higher Δψm com-
pared to cancer cells lacking stemness [11].

The elevated Δψm observed in cancer cells has led to alternative
therapeutic strategies that target mitochondrial function.
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Compounds such as MKT-077, a cyanine dye analogue that prefer-
entially accumulates in tumor cells with high Δψm, have been
shown to disrupt mitochondrial metabolism and subsequently
inhibit tumor growth [12]. Alternatively, some anticancer therapies
utilize mitochondrial respiratory chain inhibitors to disrupt mito-
chondrial metabolism [13]. These inhibitors can diminish Δψm,
resulting in mitochondrial permeability transition and the induc-
tion of apoptotic cell death [14]. As such, the assessment of Δψm in
cancer cells can provide useful information about tumorigenicity, as
well as the effects of anticancer therapeutics that target mitochon-
drial function.

Here, we outline two methods for assessing Δψm in cancer cells
using TMRM in non-quenching mode. Firstly, we describe a pro-
tocol for quantitatively measuring Δψm using the acquisition of
z-stacks and thresholding the total TMRM signal and, secondly,
the assessment of Δψm over time in the presence of mitochondrial
inhibitors or uncouplers that modulate Δψm.

2 Materials

1. DMEM medium: DMEM (high glucose, pyruvate, Glutamax)
supplemented with 5% fetal bovine serum (FBS) and 1� peni-
cillin/streptomycin.

2. Record Solution (RS): 109 mM NaCl, 50 mM KCl, 2 mM
MgSO4, 1.25 mM KH2PO4, 10 mM D-glucose, 2 mM CaCl2,
10 mM HEPES. Adjust pH to 7.35 with 1 M NaOH. Store in
aliquots at �20 �C (see Note 1).

3. 1� phosphate buffered saline (PBS): 1.54 mM KH2PO4,
155.17 mM NaCl, 2.71 mM Na2HPO4. 7H2O, pH 7.2.

4. Trypsin–EDTA: 0.25% (w/v) Trypsin/0.25% (w/v) ethylene-
diaminetetraacetic acid (EDTA) with phenol red.

5. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone
(FCCP): stock solution of 1 mM in 100% ethanol.

6. 2 μM tetramethylrhodamine, methyl ester, perchlorate
(TMRM): stock solution of 10 mM in 100% methanol. From
this, make a working stock of 2 μM in distilled H2O.

7. 10 mM verapamil: stock solution in 100% ethanol (seeNote 2).

8. 1 mM rotenone: stock solution in 100% ethanol.

9. 500 μg/mL oligomycin: stock solution in 100% ethanol.

10. 1 mg/mL Hoechst 33342: stock solution in distilled H2O.

11. RS Staining Solution: 20 nM TMRM, 2 μg/mL Hoechst
33342, 10 μM verapamil (see Note 3).

12. RS Imaging Solution: 20 nM TMRM, 10 μM verapamil.

13. Sterile chambered glass coverslips for cell culture.
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3 Methods

3.1 Preparation

of Cells

1. Grow cells on 10 cm cell culture dishes or in 75 cm2 flasks in
DMEM at 37 �C/5% CO2.

2. Harvest cells by aspirating medium and washing with 5 mL
PBS. Remove PBS, and dissociate cells with Trypsin–EDTA
and incubation at 37 �C/5% CO2 for 2 min. Tap dish or flask
gently to remove cells, and then resuspend in 5 mL culture
media.

3. Count cells by adding 12 μL of resuspended cells onto a
hemocytometer.

4. Plate cells in suitable dishes or chambered coverslips for confo-
cal imaging so that ~80% confluency is achieved on the day of
imaging. For example, 2 to 5 � 104 143B osteosarcoma cells
can be plated into one well of an 8-well chamber slide one day
before imaging.

5. Incubate cells overnight at 37 �C/5% CO2 to allow cells to
attach and recover.

3.2 Staining Cells

with TMRM

and Hoechst 33342

1. Remove culture media from cells by pipette, and wash with
100 μL PBS.

2. Incubate cells in 200 μL RS Staining Solution for 45 min at
37 �C/5% CO2.

3. Remove RS Staining Solution, and wash cells twice with
100 μL PBS to remove excess TMRM and Hoechst 33342.

4. Add 200 μL RS Imaging Solution to each well. Cells are now
ready for imaging.

3.3 Quantitative

Measurement of Δψm

1. Place dish or chambered coverslip with cells in RS Imaging
Solution onto an inverted laser scanning confocal microscope
equipped with an environmental chamber set to 37 �C and
delivering 5% humidified CO2. We routinely use a 60�/
1.35NA oil immersion objective for the measurement of
Δψm; however, a 40� objective lens can also be used.

2. Set the excitation and emission spectra: excitation of Hoechst
33342 using a 405 nm diode laser and TMRM with a 543 nm
He-Ne laser. Set laser power to 5% for both channels to mini-
mize phototoxicity to cells.

3. Adjust the gain and offset settings on the photo multiplier tube
(PMT) detectors. To ensure accuracy in intensity measure-
ments between images, do not change these values once set.

4. The mitochondrial network should be clearly visible from the
TMRM signal. Acquire a z-stack image of the cells. The thick-
ness of each step through the z-plane should be kept consistent
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for all images. We used a thickness of 0.5 μm for 143B osteo-
sarcoma cells. The z-stack images can be used for downstream
image processing for quantitative assessment of Δψm (see Sub-
heading 3.5).

3.4 Assessment

of Δψm Sensitivity

to Mitochondrial

Inhibitors or Drugs

1. Place dish or chambered coverslip with cells in RS Imaging
Solution onto an inverted laser scanning confocal microscope.
For assessing changes toΔψm, we routinely use a 40� objective
lens, which allows the imaging of multiple cells in the same field
at a suitable resolution.

2. Set microscope to scan images every 20 s. Scan cells for 2–5min
to establish baseline readings for the TMRM signal.

3. Using a pipette, add inhibitor or drug of interest to the cells.
We routinely use 100� stocks that allow simple addition of the
compound directly to the cells during imaging. For example,
we add a 1:100 dilution of 1 mM rotenone (final concentration
of 10 μM) to assess the effects of NADH- ubiquinone oxidore-
ductase (complex I) inhibition or a 1:100 dilution of 500 μg/
mL oligomycin (final concentration of 5 μg/mL) to assess the
effects of F1Fo-ATPase (complex V) inhibition.

4. Continue to collect images every 20 s for 20 min (or longer if
required) to monitor any changes in Δψm over time.

5. Using a pipette, add a 1:100 dilution of 1 mM FCCP (final
concentration of 10 μM) directly to the RS Imaging Solution.
Restart imaging every 20 s for 5 min. FCCP is a protonophore
that uncouples mitochondrial oxidative phosphorylation,
resulting in the complete dissipation of Δψm. This results in a
reduction of the mitochondrial TMRM signal, with the
TMRM equilibrating evenly throughout the cell and the extra-
cellular RS Imaging Solution.

6. The image series can now be analyzed for changes to Δψm over
time (see Subheading 3.5).

3.5 Image Analysis 1. Once imaging is complete, determine the intensity of the
TMRM signals using image analysis software. We routinely
use ImageJ software (https://imagej.nih.gov/ij/) with the
Bio-Formats plugin (download “bioformats_package.jar”
from http://downloads.openmicroscopy.org/bio-formats/,
and save it in the “C:\Program Files\ImageJ\plugins” folder).

2. To measure Δψm, open the z-stack image file (e.g., a .roi file) as
a Hyperstack using “File>Open” or the “Plugins>Bio-For-
mats>Bio-Formats Importer” function. Select “split channels”
when opening the file so that the TMRM channel can be
analyzed separately.

3. Select the TMRM channel, and compress the z-stack into one
image by selecting “Image>Stacks>Z project.” For
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“Projection Type,” select “Sum Slices.” You should now have a
single, combined image of the z-stack (Fig. 1a).

4. To measure the intensity of the TMRM signal, select “Ima-
ge>Adjust>Threshold.” Check the “Dark background” box,
and choose the best fit algorithm from the drop-down menu
(or “Default”) and “red” for threshold. Adjust the top slider
until all of the TMRM signal is selected with the red threshold
tool. Alternatively, the “Auto” threshold option can be used
(see Note 4).

5. To obtain the mean intensity values for the TMRM signal, open
the “Analyze>Set Measurements” box, and select the required
variables, such as “Area,” “Min & max gray value,” and “Mean
gray value.” Also ensure that “Limit to threshold” is checked so
that only the TMRM signal under the red threshold is
measured. Next select “Analyze>Measure” (Ctrl+M) to obtain
mean values for the whole image field. Alternatively, regions of
interest (ROIs) containing specific cell/s can be selected.

6. To monitor how Δψm changes over time due to inhibitor or
drug treatment, open the image file (e.g., an .oif file), click on
the selection tool, and select an ROI.

7. Open “Analyze>Tools>ROI Manager,” and click “Add” to
include the selected ROI for intensity measurement. Multiple
ROIs can be selected on a single image for measurement.
Repeat previous steps until all ROIs have been added to ROI
Manager.

Fig. 1 Quantitative assessment of Δψm. (a) A compressed z-stack image showing 143B osteosarcoma cells
stained with 20 nM TMRM. Each image slice was acquired using a scanning laser confocal microscope with a
60�/1.35NA oil immersion objective. (b) Analysis of Δψm over time. TMRM fluorescence increases slowly
with the addition of oligomycin as theΔψm hyperpolarizes due to the inhibition of the F1Fo-ATPase. Addition of
the protonophore FCCP depolarizesΔψm, resulting in a decrease in TMRM fluorescence and the uncoupling of
oxidative phosphorylation. Data shown is mean � SD, n ¼ 5

74 Sarah Creed and Matthew McKenzie



8. Click “More>Multi Measure,” make sure that “Measure all
slices” is selected and that “One Row Per Slice” is deselected,
then click “OK” to obtain a table of mean fluorescent intensity
of the TMRM signal for each ROI at each time point.

9. Use data from all ROIs to calculate the average intensities and
standard deviation for the TMRM signal. For example, oligo-
mycin treatment causes TMRM fluorescence to increase slowly
over time as Δψm hyperpolarizes due to the inhibition of the
F1Fo-ATPase (Fig. 1b).

4 Notes

1. The concentration of TMRM within the mitochondria is
directly proportional to the cytosolic concentration. As such,
if the plasma membrane depolarizes, the cytosolic TMRM
concentration will be reduced, with a concomitant reduction
in mitochondrial TMRM signal (without any actual change to
Δψm). To eliminate this effect, a high K+ concentration is used
in the Record Solution to depolarize the plasma membrane
[15]. If plasma membrane potential is not an issue, standard
isotonic Record Solution with normal K+ concentration
(156 mM NaCl, 3 mM KCl, 2 mM MgSO4, 1.25 mM
KH2PO4, 10 mM D-glucose, 2 mM CaCl2, 10 mM HEPES,
pH 7.35), or Hank’s Balanced Salt Solution, can be used.

2. Verapamil is added to stop the export of TMRM out of the
cancer cell by the plasma membrane multidrug transporter.

3. Hoechst 33342 staining of the nucleus is useful for locating the
cells within the imaging field but can be left out if preferred.

4. When setting the threshold during image analysis, do not hit
“Apply,” as this will create a binomial mask with only two
values of 0 and 255 for the signal intensity.
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Chapter 6

Assessment of Stabilization and Activity of the HIFs
Important for Hypoxia-Induced Signalling in Cancer Cells

David Kung-Chun Chiu, Misty Shuo Zhang, Aki Pui-Wah Tse,
and Carmen Chak-Lui Wong

Abstract

Blood vessels in tumors contain chaotic branching structures and leaky vessel lumens, resulting in uneven
supply of oxygen in the tumor microenvironment. High metabolic and proliferation rate of tumor cells
further depletes the local oxygen supply. Therefore, hypoxia is a common phenomenon in multiple solid
malignancies. Hypoxia-inducible factors (HIFs) regulate the transcription of a spectrum of genes, which are
vitally important for tumor cell adaption under hypoxia, and shape the tumor microenvironment to become
more favorable for progression. HIFs are involved in almost every step of cancer development through
inducing angiogenesis, metabolic reprogramming, metastasis, cancer stemness maintenance, chemoresis-
tance, and immune evasion. Here, we describe methods for the assessment of HIF activity, as well as
identification of novel transcriptional targets of HIFs in vitro and in vivo.

Key words Hypoxia, HIF, qPCR, Western blotting, Luciferase reporter assay, ChIP assay,
Immunohistochemistry

1 Introduction

Hypoxia, decrease of oxygen (O2) supply, is one of the most widely
observed hallmarks of cancer. Inadequate oxygenation in the tumor
is mainly caused by the uncontrolled duplication of cancer cells
which rapidly expands the tumorous regions, which are not acces-
sible to functional blood vessels. Moreover, cancer cells have high
demand for O2 due to their robust metabolic requirements, leading
to a fast consumption of O2 from the tumor microenvironment.
The primary molecular adaptation system in hypoxia is orchestrated
by hypoxia-inducible factors (HIFs). HIFs are heterodimers con-
sisting of the constitutively stable HIF-s1β subunit and the oxygen-
sensitive HIF-1/2α subunits [1]. In well-oxygenated conditions,
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HIF-1/2α subunits are being hydroxylated at specific proline resi-
dues using O2 and α-ketoglutarate as the substrates by prolyl
hydroxylases (PHDs) [2]. Hydroxylated HIF-1/2α binds to von
Hippel-Lindau (VHL) which recruits E3 ubiquitin ligase to conju-
gate HIF-1/2α with ubiquitin for proteasomal degradation [3]. In
poorly oxygenated conditions, inhibition of hydroxylation enables
the stabilization of HIF-1/2α, which then dimerizes with HIF-1β,
together with other transcriptional coactivators such as p300/CBP.
The complexes then bind to the genes with DNA consensus
sequence 50[A/G]CGTG-30, also called the hypoxia-responsive
elements (HREs), to turn on gene transcription [4]. The interac-
tion of HIF-1/2α and coactivators and therefore the transactiva-
tion activity are inhibited by factor-inhibiting HIF (FIH) which
hydroxylates specific asparagine residues of HIF-1/2α. Given the
high occurrence of hypoxia in cancer, HIFs are frequently expressed
in cancers and often correlated with poor clinical outcomes [5].
Loss of functions due to mutations in VHL, succinate dehydroge-
nase B (SDH-B), SDH-C, SDH-D, and fumarate hydratase
(FH) prevent the ubiquitin-mediated proteasomal degradation of
HIF-1/2α, thereby resulting in the stabilization of HIF even in
well-oxygenated conditions in some cancer types [6–10]. Loss of
function in tumor suppressors such as phosphatase and tensin
homolog (PTEN) and tuberous sclerosis complex 2 (TSC2)
increases the synthesis of HIF proteins in cancer [11, 12]. HIFs
transcriptionally activate a wide spectrum of genes with broad
functions. Some transcriptional targets allow cancer cells to adapt
and survive hypoxia, while some transcriptional targets allow cancer
cells to acquire more aggressive phenotypes. Through transcrip-
tionally activating distinct subsets of genes, HIFs are involved in
almost every step of cancer development through inducing angio-
genesis, metabolic reprogramming, metastasis, cancer stemness
maintenance, chemoresistance, and immune evasion.

1.1 Angiogenesis Angiogenesis is a complicated but important mechanism to estab-
lish tumor vasculature, providing cancer cells nutrients. It is
initiated by the removal of pericytes from the endothelium which
results in the structural destabilization of blood vessels [13]. This
activates endothelial cells to acquire proliferative character. Vascular
endothelial growth factor (VEGF) increases the permeability of
blood vessels and induces the release of proteases and matrix com-
ponents. Endothelial cells migrate through the remodeled extracel-
lular matrix (ECM) and proliferate to form tubes. Circulating
mesenchymal cells move toward the new tubes or vessels and
differentiate into pericytes to structurally form new blood vessels.
VEGF is one of the most famous HIF transcriptional targets and
represents one of the most important angiogenic genes for arterial
destabilization and hypervascular permeability in cancer promotion
[14]. Genes involved in increasing vascular permeability include
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fms-like tyrosine kinase (FLT-1), angiopoietin-2 (ANGPT2), and
Tie-2; genes involved in ECM modeling include matrix metallo-
proteinases (MMPs) and collagen; genes involved in migration and
proliferation of endothelial cells include VEGF, placental growth
factor (PLGF), ANGPT1, monocyte chemoattractant protein 1
(MCP-1), platelet-derived growth factor (PDGF), stromal cell-
derived factor 1 (SDF-1), and C-X-C motif chemokine receptor
4 (CXCR4); genes involved in endothelial cell sprouting include
ANGPT2 and Tie-2; genes involved in the recruitment of new
pericytes include PDGF, plasminogen activator inhibitor-1
(PAI-1), ANGPT1, and Tie-2—all the aforementioned genes are
regulated by HIF and summarized by Hirota et al. [13].

1.2 Metabolic

Reprogramming

O2 serves as the ultimate electron recipient of the electron transport
chain (ETC) to complete oxidative phosphorylation. Due to the
lack of final electron recipient in hypoxia, cells could not complete
electron transfer entirely but in turn generate a large amount of
reactive oxygen species (ROS) in the ETC. HIF-1 acts as a meta-
bolic switch to divert the metabolic flux from tricarboxylic acid
(TCA) cycle, which couples with oxidative phosphorylation to
glycolysis, so that cells can metabolize glucose despite the lack of
O2. Glucose is converted to pyruvate which is further converted to
lactate instead of acetyl-CoA, which would otherwise enter the
TCA cycle. HIF-1 transcriptionally activates pyruvate dehydroge-
nase kinase 1 (PDK1) [15], lactate dehydrogenase A (LDHA)
[16, 17], glucose transporters, and all glycolytic enzymes to achieve
the metabolic switch [18–20]. Glucose transporter (GLUT) accel-
erates the glucose uptake to increase the turnover of glucose to
compensate for the energy inefficiency in glycolysis. PDK1 inhibits
pyruvate dehydrogenase (PDH), which would otherwise convert
pyruvate into acetyl-CoA to initiate the TCA cycle. LDHA converts
pyruvate into lactate to complete glycolysis. Through upregulating
these enzymes, HIF-1 diverts pyruvate into glycolysis from TCA
cycle to prevent ROS accumulation and to sustain the metabolic
requirements of cancer cells. Further, HIF-1 induces the transcrip-
tion of cytochrome oxidative 4-2 (COX4-2) and NDUFA4L2, less
active subunits in complex IV and complex I, respectively, of the
ETC, in order to reduce the electron flow rate through ETC and to
alleviate ROS production [21–23]. All the aforementioned HIF-1
metabolic targets were shown to be upregulated in cancer and
confer survival advantage to cancer cells.

1.3 Metastasis Metastasis is the terminal stage of cancer development and a major
cause of death in cancer patients. Metastasis involves the detach-
ment of cancer cells from their primary organ site to another part of
the same organ or to distant organs. It is a multistep process which
includes the increase of cancer cell motility, invasion of cancer cells
into the neighboring extracellular matrix, intravasation,
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extravasation, and colonization of metastatic sites. Hypoxia and
HIFs are involved in all steps of metastasis. Cancer cells undergo
epithelial-mesenchymal transition (EMT) to lose adherent junc-
tion, in order to detach from the primary site. The EMT is char-
acterized by the loss of E-cadherin, a transmembrane glycoprotein
required for cell-cell junction interaction. Additional numerous
properties of HIF in cancer metastasis are discussed below:

HIF activates E-cadherin repressors, Snail family transcriptional
repressor 1 (SNAIL1), SNAIL2, zinc finger E-box binding homeo-
box (ZEB), Twist family BHLH transcription factor (TWIST), and
transcription factor 3 (TCF3) [24, 25]. HIF also promotes mesen-
chymal properties by activating vimentin [26]. HIF additionally
activates RhoA/Rho-kinase 1 (ROCK1) pathway to induce cyto-
skeletal remodeling to increase cell motility [27]. HIF-activated
matrix metallopeptidase 2 (MMP2), MMP9, and MMP14 partici-
pate in the degradation of components of the ECM to enable
cancer cell invasion into the stroma. HIF also transcriptionally
activates collagen-synthesizing and collagen-modifying enzymes,
such as prolyl-4-hydroxylases (P4HA1 and P4HA2), lysyl hydroxy-
lase 2 (PLOD2), and lysyl oxidase (LOX) family members, to
increase collagen synthesis and modification, in order to create
anchoring substrates to facilitate cancer cell movement into the
neighboring stroma [28–31]. In order to intravasate and extrava-
sate, HIF transcriptionally activates L1 cell adhesion molecule
(L1CAM), which facilitates adhesion of cancer cells to endothelial
cells of blood vessels [32]. HIF also transcriptionally activates
ANGPTL4 to increase the permeability of endothelial cells to
facilitate the penetrance of cancer cells through the blood vessels
[32]. HIF mediates the transcription of secretory enzymes, LOX
family members, to cross-link collagen in the lung tissue, allowing
bone marrow-derived cells (BMDCs) to adhere at the lung tissue
epithelium [33, 34]. As BMDCs release angiogenic factors,
BMDCs create a favorable metastatic niche for cancer cells to
colonize and propagate at metastatic sites.

1.4 Cancer Stemness Cancer stem cells, also referred as tumor-initiating cells, represent a
population of cancer cells with stemness properties including abil-
ities to self-renew and maintain pluripotency [35]. Cancer stem
cells are highly refractory to chemotherapies. Cancer stem cells
have been identified in various cancer types including leukemia
and breast, brain, colon, liver, pancreatic, prostate, and head and
neck cancers, as well as in melanoma and neuroblastoma. Multiple
studies suggest that hypoxia maintains stemness properties of can-
cer cells. One of such studies has shown that a constitutive expres-
sion of HIF-1α induces CD133, a stem cell marker, in glioblastoma
cells and augments glioblastoma stem cells [36]. HIFs also induce
expression of E26 transformation-specific (ETS) transcription fac-
tors to activate prominin (PROM1), gene that encodes CD133
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[37]. Hypoxia induces the expression of stemness genes, including
Kruppel-like factor 4 (KLF4), Nanog homeobox (NANOG),
proto-oncogene c-Myc (MYC), octamer-binding protein
4 (OCT4), and SRY-box 2 (SOX2) through HIFs [38]. Hypoxia
also induces the expression of tafazzin (TAZ) and yes-associated
protein (YAP) in the hippo pathway through HIF-1α, in order to
maintain stemness, as shown in a breast cancer model [39, 40]. In
leukemic stem cells, HIF-1α maintains stemness through inducing
the Notch signalling pathway [41].

1.5 Chemoresistance Hypoxia is a characteristic of resistance to chemotherapy. The most
obvious reason is that hypoxic tumors are inaccessible to blood
vessels which would otherwise deliver drugs to the vicinity. HIF-1α
induces the transcription of multidrug resistance 1 (MDR1) gene,
encoding membrane-resident P-glycoprotein (P-gp), a member of
the ATP-binding cassette (ABC) transporters, and functions to
stimulate the efflux of drugs to maintain low intracellular drug con-
centrations [42, 43]. P-gp was shown to efflux many chemothera-
peutic drugs such as 5-fluorouracil, methotrexate, anthracyclines,
and paclitaxel [42–44]. As mentioned above, cancer stem cells are
more resistant to chemotherapies. Other HIF-related molecular
mechanisms leading to chemotherapy failure include induction of
autophagy, as well as suppression of senescence, mitochondrial activ-
ity, apoptosis, andDNAdamage sensing, which are comprehensively
summarized by Rohwer et al. [44]. As was demonstrated in a triple-
negative breast cancer model, chemotherapy through HIF-1α was
shown to induce the transcription of two glutathione synthesis
genes, cystine/glutamate transporter (SLC7A11), and glutamate-
cysteine ligase modifier subunit (GCLM), thereby allowing
increased glutathione production, which in turn increased the chela-
tion of copper to inactivate mitogen-activated protein kinase-
extracellular signal-regulated kinases (MAPK-ERK) signalling [45].
Inactivation of MAPK-ERK promoted the nuclear translocation of
forkhead boxO3 (FOXO3) to transcribe stemness geneNANOG to
further enrich breast cancer stem cells [45]. Chemotherapy was also
shown to induce interleukin 6 (IL-6) and IL-8 through HIFs to
maintain breast cancer stemness [45].

1.6 Immune Evasion Cancer cells coexist with various immune cells in the tumor niche.
Immune cells could be generally categorized into pro-tumorigenic
and anti-tumorigenic. Pro-tumorigenic immune cells include
tumor-associated macrophages (TAMs), myeloid-derived suppres-
sor cells (MDSCs), and T-regulatory cells (Tregs) which counteract
anti-tumorigenic immune cells such as cytotoxic T cells, helper T
cells, natural killer (NK) cells, macrophages, and dendritic cells.
Anti-tumorigenic immune cells provide immune surveillance and
clear foreign and abnormal cells, including cancer cells. Hypoxia
allows cancer cells to evade the immune surveillance. Hypoxia
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favors the accumulation of pro-tumorigenic immune cells, which is
evidenced by the dual and overlapping staining of macrophage or
MDSC markers with hypoxia markers in different cancer models
[46, 47]. Hypoxia was shown to increase C-C motif chemokine
ligand 2 (CCL2), CCL5, colony-stimulating factor 1 (CSF1),
VEGF, semaphorin 3A (SEMA3A), endothelial cell monocyte-
activating polypeptide-II (EMAP-II), endothelin, stromal cell-
derived factor 1α (SDF1α), eotaxin, and on statin M, which are
factors that attract macrophages to the tumor [46, 48–53].Hypoxia
was also shown to lead to an increase of necrotic cancer cells, which
release damage-associated molecular pattern (DAMP) molecules to
recruit innate immune cell to the tumor [54]. Hypoxia through
HIFs was shown to turn on the transcription of CCL26 and
CCL28 to recruit MDSCs and Tregs to the tumor [47, 55]. Hyp-
oxia also maintained macrophages in the vicinity by shutting down
the expression of CCR2, CCR5, and neuropilin-1 (NRP1), in turn
reducing their mobility [46, 56, 57]. Once kept in the tumor site,
macrophages acquired angiogenic and immune escape capabilities.
Furthermore, HIF-1α in macrophages increased the expression of
programmed cell death 1 ligand 1 (PDL1), which, in turn, relayed
inhibitory signals in T cells through ligation to receptor pro-
grammed cell death 1 (PD-l) on T cells [58]. Co-culturing hypoxic
cancer cells with macrophages turned on the transcription of indo-
leamine 2,3-deoxygenase (IDO) expression, which depleted T cells
from tryptophan, the essential nutrient for T-cell proliferation and
survival [59]. Recently, we demonstrated that HIF-1α transcrip-
tionally activated ectonucleoside triphosphate diphosphohydrolase
2 (ENTPD2) in liver cancer cells [60]. ENTPD2 catalyzed the
conversion of extracellular ATP to AMP, which maintained
MDSCs, impairing the proliferation of T cells [60].

New transcriptional targets of HIF-1 are continuously being
discovered, which further emphasizes the diverse roles and func-
tional importance of HIF. However, many researchers encounter
difficulties in hypoxia studies as HIF-1/2α is prone to degradation.
To facilitate the hypoxia/HIF-signalling research, this chapter will
provide detailed protocols from setting up hypoxic conditions in
cell culture to assessing the stability and activity of HIFs in cancer
cell culture systems and mouse cancer models.

2 Materials

2.1 Setup of

Culturing System in

Hypoxia

1. Hypoxia incubator chamber (see Fig. 1).

2. Single flow meter.

3. Hypoxia gas tank (1% O2).

4. Polycarbonate tubing.

5. Tissue culture incubator (37 �C).
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2.2 Detection of

HIF-1/2 Protein by

Western Blotting

1. RIPA buffer: 50 mM Tris–HCl, 150 mM NaCl, 1 mM EDTA,
0.7% (w/v) NP-40, 0.05% (w/v) SDS, pH7.4.

2. Protease inhibitor cocktail: cOmplete™, EDTA-free Protease
Inhibitor Cocktail. Dissolve one tablet of cOmplete™ in 2 mL
distilled water to prepare a 25� concentrated stock solution.

3. Phosphatase inhibitor: PhosSTOP™. Dissolve one tablet of
PhosSTOP™ in 0.5 mL distilled water to prepare a 20�
concentrated stock solution.

4. Phosphate-buffered saline (PBS; 1�): Chill the 1� PBS
to 4 �C.

5. Cell scrapers.

6. Centrifuges for 15 mL conical tubes and 1.5 mL micro-
centrifuge tubes: Cool centrifuges to 4 �C.

7. Bradford reagent.

8. 6� SDS sample buffer.

9. Protein ladder.

10. 10% SDS-PAGE gel.

11. SDS-PAGE running buffer (1�): 25 mM Tris base, 192 mM
glycine, 0.1% (w/v) SDS.

Chamber lid

Polycarbonate tubing

Ring clamp

Chamber base

Chamber tray

Tubing clamp

O-ring

Chamber base

Fig. 1 Hypoxia chamber compartments. The hypoxia incubator chamber is
generally composed of four parts: chamber lid, ring clamp, chamber tray, and
chamber base. The chamber base contains O-ring and polycarbonate tubing with
a plastic clamp. The tray is placed onto the chamber base, and the cells are put
on the tray. When the chamber lid and base are locked by ring clamp, the O-ring
fills the spare space between the edges of these two compartments, ensuring
that they are tightly sealed
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12. PVDF membranes.

13. Western blot transfer buffer: 20 mM Tris base, 192 mM gly-
cine, 20% (v/v) methanol.

14. Tris-buffered saline (TBS; 1�): 10 mM Tris–HCl, 150 mM
NaCl, pH 7.4.

15. TBST: 1� TBS containing 0.05% Tween 20.

16. Blocking solution and diluent solution: 5% milk in TBST. Store
at 4 �C.

17. Anti-HIF1α antibody (Cell Signaling, 3716S).

18. Anti-rabbit IgG, HRP-linked antibody.

19. ECL-HRP substrate.

2.3 Detection of

HIF-1α Activity Using

Luciferase Reporter

Assay

1. Anti-rabbit IgG, HRP-linked antibody.

2. ECL-HRP substrate.

3. Transfection reagent: X-tremeGENE™ 9 DNA transfection
reagent (see Note 1).

4. DMEM-HG medium without serum and antibiotics.

5. pGL2.1-5� HRE-luciferase plasmid (see Note 2).

6. pRL-CMV plasmid encoding Renilla luciferase.

7. Phosphate-buffered saline (PBS; 1�).

8. Dual-Luciferase® Reporter Assay Kit (Promega):

(a) Passive Lysis Buffer (PLB; 5�): dilute 5� PLB to 1� with
distilled water.

(b) Luciferase Assay Reagent II (LAR II): dissolve the lucifer-
ase assay substrate in 10 mL of Luciferase Assay Buffer II
(see Note 3).

(c) Stop & Glo® Reagent: dilute 50� Stop & Glo® substrate
to 1� in Stop & Glo® buffer (see Note 4).

9. White opaque 96-well microplate.

10. Luminometer with reagent auto-injectors.

2.4 In Vivo Detection

of Hypoxia Markers

Using Immunohisto-

chemistry

1. Antigen retrieval buffer: 1 mM EDTA, pH 7.8.

2. Tris-buffered saline (TBS; 10�): 1.5 MNaCl, 0.1 M Tris-HCl,
pH 7.4.

3. Phosphate-buffered saline (PBS; 10�).

4. Washing buffer: 1� TBS containing 0.05% Tween 20 (TBST).

5. Peroxidase quenching solution: 1� TBS containing 3% H2O2.

6. 10% formalin in PBS.

7. 10� casein solution.
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8. Chromogen solution: 1� TBS (50 mL) containing 25 mg
3,30-diaminobenzidine and 15 μL 100% H2O2.

9. Harris hematoxylin solution.

10. Scott’s tap water.

11. Xylene.

12. 100% ethanol.

13. Paraffin.

14. Coverslip.

15. Mounting medium.

16. Horseradish peroxidase (HRP)-conjugated anti-mouse/rabbit
secondary antibody from Dako.

17. Hypoxyprobe™-1 Kit from Hypoxyprobe.

18. Rabbit antihuman glucose transporter 1 (GLUT1) antibody
(ab15309) from Abcam.

19. Rabbit antihuman carbonic anhydrase 9 (CA9) antibody
(ab15086) from Abcam.

2.5 Detection of HIF

Transcriptional

Targets by Real-Time

Quantitative PCR

1. Phosphate-buffered saline (PBS; 1�).

2. Trizol.

3. Chloroform.

4. Isopropanol (IPA).

5. 75% ethanol.

6. DEPC water.

7. Centrifuge for 1.5 mL micro-centrifuge tubes: Cool the cen-
trifuge to 4 �C.

8. Heat block: Set the temperature to 55–60 �C.

9. Nanodrop.

10. PCR machine.

11. PCR tubes.

12. Milli-Q water.

13. 10� PCR Buffer (ABI, Ref: 4486220).

14. 25 mM MgCl2.

15. Random hexamer (Invitrogen, Ref: 100026484).

16. dNTP Mix (10 mM).

17. RNase inhibitor (ABI, Ref: 100021540).

18. Reverse Transcriptase (ABI, Ref: 4308228).
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3 Methods

3.1 Setup of

Culturing System in

Hypoxia

1. Seed appropriate number of cells in the tissue culture dish 1 day
prior to hypoxia incubation (see Notes 5 and 6).

2. To assemble the hypoxia chamber, open the hypoxia chamber
by removing the ring clamp and the chamber lid (see Note 7).
Put the culture dishes carefully onto the tray.

3. Place the chamber lid to the base, and make sure the edge of
the lid fits with O-ring exactly. Apply the ring clamp to the
position where the chamber lid and base meet, and close the
ring clamp slowly by pushing the buckle toward the chamber
(see Notes 8 and 9).

4. To purge the chamber, connect the inlet port and outlet port of
the single flow meter to the gas tank and hypoxia chamber,
respectively (polycarbonate tubing can be used to extend the
tubing length) (see Fig. 2). Ensure that both of the tubing
clamps in the hypoxia chamber are opened.

5. Switch on the gas valve to let the gas flow into the chamber.
Adjust the flow rate control to steady the flow rate at 30–40
L/min (LPM) (see Note 10). Flush the chamber with the gas
for no less than 2 min (see Note 11).

6. To seal the chamber, close the outlet tubing clamp followed by
the inlet clamp. Turn off the gas valve, and disconnect the
chamber tubing and the gas supply.

7. Put the hypoxia chamber into the tissue culture incubator (see
Note 12).

Flow rate 
control

Gas valve

Hypoxia 
gas tank

Hypoxia 
chamber

Polycarbonate tubing

Single flow meter

Fig. 2 Setup of hypoxia gas flow. The hypoxia gas tank is connected to the inlet port of the single flow meter by
polycarbonate tubing. The outlet port of the meter is linked to one of the polycarbonate tubing at the bottom of
the hypoxia chamber base. When the gas flow is turned on, the gas comes from the hypoxia tank flush into the
hypoxia chamber. The air in the chamber is purged through the other polycarbonate tubing. Black arrows in
the figure indicate the direction of the gas flow throughout the setting
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8. To open the hypoxia chamber, take the hypoxia chamber out of
the tissue culture incubator. Open the tubing clamps to release
the gas in the chamber (see Note 13).

9. Release and remove the ring clamp (see Note 14). Remove the
chamber lid, and collect the cells as soon as possible for further
analysis (see Notes 15 and 16).

3.2 Detection of

HIF-1/2 Protein by

Western Blotting

1. Seed appropriate number of cells in two 60 mm dishes the day
before protein extraction such that the cells should be 70–90%
confluent at the time of protein extraction.

2. On the day of the protein extraction, place one set of cells in
hypoxia chamber, and fill the chamber with 1% hypoxia gas as
in Subheading 3.1.

3. Place the hypoxia chamber in the 37 �C incubator for 4 h.

4. Prior to the protein extraction, add protease inhibitor cocktail
(25�) and phosphatase inhibitor (20�) to RIPA buffer, and
dilute them to 1�.

5. For the normoxic condition, place the cells on ice. Remove the
medium from cells, and wash the cells with pre-chilled 1�
PBS once.

6. Add 4 mL of pre-chilled 1� PBS to cells and scrape the cells
with cell scrapers.

7. Transfer the cells to 15 mL conical tubes, and keep the cells
on ice.

8. For the hypoxic condition, open the hypoxia chamber, and
place the cells on ice immediately. Cells are collected as in
steps 5–7 (see Note 17).

9. Pellet cells for both normoxic and hypoxic conditions at
2000 � g for 2 min at 4 �C.

10. Remove the supernatant.

11. Resuspend the cell pellets with 20–100 μL RIPA buffer con-
taining 1� protease inhibitor cocktail and 1� phosphatase
inhibitor according to the size of the pellets.

12. Transfer the lysates into 1.5 mL micro-centrifuge tubes.

13. Vortex the lysates and incubate on ice for 15 min.

14. Centrifuge the lysates at 12,000 � g for 15 min at 4 �C.

15. Transfer the supernatant to new 1.5 mL micro-centrifuge
tubes (see Note 18).

16. Determine protein concentration by Bradford assay.

17. Prepare 40 μg of protein per sample in 1� SDS sample buffer.

18. Heat the samples at 95 �C for 10 min before loading to the
SDS-PAGE gel.
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19. Load the samples and protein ladder into the 10%
SDS-PAGE gel.

20. Run the SDS-PAGE according to the standard SDS-PAGE
protocol.

21. Transfer the proteins to PVDF membrane according to the
standard transfer protocol.

22. Block the membrane with 5% milk in TBST at room tempera-
ture for 1 h.

23. Wash the membrane with TBST for 15 min once and 5 min
twice.

24. Dilute anti-HIF1α antibody 1:1000 in 5% milk in TBST.

25. Add the diluted anti-HIF1α antibody to the membrane, and
incubate at 4 �C overnight.

26. Remove the anti-HIF1α antibody (see Note 19).

27. Wash the membrane with TBST for 15 min once and 5 min
twice.

28. Dilute anti-rabbit IgG, HRP- linked antibody 1:2500 in 5%
milk in TBST.

29. Add the diluted anti-rabbit antibody to the membrane, and
incubate at room temperature for 2 h.

30. Remove the diluted anti-rabbit antibody.

31. Wash the membrane with TBST for 15 min once and 5 min
twice.

32. Develop the bands with ECL-HRP substrate (see Fig. 3 and
Note 20).

3.3 Detection of

HIF-1α Activity Using

Luciferase Reporter

Assay

1. Seed the appropriate number of cells in two 24-well plates the
day before transfection such that the cells should be 40–60%
confluent at the time of the transfection.

MHCC97L

20%O2

HIF1α
(120kDa)

β-actin

1%O2

Fig. 3 HIF-1α protein expression in liver cancer cells MHCC97L exposed to 20%
O2 (normoxia) and 1% O2 (hypoxia)
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2. For each well containing the cells, dilute 0.25 μg pGL2.1-5�
HRE-luciferase plasmids and 1.25 ng pRL-CMV plasmids in
25 μL DMEM-HG medium without serum and antibiotics.

3. For each well of cells, dilute 0.75 μL X-tremeGENE™ 9 DNA
transfection reagent in 25 μL DMEM-HG medium without
serum and antibiotics.

4. Add the diluted DNA transfection reagent into the
DNA-diluted solution, and incubate at room temperature for
20 min.

5. Add 50 μL of DNA-X-tremeGENE™ 9 complexes to each well
of cells dropwise, and mix gently.

6. Sixteen hours after transfection, remove medium, and replen-
ish with new growth medium.

7. Place one set of cells in the hypoxia chamber, and fill the
chamber with 1% hypoxia gas as in Subheading 3.1.

8. Place the hypoxia chamber in the 37 �C incubator for 24 h.

9. For both normoxic and hypoxic conditions, remove the
medium, and wash the cells with 1� PBS once.

10. Add 100 μL 1� passive lysis buffer in each well of cells.

11. Place the plates on the shaker at room temperature for 15 min
to lyse the cells.

12. Mix the lysates in each well, and transfer 20 μL lysates to a
white 96-well microplate (see Note 21).

13. Load LAR II and Stop & Glo® reagent into the reagent auto-
injectors.

14. Insert the white 96-well plate into the luminometer that is
connected to the reagent auto-injectors.

15. For each well, inject 50 μL LAR II to the well, and the firefly
luminescence will be measured.

16. Inject 50 μL Stop & Glo® reagent, and the Renilla lumines-
cence will be measured.

17. The activity of firefly luciferase is normalized to the activity of
Renilla luciferase.

3.4 In Vivo Detection

of Hypoxia Markers

Using Immunohisto-

chemistry

1. Dissolve solid pimonidazole HCl (Hypoxyprobe™-1) with
saline. The solubility of Hypoxyprobe™-1 in saline is
116 mg/mL.

2. Thirty minutes prior to tumor harvest, administrate 60 mg/kg
Hypoxyprobe™-1 solution to tumor-bearing mice via intraper-
itoneal injection (see Notes 22 and 23).

3. Harvest and fix the tumor tissues with 10% formalin for 24 h
(see Note 24).
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4. After fixation, transfer the tissues to 70% ethanol for processing
or short-term storage (see Note 25).

5. Dehydrate the tissues with ethanol and xylene, and embed the
tissues in paraffin according to the conventional protocols.

6. Cut the paraffin-embedded tissue blocks into sections at a
thickness of 4–5 μm, and affix onto the slides. Once mounted,
the slides should be dried in the 37 �C oven overnight to
remove any water that may be trapped under the section.

7. Before proceeding with a staining protocol, deparaffinize the
sections with xylene, and rehydrate with a gradient of ethanol
and water as follows:

(a) Xylene: 4 � 3 min

(b) 100% ethanol: 4 � 3 min

(c) 95% ethanol: 1 min

(d) 85 % ethanol: 1 min

(e) Rinse with cold tap water

8. For antigen retrieval, incubate the sections in boiling 1 mM
EDTA solution (pH 7.8) for 15 min.

9. After cooling down, transfer and incubate the sections in 1�
TBS containing 3% H2O2 at room temperature for 30 min to
suppress the endogenous peroxidase activity.

10. Rinse the sections with 1� TBS four times.

11. Dilute 10� casein solution to 2� with 1� PBS. Incubate the
sections in 2� casein solution at room temperature for 10 min
for protein blocking.

12. Dilute the primary antibodies with antibody diluent as follows:

(a) Rabbit anti-GLUT1 (1:1000)

(b) Rabbit anti-CA9 (1:500)

(c) Mouse anti-pimonidazole (1:50)

13. Remove the casein solution, and incubate the sections with
diluted primary antibodies at 4 �C overnight.

14. The next day, remove the primary antibodies, and wash the
sections with 1� TBST for 5 min four times with gentle
agitation.

15. Incubate the sections with HRP-conjugated secondary anti-
body of corresponding species at room temperature for 30 min
with gentle agitation.

16. Remove the secondary antibody, and wash the sections with
1� TBST for 5 min four times with gentle agitation.

17. For detection, incubate the sections with freshly prepared
chromogen solution at room temperature for 1–10 min. Stop
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the reaction with tap water when the desired signal intensity is
achieved (see Note 26).

18. Counterstain with hematoxylin solution and Scott’s tap water
according to the manufacturer’s instruction.

19. Dehydrate the sections with a gradient of ethanol and xylene as
follows:

(a) 85 % ethanol: 1 min

(b) 95% ethanol: 1 min

(c) 100% ethanol: 4 � 3 min

(d) Xylene: 4 � 3 min

20. Mount the sections (see Fig. 4).

3.5 Detection of HIF

Transcriptional

Targets by Real-Time

Quantitative PCR

1. Seed the appropriate number of cells in two 6-well plates such
that the cells should be 70–90% confluent at the time of RNA
extraction.

2. On the next day, place one set of cells in the hypoxia chamber,
and fill the chamber with 1% hypoxia gas as in Subheading 3.1.

3. Place the hypoxia chamber in the 37 �C incubator for 24 h.

4. For both normoxic and hypoxic conditions, remove the
medium, and wash the cells with 1� PBS once.

5. Add 1 mL Trizol to cells.

6. Incubate at room temperature for 5 min.

Fig. 4 Immunohistochemical staining of hypoxia markers (pimonidazole, GLUT1, and CA9) in human HCC
tissues displayed a patchy pattern, which is a typical oxygen diffusion pattern
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7. Pipette up and down several times, and transfer to 1.5 mL
micro-centrifuge tubes.

8. Add 0.2 mL chloroform.

9. Shake tubes vigorously by hand for 15 s, and incubate at room
temperature for 3 min.

10. Centrifuge at 12,000 � g for 10 min at 4 �C.

11. Transfer the upper aqueous phase to new 1.5 mL micro-
centrifuge tubes (see Note 27).

12. Add 0.5 mL 100% IPA and vortex the samples.

13. Incubate at room temperature for 10 min.

14. Centrifuge at 12,000 � g for 10 min at 4 �C.

15. Remove the supernatant.

16. Wash the RNA pellet with 1 mL 75% ethanol and vortex the
samples.

17. Centrifuge at 7500 � g for 10 min at 4�C.

18. Dry the RNA pellet (see Note 28).

19. Dissolve RNA in 20–50 μL DEPC water according to the size
of pellets.

20. Incubate the samples at 55–60 �C heat block for 10 min.

21. Measure the RNA concentration using nanodrop (see Note
29).

22. Aliquot 1 μg RNA into PCR tubes, and top up to 3 μL using
Milli-Q water (see Note 30).

23. Close the cap tightly and heat RNA at 65 �C for 10 min.

24. Prepare Mastermix solution, and mix thoroughly (see
Note 31).

Reagents μL

10� PCR Buffer 2

MgCl2 4

dNTP 8

Random hexamer 1

RNase inhibitor 1

Reverse transcriptase 1

25. Add 17 μL of Mastermix solution into RNA samples to make a
20 μL PCR system while pipetting to ensure a well-mixed
reaction.
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26. Set up PCR amplification as follows:

25 �C 10 min

42 �C 60 min

95 �C 5 min

4 �C 1

27. 1:5 dilute cDNA sample in Milli-Q water. The diluted cDNA is
ready for quantitative PCR (see Notes 32 and 33).

4 Notes

1. Other transfection reagents may be used for the transfection,
depending on the transfection efficiency of used cell lines.

2. The pGL2.1-5� HRE-luciferase plasmid contains hypoxia
response element from human ENO1 gene and firefly luciferase
coding sequence [17].

3. Freeze-and-thaw cycles of LAR II reduce the reagent’s activity.
Aliquots of LAR II are recommended after the reconstitution
of luciferase assay substrate.

4. Stop & Glo® reagent should be prepared freshly for each
experiment.

5. For each assay which needs to be carried out after hypoxia
chamber incubation, always remember to have a normoxia
(20% O2) positive control with the same experimental
conditions.

6. In order to avoid the insufficient cell volume or overgrowth of
the cells, a preliminary test for optimizing the cell seeding
density is recommended if the growth rate of the cells is
unknown under hypoxia.

7. Before using the hypoxia chamber, it is necessary to ensure that
all the compartments are intact without a crack and the O-ring
is evenly distributed around the flange of the chamber base.

8. When assembling and opening the ring clamp, hold the cham-
ber firmly with hands to avoid cell spillage.

9. If there were a mismatch between the lid and the base, it would
be extremely hard to close the ring clamp. Do not force to close
the clamp in this case. Adjust the position of the chamber lid
and base until they are properly assembled.

10. Before purging the chamber, one can shortly close the outlet
tubing of the hypoxia chamber by fingers to check the leakage
of the gas. If the chamber lid lifts accompanied by dropped flow
rate, it indicates that the lid and base are properly sealed by ring
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clamp. If leakage is found, adjust the position of the chamber
lid or ring clamp until the chamber is sealed.

11. According to our experience, 2 min is the minimum time for
purging the chamber. The time could be extended to 3–4 min
if required and may vary depending on different experimental
settings. Thus, a preliminary test is required for a successful
induction of HIF activation.

12. For detecting the mRNA level of HIF targets, cells should be
kept in hypoxia chamber for 24 h. For testing the change of the
protein level, the incubation time should be extended to 48 h.

13. When opening the tubing clamps after hypoxia, the sound of
escaping of the gas should be heard. It means that the chamber
is tightly sealed after purging.

14. Normally, the air pressure is higher within the hypoxia chamber
after purging. When opening the hypoxia chamber, it is better
to open the tubing clamps to balance the air pressure before
release of the ring clamp.

15. Since the HIF proteins are easily degraded under normoxia
condition (20% O2), the cells should be collected immediately
after opening the hypoxia chamber.

16. The hypoxia chamber should be kept at room temperature
when it is not in use. Both the ring clamp and the tube clamps
should be released for better maintenance.

17. Cells should be handled as fast as possible until RIPA buffer is
added as HIF1α degrades very quickly. The process can be
done in cold room to slow the degradation of HIF1α.

18. Lysates can be stored at �80 �C for later use.

19. The diluted anti-HIF1α antibody in 5% milk in TBST can be
stored at �20 �C and reused several times.

20. The band of HIF1α appears around 120 kDa.

21. The white residues in lysates do not affect the dual-luciferase
reporter assay. Removing of white residues in lysates is not
necessary.

22. In our model, BALB/c nude mouse is orthotopically injected
with human HCC cell line, MHCC97L.

23. The plasma half-life of pimonidazole HCl is approximately
25 min.

24. The ideal fixation time depends on the size and type of the
tissue. Fixation between 18 and 24 h is ideal for this
application.

25. Formalin-fixed tissues are stable in 70% ethanol within weeks of
this application.
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26. 3,30-Diaminobenzidine (DAB) is a suspected carcinogen. Wear
the appropriate protective clothing when preparing the chro-
mogen solution.

27. Three phases will be seen after centrifugation. Avoid transfer-
ring the middle and lower phases to the new tubes.

28. Air-dry the RNA pellet until the pellet becomes colorless.

29. When measuring RNA concentration, also check the A260/
A280 ratio to evaluate the RNA purity. One sample with high
RNA purity will have the ratio between 1.8 and 2.1.

30. Always keep RNA on ice before heating.

31. The Mastermix solution should be freshly prepared and kept
on ice before using.

32. For long-term storage, the cDNA sample can be kept at
�20 �C.

33. Our validated primer sequences for HIF transcriptional targets
can be found in Table 1.
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Chapter 7

Determination of Polarization of Resident Macrophages
and Their Effect on the Tumor Microenvironment

Ioannis S. Pateras and Tomer Cooks

Abstract

Interactions between tumor cells and their microenvironment have been long established as a cardinal
hallmark of tumorigenesis and metastasis. To that end, tumor-associated macrophages (TAMs) have been
studied extensively and were found to be typically correlated with poor prognosis in various cancers. TAMs
are key elements of cancer-associated inflammation promoting cancer progression by increasing angiogen-
esis, inducing immunosuppression of the tumor tissue, and remodeling the extracellular matrix favoring
invasion and metastasis. Since resident macrophages are characterized by substantial diversity and plasticity,
understanding their polarization patterns in response to microenvironmental cues is a prime focus in the
field. This chapter demonstrates an efficient manner to characterize polarization patterns of macrophages
inside tumor tissues.

Key words Resident macrophages, Tumor-associated macrophages, Polarization, Immunohisto-
chemistry, Flow cytometry

1 Introduction

The immense plasticity of macrophages plays a significant role in
tissue homeostasis, completing essential regulatory functions as
well as pathogen protection [1] recalling Metchnikoff “I rather
believe that the essence of an inflammation lies in the phagocyte
attack of solid pathogenic substances, be it a weakened or dead cell,
a bacterium or any other foreign body.” Macrophages are sensitive
to an ensemble of extracellular and intercellular signals that dictate
their regulatory phenotype [2]. For decades, it was believed that
tissue macrophages originate from the adult hematopoietic system,
derived from stem cells in the bone marrow and differentiating via
monocytic precursors in the blood. It is now proven that many
tissue-resident macrophage populations maintain their populations
through in situ proliferation by tissue-specific mechanisms
[3–6]. In addition, macrophages are involved in various diseases

Majda Haznadar (ed.), Cancer Metabolism: Methods and Protocols, Methods in Molecular Biology, vol. 1928,
https://doi.org/10.1007/978-1-4939-9027-6_7, © Springer Science+Business Media, LLC, part of Springer Nature 2019

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9027-6_7&domain=pdf


including cancer, where tumor-associated macrophages (TAMs)
were reported to typically correlate with poor prognosis [7].

Often, solid tumors are compared to organ-like structures
composed of cancer cells, as well as immune and mesenchymal
cells, which continuously interact and affect each other. Mirroring
the Th1/Th2 dichotomy of T lymphocytes, a simplistic polariza-
tion of macrophages into M1 and M2 groups is commonly used
[6, 8]. The pro-inflammatory or classically activated macrophages
(M1) are induced by mediators such as IFN-γ and TNF-α and
release pro-inflammatory cytokines such as IL-12 and IL-23.
They are important in protecting the tissue from intracellular
pathogens like bacteria and viruses. Contrary, alternatively activated
macrophages (M2) are involved in repair, anti-inflammatory, and
nourishing mechanisms such as tissue remodeling, angiogenesis,
and wound healing [6, 8–10]. In this chapter, we address twomajor
approaches to distinguish the polarization patterns inside tissues.
By flow cytometry means, a physical separation of live and fixed
macrophagic populations is allowed. Using such separation to fur-
ther sort and study subpopulations may be instrumental in investi-
gating tissue-specific and tumor-specific traits using advanced
methods of gene expression and single cell sequencing. Impor-
tantly, we also discuss in detail immunohistochemistry (IHC) as a
powerful application implementing the fundamental principle of
specificity and affinity of antibody-antigen interaction to visualize
the localization of cellular components (antigens) in cells and tis-
sues. IHC provides a rapid approach with favorable cost-effective
ratio qualitative (existence and distribution) and quantitative (num-
ber of macrophages per power field) data. Within this frame, by
employing serial section analysis and multiple staining on a single
tissue section, it becomes feasible to detect multiple antigens in the
same context.

Here, we demonstrate two IHC detection procedures that are
employed for the study of TAMs on routinely processed formalin-
fixed paraffin sections: (a) the traditional biotin-avidin immunoen-
zymatic method and (b) the more recent polymer-based assay that
does not react with endogenous biotin. The rationale behind both
methodologies is identical, encompassing the following steps:
(1) deparaffinization and rehydration, (2) antigen unmasking,
(3) blocking non-specific staining (by abrogating activity of endog-
enous enzymes and blocking non-specific interaction with endoge-
nous Fc receptors), (4) incubation with the primary antibody,
(5) incubation with the labeled secondary antibody, (6) incubation
with HRP conjugate complex, (7) visualization of the staining
pattern employing DAB chromogen, (8) counterstain in hematox-
ylin, and (9) dehydration and mounting. Notably, IHC can be
employed in conjunction with other conventional techniques
including in situ hybridization in the same tissue section.
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Given that TAMs generally display an M2-like phenotype [1],
they can be detected by employing anti-CD206 and anti-CD163
that recognize mannose and hemoglobin/haptoglobin receptors,
respectively. Both receptors are expressed by M2 (alternative acti-
vated) macrophages [11, 12]. However, additional antibodies
detecting macrophages including anti-CD64 (Fcγ receptor 1)
detecting M1 macrophages as well as anti-CD14, anti-CD68
(PGM1), and anti-CD68 (KP1) can be also incorporated in the
IHC analysis.

2 Materials

1. 100 mm petri dishes (Corning).

2. Surgical scalpels.

3. Forceps and surgical scissors for animal dissection.

4. 15 and 50 mL conic tubes (Corning).

5. 0.5 and 1.5 mL collection tubes (Eppendorf).

6. 10� red blood cell (RBC) lysis buffer (eBioscience).

7. Collagenase D (Sigma-Aldrich).

8. DNase I (Sigma-Aldrich).

9. 70 μm cell strainers (Corning).

10. Isoflurane.

11. Blocking antibody (Ab) CD16/CD32 (R&D).

12. Antibodies for FACS: CD45+, CD11b+, F4/80+, Ly6C�,
Ly6G�, CD3�, CD19�, and NK1.1� (R&D), and for IHC,
CD206 (Abcam), CD163 (Leica), goat anti-mouse biotin con-
jugated, and goat anti-rabbit biotin conjugated (Thermo
Fisher Scientific).

13. DAPI (Thermo Fisher Scientific).

14. gentleMACS™ Dissociator (Miltenyi Biotec).

15. C tubes (Miltenyi Biotec).

16. Vortex.

17. Lab centrifuge.

18. Lab bench centrifuge.

19. Flow cytometer.

20. Flow sorter.

21. Pipetman.

22. Pipettes.

23. Beaker.

24. Biotin and streptavidin blocking kit (Vector Labs).
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25. Coplin staining jars.

26. Cover slips.

27. Glass trough.

28. Goat serum (Thermo Fisher Scientific).

29. Hematoxylin.

30. Hydrogen peroxide 30%.

31. IHC kit (providing the solutions for the blocking of
non-specific interaction, the labeled secondary antibody con-
jugated to a polymer backbone, the immune complex that
forms the bridge between the secondary antibody and the
chromogen mean and the corresponding chromogen)
(Thermo Fisher Scientific).

32. Immune slide staining tray.

33. Lab bench centrifuge.

34. Lab oven.

35. Microwave oven.

36. Mounting medium.

37. Refrigerator.

38. Staining jar.

39. Staining racks.

40. Steamer.

41. Streptavidin/biotin blocking kit (Vector Labs).

42. Streptavidin HRP (horseradish peroxidase) conjugate
(Millipore).

43. Ultrapure water.

44. Volumetric cylinders.

45. 3,30-diaminobenzidine (DAB).

2.1 Solutions 1. Phosphate-buffered saline (PBS).

2. Ethanol (EtOH).

3. Xylene.

4. FACS buffer: 1� PBS, 2% bovine serum, 1 mM EDTA, 0.1%
sodium azide.

5. Collection medium: DMEM or RPMI 10% v/v FBS, 1% peni-
cillin/streptomycin.

6. 1� RBC lysis buffer: dilute 10� RBC buffer in distilled water.

7. 1� TBS (Tris-buffered saline) solution: dissolve 8.1 g of dry
sodium chloride (NaCl) and 1 g of Tris(hydroxymethyl) ami-
nomethane in 1 L of ultrapure water. Titrate to pH 7.6 with
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HCl. PBS (phosphate-buffered saline) 1� solution may be
used alternatively instead of 1� TBS.

8. 3% hydrogen peroxide (H2O2) solution: dilute 10 mL 30%
hydrogen peroxide to 90 mL ultrapure water.

9. Citric acid solution: dissolve 2.1 g of dry sodium nitrate in 1 L
ultrapure water. Titrate to pH 6.0 with NaOH.

10. EDTA solution: dilute 2.2 mL from stock EDTA (0.5 M) in
1 L ultrapure water. Titrate to pH 8.0–8.5 with NaOH.

11. DAB solution: dissolve 50 mg of dry DAB dilute in 100 mL
1� TBS. Add 30 μL 3% H2O2 solution. Avoid unnecessary
exposure to light. Safety precautions in the handling of DAB
are necessary since it is a suspected carcinogen.

3 Methods

3.1 Isolation

of Resident

Macrophages from

Lung Mouse

Tissue (see Notes 1–5)

3.1.1 Tissue Harvesting

1. Anesthetize the mouse using CO2 or isoflurane.

2. Spray down mouse with 70% ethanol, and make initial incision
just below the rib cage. Cut through the skin and connective
tissue across the mouse. Make lateral incisions on each side up
to the neck of the mouse.

3. Perfuse 10 mL of cold 1� PBS through the right ventricle until
the lungs are cleared of blood (to allow blood to leak out, cut a
slit in the left ventricle).

4. Carefully remove the rest of the rib cage (the more bone
removed, the better) and other tissues to expose the trachea;
place the forceps under the trachea to keep it exposed (making
sure to separate the trachea from the esophagus).

5. Dissect out the lungs by gently tugging on the trachea while
snipping away the connective tissue; leave the lungs intact.

6. Put the lung in a 50 mL conical with enough 1� PBS to cover
5� of the entire tissue.

3.1.2 Tissue Dissociation

into Single Cells

1. Rinse tissue in a petri dish containing 1� PBS. Separate each
lobe using a scalpel.

2. Transfer a maximum of 450 mg lung tissue to a gentleMACS C
tube containing 2.5 mL PBS.

3. Add a mix of collagenase D and DNase I solution to a final
concentration of 2 mg/mL (collagenase) and 40 U/mL
(DNase) (see Note 6).

4. Tightly close the C tube and attach it onto the gentleMACS
Dissociator. Then run the program “m_lung_01.”

5. Incubate for 30 min at 37 �C with automated rotation (see
Note 7).
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6. Put the tube back to the gentleMACS Dissociator, and run the
program “m_lung_02” (see Note 8).

7. Prepare a 50 mL tube for collecting filtered cells by replacing
the cap with a 70 μm mesh cell strainer.

8. Use p1000 pipette to collect dissociated solution from the C
tube, and apply the cells to the cell strainer.

9. Wash the cell strainer with 2.5 mL 1� PBS.

10. Centrifuge the cells to a pellet in a 50 mL tube at 500 � g for
10 min.

11. Aspirate the supernatant, and resuspend the pellet in 3 mL of
1� RBC lysis buffer.

12. Incubate for 4–5 min at room temperature.

13. Stop the lysis reaction by adding 20 mL of 1� PBS.

14. Centrifuge at 500 � g for 5 min, and decant the supernatant.

15. Resuspend cells in 2 mL FACS buffer, and perform a cell count
and viability analysis. Figure 1 demonstrates a typical forward
and side scatter of a single cell dissociation of a mouse lung
tissue.

3.1.3 Blocking

and Preparation for Flow

Cytometry

1. Incubate cells with 5–10 μg/mL of purified anti-mouse
CD16/CD32 antibody to block non-specific staining. Vortex
briefly, and incubate on ice for a minimum of 30 min (vortex
every 10 min).
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Fig. 1 Typical side and forward scatter of cells from dissociated mouse lung. (a) A wide range of cellular
populations from the lung tissue, including epithelial, immune, and connective tissue. (b) Using gating
strategies requires ensuring not overlooking populations beyond the scope of the forward and side scatter
as in the example presented
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2. Centrifuge for 5 min at 500 � g (4 �C). Discard the superna-
tant, and resuspend the pellet in 500 μL of staining buffer.

3. Add the antibody and incubate on ice for 1 h (protect from
light).

4. Centrifuge for 5 min at 500 � g (4 �C). Discard the superna-
tant, and resuspend the pellet in 400 μL of staining buffer.

5. Filter the sample using filter top 5 mL polystyrene tubes
(40 μm) to prevent clumps of cells clogging the cytometer
(see Note 9).

6. Add 300 nM of DAPI to gate viable cells.

7. The following markers should be used for a gating strategy to
isolate specific macrophages subpopulations: CD45+, CD11b+,
F4/80+, Ly6C�, Ly6G�, CD3�, CD19�, and NK1.1�.

8. After optimizing these settings, more distinctive macrophagic
subpopulations can be gated, such as CD206+ and CD163+.

9. After setting, gating, and compensation are completed, cells
can be sorted and can be further used for DNA, RNA, and
protein extraction as well as for biological function
experiments.

3.2 Detection

of Resident

Macrophages and TAM

Using Immunohisto-

chemistry

3.2.1 Deparaffinization

and Rehydration

1. Melt paraffin by dissolving it in xylene followed by rehydration
in decreasing series of ethanol solutions. Place sections in stain-
ing rack (see Notes 10 and 11).

2. Incubate in an oven at 60 �C for 30 min.

3. Wash in xylene for 10 min, and then move the sections to a new
glass trough with fresh xylene for additional 10 min.

4. Incubate in pure ethanol for 15 min.

5. Incubate in 95% ethanol for 10 min.

6. Incubate in 80% ethanol for 5 min.

7. Incubate in 70% ethanol for 5 min.

8. Incubate in 50% ethanol for 5 min.

9. Wash in 1� TBS for 5 min. From this point on, avoid drying
out the sections.

3.2.2 Antigen Retrieval 1. Preheat the buffer solution for antigen retrieval [citric acid
1� (pH 6.0) or EDTA (pH, 8–8.5)] for 5 min (optional) (see
Note 12).

2. Incubate sections in the buffer solution in microwave for
25 min in 700 watts or steamer for 40–50 min. To avoid drying
out the slides, incubation should be performed in a humid
atmosphere.

3. Allow slides to cool within the buffer solution and wash in
1� TBS for 5 min.
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3.2.3 Blocking 1. A humid chamber is required to avoid evaporation of the
blocking solution. Sections are incubated with the
corresponding solution in an immune slide staining tray
where layers of damp paper towels are placed at the bottom.

2. For blocking endogenous hydrogen peroxidase, incubate with
3% hydrogen peroxide solution for 15min, in the dark, at room
temperature. Commercially available IHC kits provide the
equivalent blocking solution.

3. Wash in 1� TBS for 2 � 5 min.

4. Blocking of endogenous biotin employing a streptavidin/bio-
tin blocking kit according to the manufacturer’s instructions.
This step can be omitted when employing commercially
available IHC kits which are not biotin�/avidin-based
immunoassays.

5. For blocking non-specific interaction with endogenous
Fc receptors (FcR), an optimization step is necessary (see
Note 13). For most antibodies, incubate with 5–10% normal
goat serum diluted in 1� TBS for 10 min at room temperature.

6. Wash in 1� TBS for 5 min.

3.2.4 Incubation

with Primary

and Secondary Antibodies

1. Primary antibody incubation should be optimized accordingly
(see Note 14). Sections are incubated with the corresponding
antibody diluted in 1� TBS in a humid chamber as previously
described. To further reduce non-specific staining, primary
antibodies can be diluted in 1� TBS containing 5–10% goat
serum (or a similar blocking medium).

2. Wash in 1� TBS for 3 � 5 min. It is important to remove
unbound primary antibody prior to incubation with the sec-
ondary antibody.

3. Incubate with the labeled secondary antibody. Sections should
be incubated in a humid atmosphere employing a biotin con-
jugated secondary antibody (see Note 15). IHC kits may
include an equivalent to labeled secondary antibody.

4. Wash in 1� TBS for 3 � 5 min in order to remove unbound
secondary antibody.

3.2.5 Incubation

with HRP Conjugate

Complex

1. Incubate sections in a humid chamber, and employ streptavidin
HRP conjugate diluted in TBS 1� according to the manufac-
turer’s instructions (see Note 16). Streptavidin HRP complex
binds to the biotinylated secondary antibody, thus joining the
peroxidase moiety to the site of target antigen. IHC kits
include the appropriate immune complexes that are usually
HRP conjugated but do not depend on biotin/avidin interac-
tion. Avoid unnecessary exposure to light.
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2. Wash in 1� TBS for 3 � 5 min in order to remove unbound
complexes.

3.2.6 Visualization

of Immunoreactivity

Employing DAB Chromogen

To visualize with DAB chromogen (see Note 17), embed sections
in DAB solution. Staining procedure is carried out in Coplin stain-
ing jars. Incubation time should be optimized. IHC kits include all
necessary materials for DAB staining. To stop the reaction, transfer
the sections to another Coplin staining jar filled with tap water, and
rinse gently with running tap water.

3.2.7 Counterstaining

in Hematoxylin

1. Immerse sections in a glass trough with diluted filtered hema-
toxylin (in distilled water). Incubation time and dilution of
hematoxylin should be optimized.

2. Rinse sections with running tap water. Before proceeding to
the next step, observe the sections through the microscope
briefly (ensuring that they do not dry out) to examine the
color contrast. In case the desired color contrast is not reached,
repeat step 1.

3.2.8 Dehydration

and Mounting

1. Incubate in 50% ethanol for 5 min.

2. Incubate in 70% ethanol for 5 min.

3. Incubate in 80% ethanol for 5 min.

4. Incubate in 95% ethanol for 10 min.

5. Incubate in pure ethanol for 15 min.

6. Wash in xylene for 10 min. Then move the sections to a new
glass trough with fresh xylene for additional 10 min.

7. Mount sections by employing a mounting media, and cover
them by lowering the cover slips avoiding air bubble trapping.

For the evaluation of CD206 and CD163 staining, first you
should examine for the positivity of these antigens (Fig. 2). For

Fig. 2 Immunohistochemistry staining of serial sections for CD163 (on the left) and CD206 (on the right) in
cases with sporadic colorectal carcinomas. Arrows denote positive staining. Scale bar: 100 μm
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suboptimal immunostaining, a troubleshooting guide is provided
(Table 1). Upon positive staining, it is very important to look
into the distribution pattern of CD206+ and CD163+ cells. In
other words examine for their presence in the invasive front and
within the tumor. An insightful way to quantify them is to count
the number of positive cells per high-power field (HPF) (magnifi-
cation 400�) manually. Alternatively, an image analysis program
may be employed.

4 Notes

1. The FACS protocol has been used extensively for the isolation
of TAM from mouse lung tumors and from healthy lungs. For
isolation of resident macrophages and TAM from other tissues,
this protocol needs to be optimized specifically.

2. When multicolor staining is applied, fluorescence compensa-
tion is obligatory.

3. Beyond the basic markers detailed in these protocols, to delin-
eate further subpopulations, additional macrophages and TAM
markers could be used. These include also various cytokines
and transcription factors.

4. In addition to the experimental samples, negative unstained
controls and appropriate isotype controls must be prepared.

Table 1
Troubleshooting for the IHC procedure

Problem Possible reason Solution

Absence or
low signal

Improper fixative conditions; over-
fixation may be a possible cause

Modify the fixative conditions; reduce the
fixation time

Absence of target antigen Choose a positive control
Compromised antigen retrieval Optimize antigen retrieval
Low concentration of primary antibody
and/or improper incubation time and
temperature

Increase concentration of primary antibody;
increase incubation time and/or
incubation temperature

Secondary antibody does not react with
the primary antibody

Choose the appropriate secondary antibody

Detection reagents expired Verify the expiration date of the detection
reagents

High
background

Insufficient blocking Increase the duration of blocking solution, or
alter the blocking medium

Increased concentration of secondary
antibody; cross-reactivity with the
secondary antibody

Reduce the concentration of the secondary
antibody; include a control case omitting
the primary antibody to examine the
reactivity of the secondary antibody

Decreased washes with TBS 1� Increase the washes with TBS 1�
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5. Allow 4–5 h to conclude the FACS protocol.

6. Make fresh before use. Most TAM extracellular markers are
stable and sustain enzymatic digestion, but it is fundamental to
optimize the digestion protocol before starting.

7. Some collagenase mixtures may contain additional proteases
that can cleave extracellular markers. Liberase is another
optional enzyme in such a protocol. Do not over-digest the
tissue to avoid loss of cellular yield.

8. Optional: if enzymatic digestion is too harsh, dissociate the
tissue in the gentleMACS using PBS only, and follow with a
standard Ficoll-Histopaque separation. Collect the buffy coat
and continue to the cell strainer step.

9. Primary digested tissues are particularly prone to clogging the
machines. Before analysis all samples should be filtered using a
40 μm filter cap polypropylene tube.

10. Positive and negative controls for the target antigen are neces-
sary. For optimal performance it is important to perform serial
section analysis omitting individual reagents (including the
primary antibody) to verify the specificity of the signal. For
anti-CD206, human as well as mouse liver may serve as positive
control. For anti-CD163, human liver can be employed as
positive control.

11. For frozen sections there are certain differences from the pro-
cedure described above. First a fixation step should precede the
IHC procedure. Sections are usually fixed for 20–30 min at
room temperature employing 10% neutral buffered formalin
(NBF) or acetone. Second deparaffinization and rehydration
are omitted. Third antigen retrieval needs to be optimized due
to the friable nature of these sections.

12. Antigen retrieval should be optimized according to the specific
setting. The following parameters should be examined:
(a) retrieval buffer solution (i.e., with low or high pH),
(b) type of equipment (including microwave oven, steamer,
pressure cooker, etc.), and (c) incubation time for antigen
retrieval. Apart from heat-mediated antigen retrieval, proteo-
lytic enzyme methods are occasionally used alone or in combi-
nation with heat-mediated methods.

13. Blocking endogenous Fc receptors is also context dependent.
The blocking solution should not interfere with the primary
antibody. It is usually raised from the species in which the
secondary antibody is raised. Occasionally, blocking solutions
may be employed, including BSA in various concentrations (1%
is typically used), as well as goat serum.

14. The optimal dilution, incubation time, and temperature should
be determined for each primary antibody.
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15. Taking into consideration the commercially available clones of
the antibodies mentioned in the Introduction, incubation with
goat anti-mouse biotin conjugated or goat anti-rabbit biotin
conjugated at 1:200–1:300 dilution according to the origin of
the primary antibody, for 30 min at 37 �C, is a good starting
point.

16. Peroxidase is a very common enzyme label. An alternative
enzyme is alkaline phosphatase.

17. The most popular visualization substrate for peroxidase-based
methods is DAB, although additional substrates may be
employed. Be aware that DAB is a suspected carcinogen, and
therefore use safety measures when handling it.
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Chapter 8

Quantitation of Macropinocytosis in Cancer Cells

Koen M. O. Galenkamp, Basheer Alas, and Cosimo Commisso

Abstract

Macropinocytosis has emerged as an important nutrient supply pathway that sustains cell growth of cancer
cells within the nutrient-poor tumor microenvironment. By internalizing extracellular fluid through this
bulk endocytic pathway, albumin is supplied to the cancer cells, which, after degradation, serves as an amino
acid source to meet the high nutrient demands of these highly proliferating cells. Here, we describe a
streamlined protocol for visualization and quantitation of macropinosomes in adherent cancer cells grown
in vitro. The determination of the “macropinocytic index” provides a tool for measuring the extent to
which this internalization pathway is utilized within the cancer cells and allows for comparison between
different cell lines and treatments. The protocol provided herein has been optimized for reproducibility and
is readily adaptable to multiple conditions and settings.

Key words Macropinocytosis, Macropinosome, Quantitation, Quantification, Cancer, Endocytosis,
Nutrient uptake, Membrane ruffles, Fluorescence microscopy, Macropinocytic index

1 Introduction

Macropinocytosis, which is derived from the Greek words for large
(makros), drink (pino), container (kytos), and process (�osis),
involves the bulk fluid-phase uptake of extracellular fluids
[1, 2]. This endocytic pathway is classically described to occur
after growth factor stimulation (e.g., EGF and PDGF); however,
in cancer cells, the process can be driven by oncogenes, such as
HRAS and KRAS (Fig. 1) [3–7]. In cancer cells, macropinocytosis
serves as a nutrient supply mechanism used to meet elevated meta-
bolic demands and is necessary to sustain tumor growth in
nutrient-depleted tumor microenvironments [3, 8–10]. The scav-
enging of albumin from the extracellular fluid supplies the cells with
a protein source to generate protein-derived amino acids through
lysosomal proteolysis. These protein-derived amino acids can fuel
the TCA cycle and support the biosynthesis of macromolecules,
such as nucleotides, lipids, and proteins.

Macropinocytosis is driven by small GTPase-mediated (i.e.,
Rac1 and Cdc42) actin remodeling, which causes protrusions of
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the plasma membrane known as membrane ruffles [11, 12]. These
membrane ruffles are motile structures that can fuse, thereby creat-
ing macropinocytic cups filled with extracellular fluid and solubi-
lized molecules that act as cargo. Closure of the macropinocytic
cups results in the formation of clathrin-independent endocytic
vesicles with a diameter between 0.2 and 5 μm, which can either
recycle back to the plasma membrane or undergo a maturation
process and fuse with lysosomes. Due to the pH sensitivity of the
small GTPases, intracellular acidification induced by inhibitors of
Na+/H+ exchange, such as amiloride and its structural analogs
(e.g., EIPA and HOE-694), has been shown to specifically suppress
macropinocytosis (Fig. 1) [13, 14]. Thus, incorporation of these

Fig. 1 Representative images of macropinocytosis in lung cancer and PDAC cells and the quantitation of the
macropinocytic index as obtained by the described protocol. Mutant KRAS SK-LU-1 and MIA PaCa-2 cells
were maintained in serum-free media and treated with vehicle or 75 μM EIPA for 30 min, after which
macropinosomes were labeled by uptake of TMR-dextran or FITC-dextran, respectively. Scale bar ¼ 20 μm,
**p < 0.01, ***p < 0.001 as assessed by t-test
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inhibitors in the experimental setting provides a critical control for
validating the presence of macropinocytosis in a cell line of interest.

Detection of macropinosomes can be achieved by loading the
extracellular fluid with fluorophore-labeled high-molecular-weight
dextran (i.e., 70 kDa), which due to size exclusion is only inter-
nalized through macropinocytosis and not via other endocytic
pathways [15, 16]. When visualized by fluorescence microscopy,
the macropinosomes can be recognized as clusters of intracellular
fluorescent puncta (Fig. 1). In this protocol, we describe the steps
necessary to specifically label macropinosomes, capture images of
the macropinosomes using a standard fluorescent microscope, and
finally, the quantitation of the extent of macropinocytosis—a
parameter known as the “macropinocytic index” (Fig. 2)
[15]. These approaches have been employed to explore the role
of macropinocytosis in fueling cell metabolism and to screen for
factors or agents that induce or inhibit this endocytic pathway
[3, 7, 8, 15].

2 Materials

2.1 Acid-Washed

Coverslips

1. 12 mm circular coverslips (0.13–0.17 mm thick).

2. 1 M HCl.

3. 95% EtOH.

4. dH2O.

5. Large beaker.

6. Hot plate or water bath.

7. 10 cm cell culture dish.

8. Parafilm.

2.2 Culturing Cancer

Cells

1. Adherent cancer cell line of interest.

2. Cell line-specific growth media with and without serum (com-
plete and serum-free media, respectively).

3. Dulbecco’s phosphate-buffered saline (DPBS) without calcium
and magnesium.

4. Trypsin solution: 0.25% trypsin, 0.1% EDTA in HBSS without
calcium, magnesium, and sodium bicarbonate.

5. 10 cm tissue culture-treated cell culture dish.

6. 24-well clear flat-bottom TC-treated multiwell plate.

7. Dumont #5 forceps.

8. Vacuum aspirator.

9. Cell culture hood.

10. Humidified 37 �C, 5% CO2 cell culture incubator.
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Fig. 2 Diagrammatic depiction of macropinosome quantitation using ImageJ and
the steps as described in the protocol. (a) DAPI-stained nuclei are counted using
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11. 37 �C water bath.

12. 15 mL centrifuge tube.

13. Centrifuge.

2.3 Macropinosome

Labeling

1. 1� PBS (Phosphate-buffered saline).

2. 20 mg/mL 70 kDa lysine-fixable dextran labeled with FITC or
tetramethylrhodamine (TMR) in 1� PBS.

3. 3.7% ACS grade formaldehyde in 1� PBS, freshly prepared on
the day of the experiment.

4. 2 μg/mL DAPI in 1� PBS, freshly prepared on the day of the
experiment.

5. Fluorescence mounting media.

6. Plain water-white microscope slides (75 mm � 25 mm and
0.90–1.10 mm thick).

7. Humidified 37 �C, 5% CO2 cell culture incubator.

8. Wash bottle.

9. Dumont #5 forceps.

10. Vacuum aspirator.

11. Shaker.

2.4 Macropinosome

Imaging

1. Fluorescence microscope with appropriate DAPI and FITC
and/or TMR emission and excitation filters and equipped
with a 40� or 63� objective.

2. 70% EtOH.

3. Q-tip.

4. Kimwipe.

2.5 Macropinosome

Quantitation

1. ImageJ software (http://imagej.nih.gov/ij/).

2. Spreadsheet software (e.g., Excel).

�

Fig. 2 (continued) the ImageJ Cell Counter plug-in. (b) Two images of dextran
uptake placed side by side. (c) For the “Reference Image,” the brightness is
adjusted such that macropinosomes are clearly visible. (d) From here on, the
“Quantitation Image” is used for the remainder of the steps. The background is
subtracted and the Smooth function is applied. (e) The threshold is adjusted such
that all visible macropinosomes are labeled in red. (f) After applying the
threshold, the image is converted to a binary image with the macropinosomes
labeled in black. By using the Analyze Particles function, the total macropino-
some area is obtained from the Summary window
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3 Methods

3.1 Acid-Washed

Coverslips

1. In a large beaker, place coverslips in 100mL 1MHCl, and heat
at 56 �C for 24–48 h while covering the beaker with two layers
of foil.

2. Then, wash the coverslips four times with distilled water fol-
lowed by four washes with 95% EtOH.

3. For future use, store the acid-washed coverslips submerged in
95% EtOH at room temperature in a 10 cm cell culture dish
sealed with parafilm.

3.2 Culturing Cancer

Cells

All work should be performed in a sterile cell culture hood.
Media, DPBS, and trypsin solution should be preheated in a

37 �C water bath.

1. Culture the cancer cells until they are sub-confluent in a 10 cm
cell culture dish.

2. Using forceps, place one circular acid-washed coverslip onto
the bottom of each well of a 24-well multiwell plate (see
Note 1).

3. Wash the coverslips twice with DPBS (0.5 mL per well).

4. Aspirate DPBS.

5. Gently rinse the cells with DPBS (5 mL per plate).

6. Add 1.5 mL trypsin solution to the plate, and incubate in a
humidified 37 �C, 5% CO2 cell culture incubator until cells
have detached from the 10 cm dish (see Note 2).

7. Collect the detached cells in a 15 mL centrifuge tube with
10 mL of complete media.

8. Centrifuge the cell suspension for 3 min at 200 � g.

9. Aspirate the supernatant and resuspend the cell pellet in com-
plete media.

10. Seed the cells on the coverslip-containing wells by adding
0.5 mL of cells suspended in complete growth media to each
well (see Note 3).

11. Incubate the cells in a humidified 37 �C, 5% CO2 cell culture
incubator.

When the cells reach the desired 60–80% confluency:

12. Aspirate complete growth media, and perform one rinse with
0.5 mL DPBS per well.

13. After aspirating the DPBS, add 0.5 mL of the appropriate
serum-free media to each well.

14. Incubate the cells for 16–24 h in a humidified 37 �C, 5% CO2

cell culture incubator.
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3.3 Macropinosome

Labeling

At least 30 min prior to the labeling, pre-cool a PBS-filled wash
bottle by placing it on ice or in a refrigerator.

1. For each well, aspirate the media, and add 190 μL of fresh
serum-free media to the well (see Note 4).

2. Add 10 μL of 20 mg/mL fluorophore-labeled dextran solution
to each well.

3. Mix thoroughly by moving the plate in a crosswise fashion.

4. Incubate for 30 min in a humidified 37 �C, 5% CO2 cell culture
incubator.

Move the tissue culture plate to the bench and place on ice.

5. Carefully aspirate the dextran-containing media.

6. Quickly but gently perform five washes with ice-cold PBS using
the wash bottle (see Note 5).

7. Add 0.35 mL formaldehyde (3.7% in 1� PBS) to each well.

8. Incubate for 30 min at room temperature in the dark.

9. Aspirate 3.7% formaldehyde and wash twice with 0.5 mL PBS.

10. Add 0.35 mL DAPI (2 μg/mL in 1� PBS) to each well.

11. Incubate for 15 min at room temperature in the dark.

12. Aspirate DAPI solution, and wash coverslips three times with
PBS for 5 min while rocking on a shaker and protected from
light.

13. Add one small drop of fluorescence mounting media per
circular coverslip on a microscope slide (see Note 6).

14. Using forceps, carefully remove the circular coverslips from
their wells, and place them facedown onto the drop of mount-
ing media (see Notes 6 and 7).

15. Store the mounted coverslips on a flat surface in a dark envi-
ronment for 16–24 h.

16. When the mounting media has dried, slides can be imaged or
stored in a �20 �C freezer for up to 2 weeks.

3.4 Macropinosome

Imaging

1. Use a Q-tip dipped in 70% ethanol to gently wipe off any excess
mounting media or PBS from the surface of the circular cover-
slips, and then dry with a Kimwipe.

2. Using a fluorescence microscope with 40� of 63� magnifica-
tion, capture an image of the DAPI stain, and save it in .tif
format.

3. Next, without moving the specimen, capture an image in the
channel that corresponds to the fluorophore-labeled dextran
and save it in .tif format (see Note 8).

4. Repeat these steps 10–20 times at different regions of the
coverslip (see Note 9).
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3.5 Macropinosome

Quantitation (Fig. 2)

1. Open the first DAPI image in ImageJ, and use the counter tool
to count nuclei by selecting Plugins!Analyze!Cell Counter
(Fig. 2a) (see Notes 10 and 11).

2. Record the number of nuclei onto a spreadsheet.

3. Open the corresponding image of the dextran uptake to serve
as the “Quantitation Image” (see Note 11).

4. Duplicate the “Quantitation Image” by selecting
Image ! Duplicate. This image will serve as a “Reference
Image” and should be placed side by side to the “Quantitation
Image” (Fig. 2b).

5. For the reference image, select: Image! Adjust! Brightness/
Contrast, and adjust the maximum brightness slider such that
you have a clear image of the macropinosomes (Fig. 2c).

6. For the quantitation image, select Process ! Subtract Back-
ground ! Enter 10.0 pixels for rolling ball radius, remove the
checkmarks from all other options, and select OK (Fig. 2d).

7. Next, select: Process ! Smooth (Fig. 2d).

8. Next, select: Image ! Adjust ! Threshold.

9. With the two images side by side, modify the minimum thresh-
old value (upper slider) until you have successfully labeled the
macropinosomes in red without labeling non-specific back-
ground (Fig. 2e).

10. Record the minimum threshold value for future use, only
check Dark Background and convert the image to a binary
image by selecting Apply (Fig. 2f).

11. To quantify the total macropinosome area, select
Analyze ! Analyze Particles ! Only Check
Summarize ! Select OK.

12. From the Summary window, record Total Area value in your
spreadsheet next to the nuclei counted. Total area divided by
the number of nuclei for an image will give you the macro-
pinocytic index.

13. Using the previously determined threshold value, follow the
same steps for the rest of the .tif images to generate an average
value for each coverslip and condition (see Note 12).

4 Notes

1. When necessary, excess EtOH can be removed by tapping the
coverslip to the wall of the 10 cm storage dish, before placing
the coverslip in the 24-well multiwell plate.

2. Confirming whether the cells have detached from the surface of
the 10 cm dish can be achieved by visualizing the cells under a

120 Koen M. O. Galenkamp et al.



microscope. Gently tapping the cell culture dish against the
palm of your hand may aid in the detachment of loosely
attached cells.

3. For each cell line, the seeding density should be optimized such
that it accounts for the proliferation rate of the cell line in
complete and serum-free growth media. The optimal cell den-
sity is such that the cells will reach 60–80% confluency 3 days
post-seeding at which time the cells can be subjected to the
serum starvation preceding the macropinosome labeling. Some
cell lines may continue to proliferate under serum-free condi-
tions, which should be accounted for to avoid overconfluence at
the time of macropinosome labeling.

4. Depending on the experimental setting, the media can be
replaced with fresh media, or conditioned growth media can
be added back to the well. In case of using conditioned media,
draw up 190 μL of media with a pipette, aspirate the leftover
media in the well, and return the media from the pipette to
the well.

5. Thorough washing of the cells after labeling is necessary to
reduce background signal. In our hands, the best results are
obtained by completely filling each well to the top with ice-cold
PBS. Adding the PBS directly on top of the cells or adding it
with too much pressure may cause cells to detach from the
coverslip. Therefore, it is recommended to press the tip of the
wash bottle to the wall of the well and add the PBS at a steady
pace. To prevent cells from drying out between washes, only
aspirate a reasonable number of wells at a time.

6. After placing the coverslip on top, the fluorescence mounting
media should dry within 16–24 h. Excess mounting media or
PBS on the coverslip will hinder optimal drying and may cause
drifting of the coverslip when cleaning it before imaging. To
remove excess PBS from the coverslip, gently tap the edge of
the coverslip on a paper towel.

7. When having difficulties removing the coverslips from their
wells, a 27G needle bent at the tip can facilitate raising the
coverslips from the surface.

8. Macropinosomes are bright clusters of circular puncta. For
correct quantitation of the macropinosomes, the exposure
time and/or light intensity should be adjusted such that there
is no overexposure, autofluorescence of the cells, or back-
ground signal. When blotches, smudges, or marks which are
definitely not macropinosomes are present in the frame of the
photo, retake the DAPI and macropinosome photo in a differ-
ent frame as these discrepancies will skew the macropinosome
quantitation further down the way.
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9. To ensure proper comparison between samples, use the same
exposure time and light intensity for each coverslip and sections
thereof.

10. If the Cell Counter plug-in is missing, the Multi-point Tool can
be used, or the plug-in can be downloaded from the following
link: https://imagej.nih.gov/ij/plugins/cell-counter.html.

11. In case your images have been saved in the RGB or 16-bit
format, convert them to 8-bit by selecting: Image! Type! 8-
Bit.

12. ImageJ macros allow for more rapid quantitation of large
numbers of samples. Simple macros can be generated by select-
ing Plugins ! Macros ! Record, before applying the steps for
the quantitation image. After finishing the quantitation of the
first image, save the resulting macro commands by selecting
Create and saving the macro as Macropinocytosis.ijm in the
ImageJ “plugins” folder. For the resulting quantitation
images, apply the macro by selecting Plugins!Macropinocyto-
sis. Check macros for consistency, and analyze each image
individually to identify spurious sources of fluorescence. In
addition, the threshold should be modified accordingly for
each experiment by opening the Macropinocytosis.ijm macro
using word processing software.

One example of a generated macro to obtain macropinosome
area is as follows with X being the decided threshold for macro-
pinosome selection:

run("Subtract Background...", "rolling=10");

run("Smooth");

setAutoThreshold("Default dark");

//run("Threshold...");

setThreshold(X, 255);

setOption("BlackBackground", false);

run("Convert to Mask");

run("Analyze Particles...", " summarize");
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Chapter 9

Integrated Analysis of Acetyl-CoA and Histone Modification
via Mass Spectrometry to Investigate Metabolically
Driven Acetylation

Simone Sidoli, Sophie Trefely, Benjamin A. Garcia, and Alessandro Carrer

Abstract

Acetylation is a highly abundant and dynamic post-translational modification (PTM) on histone proteins
which, when present on chromatin-bound histones, facilitates the accessibility of DNA for gene transcrip-
tion. The central metabolite, acetyl-CoA, is a substrate for acetyltransferases, which catalyze protein
acetylation. Acetyl-CoA is an essential intermediate in diverse metabolic pathways, and cellular acetyl-
CoA levels fluctuate according to extracellular nutrient availability and the metabolic state of the cell. The
Michaelis constant (Km) of most histone acetyltransferases (HATs), which specifically target histone
proteins, falls within the range of cellular acetyl-CoA concentrations. As a consequence, global levels of
histone acetylation are often restricted by availability of acetyl-CoA. Such metabolic regulation of histone
acetylation is important for cell proliferation, differentiation, and a variety of cellular functions. In cancer,
numerous oncogenic signaling events hijack cellular metabolism, ultimately inducing an extensive rear-
rangement of the epigenetic state of the cell. Understanding metabolic control of the epigenome through
histone acetylation is essential to illuminate the molecular mechanisms by which cells sense, adapt, and
occasionally disengage nutrient fluctuations and environmental cues from gene expression. In particular,
targeting metabolic regulators or even dietary interventions to impact acetyl-CoA availability and histone
acetylation is a promising target in cancer therapy. Liquid chromatography coupled to mass spectrometry
(LC-MS) is the most accurate methodology to quantify protein PTMs and metabolites. In this chapter, we
present state-of-the-art protocols to analyze histone acetylation and acetyl-CoA. Histones are extracted and
digested into short peptides (4–20 aa) prior to LC-MS. Acetyl-CoA is extracted from cells and analyzed
using an analogous mass spectrometry-based procedure. Model systems can be fed with isotopically labeled
substrates to investigate the metabolic preference for acetyl-CoA production and the metabolic dependence
and turnover of histone acetylation. We also present an example of data integration to correlate changes in
acetyl-CoA production with histone acetylation.

Key words Acetyl-CoA, Histones, Mass spectrometry, Metabolism, Proteomics

1 Introduction

Post-translational modifications (PTMs) of histone proteins are
important epigenetic signals that change the physical accessibility
of the genome. Histone PTMs affect DNA-protein interactions
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and, subsequently, gene transcription, without altering the under-
lying DNA sequence [1]. Lysine acetylation is a widespread histone
PTM and is catalyzed by a class of enzymes known as histone
acetyltransferases (HATs). The core histone proteins (H2A, H2B,
H3, and H4) form the nucleosome structure around which DNA is
tightly wrapped. Core histone proteins can be acetylated on multi-
ple residues; notably, histones have long unstructured tails that
protrude from the nucleosome that can be abundantly acetylated.
Histones are enriched in basic amino acid residues (Arg and Lys)
making them positively charged. Acetylation of lysine residues
neutralizes this positive charge, relaxing the interaction of the
nucleosomes with the negatively charged DNA. Thus, histone
acetylation is usually associated with chromatin openness (euchro-
matin), characterized by accessibility to transcription factors and
other DNA-associated proteins, and active gene transcription. In
addition to its physical impact on nuclear architecture, acetylated
histone lysines are recognized by specific protein domains (bromo-
domains) usually found in potent gene activators [2]. A varied set of
enzymes, known as histone deacetylases (HDACs), catalyze a rapid
and energetically inexpensive removal of acetyl moieties from his-
tones [3]. Altogether, histone acetylation is a dynamic and revers-
ible chromatin modification that allows cells to rapidly and potently
modulate gene expression in order to adapt to extracellular stimuli.
However, it is now clear that levels of histone acetylation can also be
influenced by availability of the universal acetyl donor, acetyl-CoA
[4–6]. Acetyl-CoA is an essential intermediate in diverse metabolic
pathways, and cellular acetyl-CoA levels fluctuate according to
extracellular nutrient availability and the metabolic state of the
cell. Acetyl-CoA cannot cross the mitochondrial membrane, so
only acetyl-CoA generated in the nucleocytoplasmic compartment
is accessible for histone modification. In most cell settings, acetyl-
CoA is produced in the nucleocytoplasmic compartment from
citrate through the activity of ATP-citrate lyase (ACLY) (Fig. 1a).
Citrate generated in the mitochondrial TCA cycle is exported to
fuel this process. As glucose is the primary substrate for TCA cycle
activity in a number of settings, glucose limitation has been shown
to restrict acetyl-CoA availability and decrease global levels of his-
tone acetylation [7–9] (Fig. 1b). Importantly, cancer cells, as well as
highly specialized cell types, can channel TCA carbon units into
acetyl-CoA to sustain high levels of histone acetylation even when
glucose is limiting or poorly utilized [10–12]. For example, activa-
tion of PI3K/Akt signaling in cancer cells leads to phosphorylation
of ACLY on serine 455, which increases enzymatic activity of
approximately sixfold and elevates acetyl-CoA and histone acetyla-
tion levels also in glucose-limiting conditions [7]. Multiple groups
have also shown that cells can utilize alternative carbon sources to
produce acetyl-CoA, in particular acetate, which can be converted
to acetyl-CoA by the acyl-coenzymeA synthetase short chain family
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member 2 (ACSS2). Although acetate-derived acetyl-CoA is less
efficiently incorporated into histones, contribution of acetate to
histone acetylation is significantly enhanced under some conditions
(e.g., hypoxia) [10].

Acetyl-CoA is highly unstable, so the appropriate use of
isotope-labeled internal standard is recommended for accurate
quantitation. Mass spectrometry (MS) is the most reliable approach
for the quantification of acetyl-CoA. Enzyme-based assays for
acetyl-CoA quantitation suffer from sensitivity and specificity issues
and cannot incorporate appropriate internal standards to account
for sample degradation [13]. Internal standards added in equal
amounts are used to normalize every sample accounting for sample
loss and degradation. Exact quantitation can be achieved by com-
paring sample ratios to a standard curve generated by a serial
dilution of known amounts of acetyl-CoA standards. Internal stan-
dard can be generated cheaply in yeast through stable isotope
labeling of essential nutrients in cell culture (SILEC) where cells
are fed with heavy labeled [13C3

15N1]-vitamin B5, which is
incorporated into the CoA backbone of acetyl-CoA [14]. The
characteristic fragmentation pattern of acetyl-CoA with MS/MS
detection ensures highly specific quantitation [13].

Antibody-based techniques such as Western blotting have been
extensively adopted to characterize histone modifications, includ-
ing acetylation. However, this approach is limited in throughput
and sometimes specificity, as antibodies often cross-react with simi-
lar histone marks and multiple PTMs. A recent assessment of
commercial antibodies found that more than 25% fail specificity
tests in dot blot and Western blot experiments and about 20% of
antibodies fail in ChIP-seq experiments due to non-specific anti-
body binding [15]. In contrast, MS platforms can achieve high
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Acetate
A B

High availability

Low availability

= acetyl

ACLY

Acetate

Acetyl-CoA

Citrate Citrate

Acetyl-CoA

ACSS1

Glucose

Pyruvate

PDH

ACSS2

Fig. 1 Pathways leading to histone acetylation. (a) Acetyl-CoA is commonly produced by processing of either
glucose or acetate. Citrate is converted into acetyl-CoA by the ATP-citrate lyase (ACLY), while acetate is
processed into acetyl-CoA by the enzyme acetate synthetase 2 (ACSS2). (b) Increased availability of acetyl-
CoA correlates with elevated histone acetylation
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specificity and sensitivity, with automation facilitating high-
throughput analyses. MS has thus become the most suitable analyt-
ical tool to study both acetyl-CoA and histone modifications in
general (reviewed in [16, 17]).

In this chapter, we describe an integrated workflow to probe
acetyl-CoA fluctuations and changes in histone acetylation. The
protocol is designed for the analysis of multiple histone acetyl
marks. Schematic representation of our approach is shown in
Fig. 2. Even though the protocol is primarily prepared for cell
culture studies, adaptability to in vivo analysis of histone modifica-
tions and acetyl-CoA availability will be discussed.

2 Materials

2.1 Reagents and

Abbreviations

1. Acetonitrile (ACN).

2. Ammonium hydroxide (NH4OH), 28% NH3 in water.

3. D-glucose-13C6 and acetate-13C6 (heavy labeled).

4. Propionic anhydride and acetonitrile for propionylation
mixture.

5. Sodium acetate-13C2 (heavy labeled).

6. Trichloroacetic acid (TCA).

7. Trifluoroacetic acid (TFA).

8. Trypsin (sequencing grade).

9. Hydrochloric acid (HCl), 32%.

10. Acetone, residue grade.

11. Coomassie® (Bradford) Protein Assay kit.

12. Coomassie® solution.

13. Ammonium bicarbonate (NH4HCO3).

14. Glacial acetic acid.

Fig. 2 Proposed workflow. Cell cultures can be grown in the presence of either normal (represented by blue
medium) or labeled (green medium) nutrients. Labeled histones and metabolites can be analyzed in parallel,
according to different protocols. Quantification of either is performed by LC-MS analysis. Data can then be
integrated for correlation analysis
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2.2 Buffers 1. Phosphate-buffered saline (PBS): 137mMNaCl, 2.7 mMKCl,
10 mM Na2HPO4, 2 mM KH2PO4.

2. Ammonium bicarbonate (NH4HCO3): 50 mM NH4HCO3,
pH 8.0.

3. Nuclei isolation buffer (NIB-250): 15 mMTris–HCl (pH 7.5),
15 mM NaCl, 60 mM KCl, 5 mM MgCl2, 1 mM CaCl2,
250 mM sucrose.

4. Stage-tip loading and wash buffer: 0.1% TFA.

5. Stage-tip elution buffer: 75% acetonitrile, 0.025% TFA.

6. NanoLC buffer A (for histone peptide analysis): 0.1% formic
acid in HPLC grade water.

7. NanoLC buffer B (for histone peptide analysis): 0.1% formic
acid, 95% HPLC grade ACN, in HPLC grade water.

8. Extraction buffer A (for acetyl-CoA analysis): 10% (w/v) tri-
chloroacetic acid in HPLC grade water.

9. Extraction buffer B (for acetyl-CoA analysis): HPLC grade
methanol containing 25 mM ammonium acetate.

10. Extraction buffer B (for acetyl-CoA analysis): 5% (w/v)
5-sulfosalicylic acid in HPLC grade water.

11. HPLC buffer A (for acetyl-CoA analysis): 5 mM ammonium
acetate in HPLC grade water.

12. HPLC buffer B (for acetyl-CoA analysis): 5 mM ammonium
acetate in HPLC grade acetonitrile/water (95:5, v/v).

13. HPLC buffer C (for acetyl-CoA analysis): 0.1% formic acid,
80% HPLC grade ACN, in HPLC grade water.

2.3 Solutions 1. Protease inhibitors (add fresh to buffers prior to use): 1 M
dithiothreitol (DTT) in ddH2O (1000 �); 200 mM AEBSF
in ddH2O (400�).

2. Phosphatase inhibitor (add fresh to buffers prior to use):
2.5 μM microcystin in 100% ethanol (500�).

3. HDAC inhibitor (add fresh to buffers prior to use): 5 M
sodium butyrate, made by titration of 5 M butyric acid using
NaOH to pH 7.0 (500�).

4. 10% (v/v) NP-40 alternative in ddH2O.

5. 0.2 M H2SO4 in ddH2O.

6. 100% TCA (w/v) in ddH2O.

2.4 Equipment 1. Tissue and cell homogenizers (optional).

2. pH indicator strips (pH 0–14).

3. Liquid nitrogen.

4. 1.5 mL microcentrifuge tubes.
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5. 15 and 50 mL conical tubes.

6. Pipettes from P10 to P1000 range with respective tips.

7. �80 �C refrigerator.

8. SpeedVac.

9. Heat blocks or water baths.

10. 3 M Empore™ solid phase extraction disks C18.

11. 75 and 100 μm internal diameter fused silica tubings.

12. Micro-stir magnets.

13. C18-AQ 3 μm bulk resin with 200–300 Å pore size for trap
column and analytical column for nanoHPLC.

14. Pressure cell for capillary column packing with respective com-
pressed gas bomb (either helium, nitrogen, or air).

15. Oasis HLB 1 cc (30 mg) solid phase extraction columns
(waters).

16. Commercial 2.1 mm ID C18 column.

3 Methods

All procedures should be carried out at room temperature, unless
specified otherwise. Samples can be frozen and stored in �80 �C at
the end of each section, best if previously dried in a SpeedVac
concentrator centrifuge. The scheme of the full workflow is illu-
strated in Fig. 2. For simplicity, we will be discussing the use of
either [13C]-glucose or [13C]-acetate to refer to the ubiquitously
labeled forms (every carbon atoms substituted with heavy [13C]
isotope). Both are environmental sources for the generation of
nucleocytoplasmic acetyl-CoA. Glucose tracing is preferred to
assess the contribution of ACLY to the existing acetyl-CoA pool.
Acetate is a carbon source that does not require ACLY activity and
thus gauges the contribution of ACSS2 to acetyl-CoA production.
The use of one is alternative to the other, so informative data can be
obtained only tracing the two carbon sources separately.

3.1 Labeling

of Biological Samples

Using Stable Isotopes

of Glucose or Acetate

3.1.1 Cell Culture

Glucose limitation restricts acetyl-CoA availability in various cell
lines, in a way that ultimately impacts global levels of histone
acetylation. We recommend using this feature as positive control
for the experiment. However, keep in mind that some cell types
adapt to glucose limitation by using alternative substrates such as
acetate for acetyl-CoA generation.

1. Plate an appropriate number of cells in a 10 cm dish (see
Note 1).

2. Culture cells in standard medium for 12–36 h.
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3. Replace culture medium with medium (glucose-free) supple-
mented with 10 mM [13C]-glucose or 100 μM [13C]-acetate.
Use medium supplemented with dialyzed serum. Regular
serum contains traceable amount of glucose or acetate, which
might affect analysis. Remember to add equivalent cold coun-
terpart (e.g., when tracing [13C]-glucose, add 100 μM [12C]-
acetate to the medium, and vice versa). For optimization, see
Note 2

4. As positive control, replace culture medium with medium sup-
plemented with 1 mM [13C]-glucose and 100 uM acetate
(unlabeled).

5. Incubate for 2–24 h at 37 �C, depending on the metabolic
activity of the system adopted (may need optimization).

3.1.2 Organisms Carbon tracing into metabolites (and potentially histone proteins)
has been performed to determine the metabolic fate of glucose,
acetate, or glutamine in vivo. This approach has generated
extremely valuable results, especially when applied in humans
[18]. Nonetheless, in vivo tracing of acylated metabolites is techni-
cally demanding and presents numerous challenges. Here, we
briefly outline a simplified protocol for the quantification of labeled
acetyl-CoA from either [13C]-glucose or [13C]-acetate in mice.
Note that a “stress-free” protocol for efficient and reliable tracing
of metabolites in vivo has very recently been proposed [19]. Also,
glucose can be more conveniently administered by IP injection or
gavage [20]. In addition, authors recommend performing all the
experiments described hereafter upon approval of a proper IACUC
protocol (or equivalent approval from dedicated ethical
committee).

1. Prepare or treat animal according to a pre-optimized study
design. Remember to tag animals.

2. Restrain mouse movements (typically, use a mouse restrainer).

3. Prepare a 25% (w/v) [13C]-glucose solution and/or 3 mM
[13C]-acetate solution in PBS. Filter the solution(s) with a
0.2 μm sterile filter.

4. Inject 80 μL of stock solution into the tail vein. Repeat the
injection three times at 15 min intervals.

Subheadings 3.2–3.9 are for histone extraction and analysis. For
extraction and analysis of acetyl-CoA, proceed to Subheading 3.10.
The sample can be divided into two aliquots, and the two sample
preparations can be performed in parallel.
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3.2 Sample

Harvesting

3.2.1 Harvesting

of Adherent Cells

1. Remove plate(s) from the incubator and place on ice.

2. Scrape cells using a cell lifter and place them in a new tube.

3. Centrifuge cells at 300 � g for 5–10 min.

4. Remove supernatant.

5. Resuspend cells in ice-cold PBS and repeat steps 3 and 4.

6. Estimate the volume of cell pellets (approximate), and keep
them frozen until use (go to Subheading 3.3).

3.2.2 Harvesting

of Suspension-Growing

Cells

1. Remove plate(s) from the incubator and put it on ice.

2. Aspirate cells and transfer them in a new tube.

3. Centrifuge cells at 300 � g for 5–10 min.

4. Remove supernatant.

5. Resuspend cells in ice-cold PBS and repeat steps 3 and 4.

6. Estimate the volume of cell pellets (approximate), and keep
them frozen until use (go to Subheading 3.3).

3.2.3 Harvesting

of Tissues

1. Sacrifice animals according to an IACUC-approved protocol.

2. Rapidly expose organ of interest using clean surgical tools.

3. Cut approximately 100 mg of tissue with sharp scissors, and
quickly rinse with ice-cold PBS.

4. Homogenize the tissue explant with a Dounce homogenizer in
1 mL PBS.

5. Transfer tissue homogenate into a new tube.

6. Centrifuge tissue homogenate at 300 � g for 5–10 min.

7. Remove supernatant.

8. Resuspend pellet in ice-cold PBS and repeat steps 6–8.

9. Estimate the volume of pellets (approximate), and proceed
directly to histone extraction without freezing (go to Subhead-
ing 3.3).

3.3 Isolation of Cell

Nuclei

This section describes how to separate intact nuclei from the cell
cytoplasm, membrane, and other organelles. This reduces the pres-
ence of background proteins when histones are purified. Notably,
protocols bypassing nuclei isolation have been published [21].

1. Add protease inhibitors and other inhibitors to NIB-250
buffer. For 1 mL of cell pellet, approximately 50 mL of
NIB-250 buffer is prepared. Add to 50 mL NIB-250 buffer
50 μL of 1 M DTT, 125 μL of 200 mM AEBSF, 100 μL of
2.5 μM microcystin, and 100 μL of 5 M sodium butyrate.

2. Lyse the cell pellet with ten times the volume of NIB-250
including inhibitors and 0.2% NP-40 alternative.
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3. Properly homogenize the cell suspension. Normally, gentle
pipetting is sufficient, but tissue samples might need the use
of a Dounce homogenizer.

4. Incubate the suspension on ice for 5–10 min; the outer cell
membranes will lyse and release nuclei.

5. Centrifuge at 1000 � g for 5–10 min at 4 �C. Cell nuclei are
pelleted, while the supernatant contains mostly cytoplasmic
components.

6. Resuspend the nuclei pellet using ten volumes of
NIB-250 + inhibitors without the NP-40 alternative.

7. Centrifuge at 1000 � g for 5 min at 4 �C and remove
supernatant.

8. Repeat steps 6 and 7 for complete removal of residual NP-40
alternative.

3.4 Extraction

and Purification

of Histones

Histones are extracted exploiting their solubility in acid (H2SO4).
Alternatively, salt extraction can be performed (see Note 3).

1. Resuspend cell nuclei with five volumes of 0.2 M H2SO4 by
gentle pipetting.

2. Incubate the sample with gentle rotation or shaking for 2–4 h
at 4 �C. Use the longer time frame in case of low abundance
material, i.e., <200 μL cell pellet.

3. Centrifuge at 3400 � g for 5 min.

4. Transfer the supernatant to a new tube.

5. Repeat steps 3 and 4 with the supernatant to ensure complete
cleanup from pellet residuals.

6. Add 100% TCA to the sample solution with a ratio of 1:3 (v/v),
to obtain a final TCA concentration of 33%. This step will
precipitate histones.

7. Let the mixture precipitate on ice for at least 1 h or overnight.

8. Centrifuge at 3400 � g for 5 min. Remove the supernatant by
aspiration without touching the precipitate. Histones are the
white layer condensed around the bottom of the tube. The
pellet in the very bottom of the tube normally contains other
acid biomolecules, such as DNA.

9. By using a glass Pasteur pipette, rinse the tube with acetone
+0.1% HCl.

10. Centrifuge at 3400 � g for 2 min and discard the supernatant.

11. Repeat steps 9 and 10 using acetone without 0.1% HCl.

12. Leave the tubes open on the bench for a few minutes to dry
them completely.
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13. Resuspend histone proteins in 30–50 μL of ddH2O. Rinse the
borders of the tubes as best as possible, especially the white
layer on the side of the tube.

14. Estimate the amount of histone proteins in the sample using
either BCA, Bradford protein assay, or amino acid analysis
(AAA).

15. Verify the purity of extracted histones with SDS gel and Coo-
massie staining (optional).

16. Histone isotypes can be separated and differentially purified
using HPLC-UV equipped with a C18 column (see Note 4)
(optional).

3.5 Propionic

Anhydride

Derivatization Prior

Histone Digestion

for Bottom-Up

Analysis

In proteomics, proteins are digested into short (6–30 aa) peptides
prior analysis. This approach is called “bottom-up” or “shotgun.”
Histones are also digested into short peptides. The canonical pro-
tein digestion protocol uses trypsin as digestion enzyme, which
cleaves at the C-termini of basic amino acid residues, i.e., lysine
(K) and arginine (R). Histones are highly enriched of KR residues,
and thus they require either the use of alternative enzymes [22] or
derivatization strategies to reduce trypsin targets on the protein
sequence [23–26]. Here, we discuss the most widely adopted his-
tone digestion protocol, adopting propionic anhydride derivatiza-
tion prior and after trypsin digestion [27, 28]. Such derivatization
blocks the ε-amino groups of unmodified and monomethyl lysine
residues, allowing trypsin to perform proteolysis only at the C-ter-
minal of arginine residues. Derivatization after digestion increases
peptide hydrophobicity, which enhances efficient HPLC column
retention for HPLC-MS.

1. Resuspend at least 20 μg of histones in 30 μL of 50 mM
NH4HCO3, pH 8.0. Recommended amount is 50–100 μg
(see Note 5 for estimated histone yield from cell counts).

2. Assess the pH using a P10 pipette tip; dip it into the sample,
and touch a pH indicator strip. NH4OH and glacial acetic acid
can be used to adjust the pH (see Note 6 for safety
instructions).

3. For three samples, prepare propionylation reagent by mixing
propionic anhydride with acetonitrile (ACN) in the ratio 1:3
(v/v); i.e., mix 15 μL of propionic anhydride and 45 μL of
ACN (seeNote 7 on alternative procedure in presence of a large
number of samples).

4. Add rapidly the propionylation reaction to the histone sample
with a ratio of 1:2 (v/v), i.e., 15 μL propionylation reaction for
30 μL sample.

134 Simone Sidoli et al.



5. Add rapidly ~7 μL of NH4OH to re-establish pH 8.0 to the
solution (see Note 8 for elucidations on issues related to not
optimal pH).

6. Pipette up and down for a few seconds.

7. Assess pH as described in step 2.

8. Incubate samples at room temperature for 15–20 min.

9. Dry samples down to 5–10 μL in a SpeedVac centrifuge.

10. Resuspend or dilute samples with 50 mM NH4HCO3 until
achieving 30 μL of final volume.

11. Repeat steps 3–10 to double the propionylation reaction to
ensure complete derivatization.

3.6 Histone

Digestion and

Propionylation of

Peptide N-Termini

1. Resuspend histones in 30 μL of 50 mM NH4HCO3.

2. Assess the pH to be around 8.0 by using pH strips.

3. Add trypsin (sequencing grade) at a 1:20 ratio (w/w), e.g.,
5 μg of trypsin for 100 μg of histones.

4. Incubate at room temperature for 6 h or overnight.

5. Repeat steps 3–12 of Subheading 3.5, double round of pro-
pionylation included. At the second round, stop at step 10
(included).

6. Resuspend the histone peptide samples in 50 μL of
ddH2O + 0.1% trifluoroacetic acid (TFA).

3.7 Stage Tipping for

Sample Desalting

To remove residuals of salt, propionylation reagent, and other
debris leftover of the histone extraction, samples are passed
through a tip packed with reversed-phase material for cleanup.
Not doing so might result in column clogging and/or instrument
contamination during HPLC-MS analysis.

1. Take a 3MEmpore™ solid phase extraction disk C18, and cut a
disk of ~2–3 mm diameter, e.g., by using the tip of a P1000
pipette.

2. Push this disk to the bottom of a P100/200 pipette tip, e.g., by
using a fused silica capillary.

3. Repeat steps 1 and 2 in the same P100/200 tip if you are
desalting more than 10 μg of sample. This will increase the
capacity of the stage tip.

4. Wash the stage tip by flushing 50 μL of 75% ACN and 0.025%
TFA with air pressure, e.g., using a syringe (see Note 9 for
higher throughput procedure using centrifugation).

5. Equilibrate the stage tip by flushing 50 μL of 0.1% TFA by air
pressure. Do not dry completely the disk(s).

6. Load the sample onto the stage tip by air pressure. Do not dry
completely the disk(s).
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7. Wash the sample by flushing 50 μL of 0.1% TFA by air pressure.
Do not dry completely the disk(s).

8. Elute the sample by flushing 50 μL of 75% ACN and 0.025%
TFA by air pressure. Collect the sample in a 1.5 mL tube.

9. Dry samples in a SpeedVac centrifuge.

3.8 Histone Peptide

Analysis via Nano

Liquid

Chromatography

Coupled to Mass

Spectrometry

(NanoLC-MS)

NanoLC is now the separation technique most preferred for prote-
omics, due to its high sensitivity and the possibility of online
coupling to MS. Here, we describe how to prepare columns for
nanoLC (steps 1–8 can be omitted if using commercial columns)
and how to configure the nanoLC-MS analysis. This procedure
described how to prepare a picofrit column, i.e., a nano column
integrated with the tip. For alternative procedure, see Note 10.

1. Cut ~30 cm of fused silica capillary with 75 or 100 μm internal
diameter (ID).

2. Tape one end of the capillary on a solid surface, e.g., the bench
(Fig. 3a).

3. By using a torch, fire close to the end of the capillary while
gently pulling from the other end (Fig. 3a). After a few sec-
onds, the capillary will elongate and detach from the surface
creating a tip at the end (Fig. 3b). This tip might look different
every time; its end might be very long, like a “hair” (Fig. 3c).

4. Gently remove the “hair” part of the tip, e.g., with the finger,
until it looks like a tip for nano columns (Fig. 3d). This proce-
dure might take a few attempts (see Note 11 to overview
possible consequences of failure).

5. Prepare in a clean HPLC glass vial the resin slurry for column
packing. This includes (a) C18-AQ reversed-phase 3 μm parti-
cles, (b) 100% methanol, and (c) a micro-stir magnet. The ratio

Fig. 3 Tip pulling for nano columns. (a) Capillaries should be secured on a rigid surface, e.g., by using tape. (b)
Heating combined with gentle pulling elongates the capillary into a smaller and smaller internal diameter, until
it detaches from the surface as a pulled needle. (c) This needle is frequently a nonrigid end, similar to a hair.
This end has no internal diameter, preventing any liquid to pass through it. (d) By gently breaking the nonrigid
part of the tip (e.g., with a finger), a normal size tip is created. This capillary is ready to be packed and become
a nano column for LC-MS
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between particles and methanol are flexible and should be
optimized for a rapid and efficient column packing.

6. Place the resin slurry in a pressure bomb and turn on magnetic
stirring.

7. Place the capillary in the pressure bomb, secure it, and open the
gas tank (containing helium, nitrogen, or air).

8. Leave the column on the bomb until it is packed for at least
~25 cm.

9. Remove the column from the pressure bomb, and connect it to
the nanoLC.

10. Program the HPLCmethod as follows: From 2% to 28% buffer
B in 45 min, from 28% to 80% B in 5 min, and 10 min at
isocratic 80% B. Buffer A and B composition are described in
Subheading 2.2 (items 3 and 4, respectively).

11. Program the MS acquisition method to perform data-
independent acquisition (DIA) (references to set up the
method using SWATH™, using low-resolution instrumenta-
tion and using multiplexed DIA, respectively [29–31]). The
instrument will alternate a full MS scan with MS/MS scans of
the entire mass range using acquisition windows of 50m/z. All
other settings are in common to standard proteomic
experiments.

12. Load ~1 μg of sample onto the HPLC column.

13. Run the nanoLC-MS/MS method as programmed.

3.9 Extracted Ion

Chromatography (XIC)

of Histone Peptides

Raw files obtained from the LC-MS runs are now ready to be
processed. In our lab, we developed EpiProfile [32], a software
tool that performs extracted ion chromatography (XIC) of histone
peptides (Fig. 4).

1. Group the raw files into the same folder.

2. Run EpiProfile using Matlab or GNU Octave. The software
will provide a table containing the XIC of the desired analytes.
In the output, peptides are already normalized to obtain the
relative abundance of each post-translational modification
(PTM). The relative abundance is calculated by dividing the
XIC of a given peptide modified form by the sum of all XIC of
peptides sharing the same sequence. The software automati-
cally discriminates isobaric species, i.e., differentially modified
peptides with the same intact mass, by using the MS/MS
events acquired with DIA.

3. Light and heavy labeled acetylations are considered indepen-
dently by the software. The turnover of a given acetylation is
calculated by dividing the area of the XIC of the peptide with
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the heavy acetyl group by the peptide with the light acetyl
group.

4. Alternatively to steps 1–3, the XIC can be performed with
other software tools such as Skyline [33]. However, EpiProfile
is currently the only available software trained for this purpose.
Other software tools require extensive manual integration and
post-processing to discriminate isobaric forms.

3.10 Extraction of

Acetyl-CoA from Cells

Here, we describe the method for the extraction, purification, and
quantification of labeled acetyl-CoA from cells. Final data will be
expressed as the ratio between heavy (labeled) and light (unla-
beled). The use of trichloroacetic acid as extraction buffer helps

Fig. 4 Example of histone peptide and acetyl-CoA spectra before and after metabolic labeling. (a) Left: acetyl-
CoA chemical structure. The acetyl group (R—2 carbon atoms) is attached to the coenzyme A backbone
through a thioester bond. Right: glucose, acetate, and other nutrients provide the carbon atoms to the acetyl
group. Using isotope labeling, 13C atoms can be incorporated into acetyl-CoA (carbons highlighted in red in the
structure; each +1 Da). Rate of incorporation and carbon source depends on the metabolic activity of the cell
and may be studied with the approach presented here. (b) The spectra display how the isotopic pattern of
histone peptides (top) and acetyl-CoA (bottom) changes after growing fast-replicating cells into a media
containing isotopically heavy glucose (+6 Da). A histone peptide carrying a single acetylation increments its
third isotope (+2 Da), as only two 13C carbon atoms are incorporated into the acetyl group. With time, the
relative abundance of the heavy isotope increases until the unlabeled acetylation disappears from the signal.
Acetyl-CoA gets labeled in multiple carbon residues, as the CoA group is also synthesized using glucose.
Therefore, the isotopes increasing their relative abundance are multiple

138 Simone Sidoli et al.



both to stabilize the unstable thioester bond and slow acetyl-CoA
degradation and precipitates protein from the samples. As acetyl-
CoA is highly unstable, extraction from cells should be carried out
as quickly as possible, and samples should be kept cold on ice at all
times. For accurate quantitation of total levels of acetyl-CoA, we
recommend the use of stable isotope-labeled internal standards
added to samples as early as possible in the sample processing.
With high resolutionMS (>10,000), the use of [13C3

15N1]-labeled
internal standard for accurate quantitation can be used to generate
labeling and quantitation data simultaneously [34]. Use a replicate
dish for cell counting/cell volume measurement using a BD Coul-
ter Counter or analogous instruments. See Note 12 for extraction
of acetyl-CoA from whole tissues.

1. Take cell dishes out of the incubator, and place them on ice (for
suspension cells, spin down at 400 � g at 4C and place on ice).

2. Aspirate tissue culture media thoroughly (for adherent cells, tilt
dishes on a slope on ice after initial aspiration to allow residual
media to drain down and remove by repeating aspiration). See
Note 13 on why cells are not washed.

3. Add 1 mL of ice-cold 10% TCA directly to the cell plate, and
scrape cells with a cell lifter (for cell pellets from suspension
cells, add 1 mL of ice-cold 10% TCA and mix briefly by
vortexing).

4. Transfer cell suspension to a new 1.5 mL Eppendorf tube. You
may store the samples at �80 �C.

5. Sonicate samples with a probe tip sonicator (12� 0.5 s pulses).

6. Centrifuge dismembranated cells at 13,000–17,000 � g for
10 min at 4 �C. the cleared supernatant contains acetyl-CoA
extract; the protein pellet can be used for Western blotting
and/or protein determination.

7. Take 1 mL capacity solid phase extraction columns with
strongly hydrophilic, reversed-phase chemistry.

8. Wash columns with 1 mL of methanol.

9. Equilibrate columns with 1 mL of water.

10. Load columns with the supernatant from samples.

11. Desalt columns with 1 mL of water.

12. Elute columns with 1 mL of methanol containing 25 mM
ammonium acetate, and recover the eluted fraction.

13. Evaporate to dryness under nitrogen flow.

3.11 HPLC-MS

Analysis of Acetyl-CoA

1. Resuspend the sample purified in Subheading 3.10 in 50 μL 5%
(w/v) 5-sulfosalicylic acid dissolved in HPLC grade water, and
transfer to HPLC-compatible vials or 96-well plate for analysis.
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Store at 4 �C. See Note 14 for details on why the quick
extraction.

2. Connect a C18 reversed-phase chromatographic column to an
HPLC system capable of running flows at 0.2 mL/min. See
Note 15 for recommended commercial columns.

3. Program the HPLC gradient as follows: Isocratic 2% buffer B
(98% buffer A) for 2 min, from 2% to 25% B for 3.5 min, from
25% to100% B in 0.5 min, and isocratic 100% B for 8.5 min,
washed with 100% buffer C for 5 min followed by equilibration
to 2% buffer B for 5 min. The composition of buffer A, B, and
C is described in Subheading 2.2 (items 11–13). Set flow rate
to 0.2 mL/min.

4. Set up theMS acquisition method as DIA or targeted. Them/z
acquisition window should include the masses for precursors
and fragments as outlined in Table 1. Use the instrument in
positive mode.

5. HPLC-MS/MS method as programmed.

3.12 Extracted Ion

Chromatography (XIC)

of Acetyl-CoA

1. Import data into a peak detection software compatible with
your MS platform. An example of universal software for peak
area extraction is Skyline [33].

2. Perform extracted ion chromatography (XIC) for each acetyl-
CoA species to obtain area under the curve values.

3. To confirm the specificity of the peak, check that the retention
time of parent acetyl-CoA isotopologue peaks aligns with their
corresponding product ion peaks.

4. Calculate percent isotopic enrichment from 13C-labeled sub-
strate by entering AUC data from labeled and unlabeled con-
trol samples into the FluxFix web tool (www.fluxfix.science)
[35]. See Note 16 on how to computationally correct biases
due to isotopic enrichment.

Table 1
Mass transitions for relevant acetyl-CoA isotopologues in MS-positive mode

Species Isotopologue Parent m/z Product m/z

Acetyl-CoA M0 810.1 303.1

Acetyl-CoA M1 811.1 304.1

Acetyl-CoA M2 812.1 305.1

Acetyl-CoA M3 813.1 306.1

Acetyl-CoA M4 814.1 307.2

Acetyl-CoA M5 815.1 308.2
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3.13 Data Integration

and Interpretation

EpiProfile [32] provides a result table with approximately 300 pep-
tide isoforms. Because the list can be overwhelming for manual
inspection, it is very helpful to process the data using the proper
statistics, in order to detect the most significant and reliable
changes. When using a limited number of replicates (<5), we
recommend the use of t-test to estimate the significant differences
between conditions. Nonparametric statistics is generally more
appreciated, as it can be applied also if replicates do not have a
Gaussian distribution; however, it is not sufficiently powerful to
deal with such small number of data points. In case an overall trend
of acetylation increase/decrease is observed, we recommend to
correlate the observation with the levels of acetyl-CoA before
jumping to conclusions like “we observe an overall higher activity
of enzymes catalyzing histone acetylation.”

1. Open the table containing the raw intensities (Fig. 5a) of the
identified and quantified histone peptides.

2. Normalize each modified histone peptide by the sum intensity
of all peptides sharing the same sequence (Fig. 5b). For
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Fig. 5 Representative workflow for data analysis. (a) Raw data produced by EpiProfile are the area of the
extracted ion chromatogram of selected histone peptides (currently ~300) and acetyl-CoA. EpiProfile can also
extract ion chromatograms of histone peptides carrying isotopically labeled acetylations. (b) The raw intensity
is automatically converted into a relative abundance by dividing the intensity of each peptide by the sum of all
peptides (both unmodified and labeled with heavy carbons) sharing the same amino acid sequence. (c)
Plotting and analysis of differentially modified histone species and/or metabolite isotopomers (recommended
statistics is based on t-test or ANOVA). (d) The relative changes of histone acetylation can be compared with
relative changes of acetyl-CoA when comparing samples A and B, so that a correlation can be performed to
predict causes of global regulation of histone acetylation. (e) Validation can be performed by, e.g., Western
blotting. (f) Data-driven hypotheses are easier to formulate when both histone and acetyl-CoA data are
acquired
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instance, the peptide containing H3K4me3 has the sequence
TKQTAR in human (and most other eukaryotes). The relative
abundance of the peptide modified as TKme3QTAR is calcu-
lated as:

intensity TKme3QTAR/ (intensity TKQTAR + intensity TK

me1QTAR + TK me2QTAR + intensity TK me3QTAR)

We strongly recommend to perform the extracted ion
chromatography of histone peptides using EpiProfile, as this
calculation is already performed, and the software automati-
cally deals with isobaric peptides.

3. Perform the t-test when comparing two conditions or ANOVA
when comparing more than two conditions. Data can be dis-
played as a volcano plot, using for the x-axis the log2 fold
change between the two conditions and as y-axis the –log2 of
the t-test p-value (Fig. 5c). Conventionally, the significance
threshold is set at a p-value < 0.05, which when transformed
as –log2 becomes >4.32.

4. Sum the relative abundance of all acetylated peptides, and
compare them with the relative changes of acetyl-CoA
(Fig. 5d). If the correlation is linear and positive, a possible
biological interpretation of the data is that the acetyl-CoA
levels change affecting the abundance of histone acetylation
(Fig. 5f). An example of this analysis is illustrated in [36].

5. For validation of the findings, we recommend performing
Western blotting (Fig. 5e) [37]. Ensure that the used antibody
is specific for the acetylation site investigated.

6. If using metabolically labeled acetylations, it is also possible to
estimate their turnover rate by dividing the relative abundance
of the acetylated peptide with heavy labeled acetylation from
the one with light acetylation. Important: Do not confuse the
turnover rate with the relative abundance. The turnover rate
indicates how frequently an acetylation is recycled with a new
one, while the relative abundance indicates how much of that
site is acetylated. An acetylation might change in abundance
between two conditions, but maintain its turnover rate, or vice
versa.

7. Once identified the PTMs that are significantly regulated
between the analyzed conditions, a potential next step can be
determining which histone writer is potentially responsible for
this regulation. This enzyme is a potential target for comple-
mentary treatment using either inhibitors or other post-
transcriptional regulation (e.g., knock-down). A comprehen-
sive list of known histone modifications and their respective
writers has been recently published in [38].
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4 Notes

1. Number of cells plated for every single experiment should be
optimized. It is important to avoid confluency at the moment
of harvesting. Factors to take into consideration include, but
not limited to:

l Growth rate.

l Length of the experiment.

l Viability upon treatment.

2. Nutrient availability can be optimized for any specific cell line/
condition. We found that the above-described concentrations
mimic well a physiological situation in most cell lines we tested.
Nutrient sensing and impact of acetyl-CoA availability on his-
tone acetylation can be well appreciated under these culture
conditions. However, some primary well-differentiated cell
types display minimal nutrient consumption. We recommend
lower nutrient availability when metabolic activity is low.

3. The high-salt extraction protocol [39] is alternative to acid
extraction for histone purification. High-salt is a milder proce-
dure, and it preserves acid-labile PTMs. However, it produces
samples with very high concentrated salt, preventing an effec-
tive LC-MS analysis. Desalting can be performed as described
in Subheading 3.7, but it is not 100% effective.

4. Fractionation of intact histone isotypes can be performed by
using HPLC-UV. It requires at least 100 μg of starting material
(if 2.1 mm ID column is used) or 300 μg (if 4.6 mm ID column
is used). Given the optimized nanoLC-MS and the EpiProfile
software for the analysis of the runs, histone fractionation is not
recommended. It might be convenient for scarcely pure his-
tone extractions and if interested in very low abundance PTMs.

5. In case estimating the yield of extracted histones is prohibitive,
it is reasonable to assume that standard procedures extract
about 1 μg of histone every 1 μL of cell pellet. Unpublished
data from our lab demonstrate that histone analysis can be
performed with as low as 50,000 cells as starting material.

6. NH4OH, glacial acetic acid, and propionic anhydride should
be used in the fume hood. The bottle of propionic anhydride
must be filled with argon after its use to preserve the reagent.

7. In presence of multiple samples (>3–4), consider re-preparing
the propionylation mix every 3–4 samples. This mix is very
reactive, and using it for a long list of samples can prevent its
efficacy. In case of preparation of a large number of samples
(>20), consider performing the reaction in a 96-well plate
using a multichannel pipette.
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8. If the pH of the propionylation reaction is acidic, no reaction
will occur. In case the pH is >10.0, other amino acid residues
with higher pKa might be labeled as well, generating issues in
the proper identification and quantification of histone peptides
by LC-MS.

9. Buffers can be pushed through stage tips by using centrifuga-
tion instead of air pressure. Use appropriate holders on the top
of the tube to place the stage tip, or drill a hole on the cap. This
approach is not recommended, as it is harder to prevent com-
plete drying of the stage tip during the procedure.

10. When preparing a nano column, the top can be capped using a
“frit” instead of pulling a tip. Frits are prepared by mixing
88 μL Kasil® into a 0.5 mL tube with 16 μL formamide. One
end of the capillary is dipped into this solution, and it is left for
polymerization in a heater at ~110 �C for 3–4 h. fritted col-
umns require a connection with a tip for spraying a sample
into MS.

11. If the tip of the nano column was not prepared properly, two
issues can be encountered. If the tip has a too small orifice,
columns will be plugged and they cannot be utilized. This issue
can be solved by carefully cutting the very top of the tip or by
torching for a few seconds the tip while the column is packing.
If the tip has been cut with a too large orifice, the column will
not retain the particles, and they will geyser out from the tip
while packing. In this case, immediately close the pressure
bomb and discard the capillary.

12. For metabolite analysis in vivo, freeze clamping of tissue of
interest in alive, deeply anesthetized is often recommended,
but rarely feasible. We propose to rapidly sacrifice the animal
(cervical dislocation for rodents), and quickly expose the tissue
of interest. Everything must take less than 1 min. Pre-chill a
tissue clamp in liquid nitrogen. Various models are commer-
cially available and equivalent; alternatively, a toothed forceps/
scissor with large, flat extremities can be used. Snap freeze a
chunk of tissue then cut approximately 50 mg of tissue in a
superchilled ceramic tile on dry ice. Weight the tissue with a
precision scale.

13. Washing cells is not necessary as acetyl-CoA is not present in
the cell medium and washing can skew metabolite quantita-
tion. It is, however, important to minimize cell medium in the
sample so as to prevent excessive salt and matrix effects from
media components in extraction and MS acquisition.

14. Acyl-CoA analysis should be performed as quickly as possible
after extraction to avoid sample degradation. Acetyl-CoA is
relatively stable for several days at 4 �C in 5-sulfosalicylic acid,
with ~50% sample loss after 15 days [40]. Low pH helps to
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minimize hydrolysis of the acyl-CoA thioester bond [41]. 5-
sulfosalicylic acid is also an antimicrobial agent.

15. For analysis of metabolites like acetyl-CoA, high-flow HPLC
(flow rate of 100–200 μL/min) is currently preferred to
nanoLC due to robustness. High-flow HPLC requires col-
umns of larger diameter than nanoLC, thus not packed
in-house. We personally tested and considered reliable the
following commercial columns: Acquity HSS T3 column
(2.1 � 150 mm, 1.7 μm particle size), Phenomenex HPLC
Luna C18 (2.0 � 150 mm, 5 μm particle size), and waters
XBridge C18 (2.1 � 150 mm, 3.5 μm particle size).

16. Calculation of % isotopic enrichment involves applying a cor-
rection matrix that compensates for the nonlinearity of isotopic
enrichment [42].
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Chapter 10

Methods to Measure Autophagy in Cancer Metabolism

Natalia von Muhlinen

Abstract

Autophagy, a dynamic pathway in which intracellular membrane structures sequester portions of the cytosol
for degradation, plays multiple roles in physiological and pathological processes. Autophagy may have
suppressive and promotive roles in the formation and progression of cancer. A growing number of methods
to identify, quantify, and manipulate autophagy have been developed. Because most of these methods are
semiquantitative and have significant limitations, it is important to emphasize that a combination of these
assays is recommended for the analysis of autophagy. Here, I briefly discuss the autophagic process, its role
in disease, and I summarize some of the best-known and most widely used methods to study autophagy
in vitro in the context of cancer, including transmission electron microscopy (TEM), detection and
quantification of the autophagy protein LC3 by western blot, and the use of GFP-LC3 to quantify puncta
by fluorescence microscopy and tandem labeled RFP/mCherry-GFP-LC3 fluorescence microscopy to
measure autophagic flux.

Key words Macroautophagy, Autophagy, Autophagy flux, Cancer, Metabolism, LC3, GFP-LC3,
Atg8, Cancer therapy

1 Introduction

1.1 The Autophagic

Process

Autophagy, a process evolutionary conserved from yeast to mam-
mals, involves the formation of a small vesicular sac called the
isolation membrane or phagophore, which subsequently elongates
and encloses a portion of cytoplasm, resulting in the formation of
the autophagosome [1–6]. Many types of autophagy have been
described, including nonselective and selective processes [5].
Macroautophagy (hereafter referred to as “autophagy”), the non-
selective autophagic degradation of cytosolic content, is the most
extensively studied type of autophagy and will be the focus of this
chapter. This evolutionary conserved mechanism is mediated by a
specific organelle, the autophagosome, a double-membraned struc-
ture that delivers cytoplasmic material and autophagy substrates to
the lysosome, resulting in the lysosomal degradation of the
enclosed materials (Fig. 1) [3, 4].
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Upon induction of autophagy, a small isolation membrane also
known as the “phagophore” sequesters portions of the cytosol and
subsequently elongates, forming an enclosed double-membrane
compartment (autophagosome) (Fig. 1). The outer membrane of
the autophagosome then fuses with lysosomes, forming the “auto-
lysosome,” leading to the degradation of the enclosed cytosolic
material [7]. This process involves a set of evolutionary conserved
genes known as the Atg proteins [8, 9], collectively referred to as
the “autophagic machinery,” which are required for the formation
and maturation of the autophagosome. Other genes encode pro-
teins involved downstream of autophagosome formation, including
proteins that mediate the autophagosome-lysosome fusion, as well
as degradative lysosomal enzymes that break down the cargo,
among others [10, 11]. Of all the proteins involved in autophago-
some formation, only the microtubule-associated protein light
chain 3 (LC3), the mammalian homologue of yeast Atg8, exists
in autophagosomes and remains attached to the double membrane,
and thus it is widely used as a marker of autophagosomes [12]. The
methods described in this chapter detect the various stages of
autophagosome formation and should be used in combination to
determine the cellular autophagic status (induction or inhibition).

1.2 Autophagy in the

Pathogenesis

of Cancer

Autophagy has several well-characterized vital roles under physio-
logical conditions, including but not limited to maintenance of the
amino acid pool during starvation, clearance of intracellular
microbes, prevention of neurodegeneration, antiaging, cancer,
clearance of intracellular microbes, and regulation of immunity
[13–16]. Autophagy dysfunction has been shown to contribute to
several diseases, including cancer. Increasing evidence suggests the

Fig. 1 The autophagy process. Summary of the main steps of the autophagy pathway. Cytosolic content,
including organelles, is engulfed by an isolation membrane or phagophore to form an autophagosome.
Subsequently, the outer membrane of the autophagosome fuses with the lysosome, and the enclosed
cytosolic material is degraded in the autolysosome. Some autophagy inducers and inhibitors are indicated.
Inhibition of mammalian target of rapamycin (mTOR) induces autophagy; 3-methyladenine (3-MA) inhibits the
formation of autophagosomes; bafilomycin A1 inhibits the fusion of autophagosome with lysosomes. The LC3
protein is the only autophagy-related protein that remains attached to the autophagosomal membrane
throughout the entire autophagy pathway
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importance of autophagy in cancer [17, 18], although whether
autophagy protects or promotes cancer is still not well understood.

Autophagy affects several cellular functions through the alter-
ation of metabolism, the proteome, organelle quantity and quality
[5, 15, 16, 19]. In addition, autophagy alters the interaction
between the tumor and its microenvironment by promoting stress
adaptation, inhibiting innate and adaptive immunity, and support-
ing tumor growth in a nutrient-limited microenvironment. Geno-
mic analysis of human cancer samples suggests core autophagy
genes are rarely mutated or lost in cancer [20], while oncogenic
mutations that dysregulate autophagy and lysosomal biogenesis
have been identified. Functional analysis of autophagy, however, is
very difficult due to the lack of methods that measure the autop-
hagy status in tumor samples.

Several proteins and pathways that regulate autophagy are
altered in cancer [17–19]. Although initially it was believed that
beclin 1 (BECN1), the mammalian orthologue of yeast Atg6, was
involved in cancer due to its loss in some breast, prostate, and
ovarian cancers [21–23], it was later found that BECN1 loss was
associated with mutation in the well-known tumor suppressor
BRCA1 in chromosome 17 [24, 25]. Hereditary breast cancer is
commonly a result of deletion of the wild-type BRCA1 allele. Due
to the proximity of BECN1, large deletions encompassing both
BRCA1 and BECN1 have also been shown in breast and ovarian
cancer [24, 25]. Analysis in The Cancer Genome Atlas (TCGA)
demonstrated that allelic loss of BECN11 is dependent deletion of
BRCA1; therefore, deletion of BECN1 is a consequence of BRCA1
deletion rather than a driver of breast cancer [24, 25]. However,
the reduced BECN1 that occurs due to BRCA1 deletion may
reduce autophagy in breast and ovarian cancer, and thus, cancer
response to stress and nutrient starvation may be impaired, which
may be a therapeutic target for cancer therapy to consider.

Several signaling mechanisms modulate autophagy; however
information about the processes that regulate autophagy in normal
versus cancer cells is not well understood [26]. The signals that
induce autophagy in cancer are believed to be stressful conditions
including anticancer treatments or cellular starvation that results
from the rapid proliferation of cancer cells [19]. Because many of
these regulatory mechanisms are altered in cancer, they may be
candidate therapeutic targets. For instance, the class I PI3K-AKT-
mTOR pathway, activated in many types of cancer through growth
factor receptors, is important in regulating autophagy [17, 18, 27,
28]. The serine-threonine kinase AKT, downstream of PI3K kinase,
suppresses autophagy by activating the mTOR kinase, an autop-
hagy inhibitor. Oncogenic forms of RAS negatively control autop-
hagy through the activation of PI3K kinase [29]. Another regulator
of the class I PI3K-AKT-mTOR pathway is the tumor suppressor
gene phosphatase and tensin homologue (PTEN) [30]. PTEN
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inhibits class I PI3K, which thereby inhibits AKT and induces
autophagy initiation. Mutations in PTEN, common in several
types of cancer, including malignant gliomas and prostate and
brain cancer, result in constitutive activation of ALK and, thus,
activation of mTOR and inhibition of autophagy [31]. Several
in vitro and clinical studies have shown that rapamycin, an inhibitor
of mTOR, induces autophagy and inhibits the proliferation of
cancer cells, including malignant glioma cells, making it a putative
therapeutic candidate for treatment of many tumor types [32].

In conclusion, there are several lines of evidence to suggest that
autophagy is a key component of tumorigenesis and that its modu-
lation is a potential therapeutic target. Improvement of cancer
treatment may be achieved in several ways related to autophagy,
including (1) the manipulation or activation of autophagy-related
proteins or modulators such as BECN1 or PTEN, which may lead
to cell death or inhibition of cellular proliferation; (2) using mTOR
inhibitors in such way that the autophagy-inducing drug rapamycin
might repress proliferation in cells with an intact autophagy path-
way; and (3) in tumor cells in which autophagy mediates drug
resistance, autophagy inhibitors such as bafilomycin might sensitize
cells to therapeutic agents by converting the autophagic pathway to
an apoptotic process. More extensive research in the role of autop-
hagy in cancer and its potential use as a therapeutic target need to
be performed. Here, I present a review of current methods to study
autophagy in cancer metabolism.

2 Materials

2.1 Reagents for Cell

Culture

1. Dulbecco’s modified eagle’s medium (DMEM) cell culture
medium, supplemented with 10% v/v fetal bovine serum
(FBS), 2 mM L-Glutamine and antibiotics.

2. PBS (1�): 137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4,
and 1.4 mM KH2PO4 in deionized water (dH2O), adjust pH
to 7.4 with 2 N NaOH.

2.2 Reagents for

Electrophoresis

and Western Blot

1. RIPA lysis buffer: (150 mM sodium chloride, 1.0% NP-40 or
Triton X-100, 0.5% sodium deoxycholate, 0.1% SDS (sodium
dodecyl sulfate), 50 mMTris, pH 8.0), 1� EDTA-free protease
inhibitor cocktail tablets.

2. Sample buffer: 2� SDS loading buffer (4% SDS, 4% SDS, 20%
glycerol, 0.004% bromophenol blue, 0.125 M Tris–HCl,
pH 6.8), 10% 2-β-mercaptoethanol.

3. 10–20% Tris-glycine electrophoresis gels.

4. Precision plus protein dual color standards.
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5. 1� Tris-Glycine Running Buffer: 25 mM Tris, 192 mM gly-
cine, 0.1% SDS.

6. 1� Transfer Buffer: 25 mM Tris, 192 mM glycine, 20% (v/v)
methanol, 0.025–0.1% SDS (pH 8.3)

7. Invitrolon™ PVDF/Filter Paper Sandwich.

8. Tris-buffered saline Tween (TBST): 50 mM Tris–HCL
(pH ¼ 7.5), 150 mM NaCl, and 0.1% Tween 20.

9. Bovine serum albumin (BSA), stock solution of 10 mg/mL in
dH2O, stored at 4 �C.

10. Blocking buffer: 0.1% Tween-20 (Sigma-Aldrich) and 5%
(w/v) nonfat powdered milk (commonly found in food stores)
in TBST.

11. Primary antibody: anti-LC3 rabbit polyclonal antibody.

12. Primary antibody: anti-β-actin monoclonal antibody.

13. Secondary antibody: peroxidase-conjugated affiniPure goat
anti-rabbit IgG (H + L).

14. Secondary antibody: peroxidase-conjugated affiniPure goat
anti-mouse IgG (H + L).

15. SuperSignal West Pico Stable Peroxide Solution.

2.3 Reagents for

immunofluorescence

1. BSA buffer (blocking buffer): 3 mg/mL BSA in PBS.

2. Primary antibody: anti-LC3 rabbit polyclonal antibody.

3. Secondary antibody: Anti-rabbit Alexa Fluor® 568 Goat
Molecular Probes A-11036.

4. VECTASHIELD Antifade Mounting Medium with DAPI.

5. Confocal microscope: Zeiss LSM 510 (Carl Zeiss AG, Ober-
kochen, Germany).

3 Methods

Drugs that potentially affect autophagy are being tested in clinical
trials. New potential modulators of autophagy are also being
screened for therapeutic purposes. Thus, it is important to establish
basic guidelines of methods to measure autophagy. Conventional
methods for detecting autophagic cells include ultrastructural anal-
ysis and protein degradation assays and have been extensively
reviewed previously [33–36]. Here I present a summarized guide-
line of how to perform and interpret these methods.

One critical point to understand is that autophagy is a highly
dynamic process, and like many other pathways, it can be positively
and negatively modulated at every step, impacting the generation
of phagophores, the maturation of autophagosomes, and/or their
fusion with lysosomes (Fig. 2). Thus, the use of multiple
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complimentary assays is essential to measure the overall autophagy
flow and to make a comprehensive interpretation of the results. The
measurement of autophagic flux, that is, the entire process of
autophagy, includes not only the increase in lipidation of LC3 but
also the delivery of cargo to lysosomes and their subsequent break-
down and release into the cytosol. Here I summarize the most
utilized current assays to study autophagy.

3.1 Transmission

Electron Microscopy

1. Treat cultured cells with autophagy modulators or drugs of
interest.

2. Pellet cells upon treatment for different timepoints.

3. Fix cells with a solution containing 3% glutaraldehyde plus 2%
paraformaldehyde in 0.1 M cacodylate buffer.

4. Wash pellets in 0.2 M HEPES, pH 7.4.

5. Wash with PBS at least two to three times.

6. Incubate pellets in 1% osmium tetroxide in water at RT for 1 h.

7. Wash pellets in water.

Fig. 2 Effect of autophagy induction or inhibition. The relative amounts of phagophores, autophagosome, or
autolysosomes in each condition are depicted. When autophagy is induced, levels of autophagic compart-
ments increase. In contrast, when autophagy is inhibited at the initial stages, the relative amounts of all
autophagic membranes decrease. Finally, when autophagy is inhibited at the later stages (such as fusion
between autophagosome and lysosomes), the levels of phagophore formation remain the same, while
autophagosomes accumulate due to the inhibition of lysosomal degradation

154 Natalia von Muhlinen



8. Stain the pellets in 2% uranyl acetate in water at room tempera-
ture (RT), in the dark, for 1 h.

9. Pellets must be dehydrated using ethanol at increasing concen-
trations at RT: 70% ethanol for 15 min; 95% ethanol for
15 min; 100% ethanol, twice for 15 min; and propylene oxide
for 20 min.

10. Infiltration with resin: Incubate the pellets in a mixture of resin
and propylene oxide (1:1) at RT for 2 h first and then in 100%
resin at RT overnight.

11. Transfer the pellets to fresh resin in beam capsules (Agar Scien-
tific Cat. No. G362 or G360) (Glauert and Lewis, 1998), and
incubate at RT for 4–6 h.

12. Examination is performed at 80 kV under a transmission elec-
tron microscope, on ultrathin sections (80 nm) stained with
0.1% lead citrate and 10% uranyl acetate (see Notes 1 and 2).

3.2 Monitoring LC3

by Western Blot to

Determine Autophagy

Status or

Autophagy Flux

3.2.1 Cell Plating

1. Plate cells in 6-well tissue culture plates in technical and
biological replicates to 50–70% confluency.

2. Allow cells to attach to the bottom of the plate at least over-
night before performing treatments.

3.2.2 Treatment

with Autophagy Inducers or

Inhibitors as Controls

1. Rinse cells with PBS before adding cell culture media contain-
ing autophagy modulators.

2. For autophagy induction, use DMEM without essential amino
acids (starvation media) to measure starvation-induced
autophagy.

3. For inhibition of various stages of the autophagy pathway,
use 3-MA or bafilomycin A1 (10 nM final concentration) (see
Note 3).

4. Incubate treated cells for several timepoints (1 h, 2 h, 4 h, 24 h)
to study the early and late effects in the autophagy pathway of
the treatment (see Note 4).

3.2.3 Sample

Preparation

1. Lyse pelleted cells using RIPA buffer (see Subheading 2.2) after
treatment, vortex to lyse cells, and incubate on ice for 20 min.

2. Centrifuge lysate at 16,000 � g for 15 min at 4 �C.

3. Transfer supernatant to a new collection tube and measure
protein concentration.

4. Dilute lysate 1:1 in sample buffer (see Subheading 2.2), vortex,
boil, centrifuge at 16,000 � g, and run fresh sample for
electrophoresis.
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3.2.4 Electrophoresis 1. Use a 10–20% Tris-glycine gradient gel for better separation of
cytosolic and membrane-bound LC3-I and LC3-II forms (see
Notes 4 and 5).

2. Mount the gel in an electrophoresis tank according to standard
protocol.

3. Fill the top and the bottom of the reservoir with 1� tris-glycine
running buffer (see Subheading 2.2).

4. Load equal amounts of protein (10–60 μg per lane) into each
well of the gel, along with molecular weight markers.

5. Run the gel electrophoresis at 100 V for approximately 2 h or
until the 10 kDa molecular weight band reaches the bottom of
the gel.

3.2.5 Western Blotting 1. To transfer protein samples to PVDF membrane, soak the
membrane first in methanol for 10–30 s, rinse off with water,
and place in transfer buffer. Disassemble gel according to man-
ufacturer’s instruction, and mount the transfer cassette with
the gel and membrane according to standard protocols. Trans-
fer for 2 h at 25 V.

2. Block the membrane using blocking buffer containing 5% dry
milk in TBST (see Subheading 2.2) for 1 h at RT.

3. Incubate membrane with LC3 antibody diluted 1:1000 in
blocking buffer (see Subheading 2.2) overnight in a cold room.

4. Rinse with TBST for about 20 min to remove excess of primary
antibody.

5. Incubate with secondary antibody (see Subheading 2.2) diluted
in blocking buffer for 1 h at RT.

6. Rinse with PBS for about 20–30 min at room temperature.

7. Develop using SuperSignal West Pico according to the manu-
facturer’s instructions.

8. Capture the chemiluminescence using conventional X-ray films
or the method of your choice.

9. Probe with antitubulin or anti-β-actin to use as loading control
(see Note 6).

10. LC3-I, LC3-II, and housekeeping bands can be quantified
using free software such as ImageJ and used to determine
autophagy status (see Note 5) and autophagy flux (see Notes
6 and 7).
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3.3 Use of Green

Fluorescence Protein

(GFP)-Labeled LC3

to Monitor Autophagy

by Fluorescence

Microscopy

1. Stable GFP-LC3 cell lines can be generated by infecting cells
with GFP-LC3 retrovirus or lentivirus, followed by a selection
with a selectable marker such as blasticidin.

2. A homogenous cellular population expressing the desired levels
of GFP can be selected by flow cytometry or by single-cell
cloning. These cells can be used to analyze autophagy by
fluorescence microscopy (see below and Notes 8–10) or by
partial proteolysis using western blot (see Note 11).

3. Plate cells on glass coverslips at least 24 h before analysis.

4. Treat cells with autophagy modulators, such as bafilomycin
(autophagy inhibitor, 10 nM final concentration) or serum-
starved media (autophagy inducer) for different timepoints
(1 h, 2 h, 4 h).

5. Wash cells on coverslips with PBS at least three times for 5 min,
and fix with 4% formaldehyde for 10 min at RT.

6. Wash cells with PBS at least for 15 min.

7. Mount coverslips on slides using ProLong Gold antifade or
other equivalent mounting media.

8. Allow slides to dry for 24 h at RT.

9. Visualize using a fluorescence microscope on 40� to 100�
magnification.

10. Take pictures of multiple fields representing a total of cell
population of 100 cells or more, and then count the number
of GFP-LC3 puncta per cells either manually or using compu-
terized software, for instance, Image J (see Notes 8–10).

3.4 Tandem RFP/

mCherry-GFP

Fluorescence

Microscopy

1. Using retrovirus or lentivirus, generate stable cell lines expres-
sing RFP or mCherry-GFP-tagged LC3. Following infection,
select a stable expressing population by treating cells with a
selectable marker, such as blasticidin (1ug/ml) for at least
7 days.

2. A cellular population expressing the desired levels of GFP
homogenously can be selected by flow cytometry or by
single-cell cloning.

3. Plate cells on glass coverslips at least 24 h before treatment.

4. Incubate cells at approximately 70% confluency with the drug
of interest for the desired time—several timepoints are
recommended.

5. Fix with 4% formaldehyde for 10min at RT following washes of
coverslips with PBS.

6. Wash formaldehyde off the coverslips with PBS at least for
15 min.
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7. Mount coverslips on slides using ProLong Gold antifade or
other equivalent mounting media.

8. Allow slides to dry for 24 h at RT.

9. Visualize using a fluorescence microscope on at least a 63�
magnification using the alexa 488 nm channel to detect GFP
and the alexa 594 nm to detect the RFP or mCherry signals.

10. Take pictures of multiple fields representing a total of cell
population of 100 cells or more.

11. Count the number of puncta per cells either manually or using
computerized software. Red only puncta correspond to acid
compartments where the GFP signal is quenched, like the
autolysosomes. Yellow puncta correspond to phagophores or
autophagosomes where the GFP and the RFP/mCherry signal
co-localize (see Note 12).

4 Notes

1. TEM can be used to follow the sequential morphological
changes during the autophagy process, from the appearance
of the double-membrane “phagophore” to the degradation in
the autolysosomes [37]. Autophagosomes can be observed as
double-membraned structures under a TEM microscope.
However, because the autophagic process is continuous, the
further classification of compartments into their subsets may be
sometimes difficult. For instance, because in the autophago-
some and autolysosome stages the compartment displays a
double membrane, it may be difficult at times to distinguish
them, in which they may be called simply as “autophagic vacu-
ole” [38]. Autophagosomes, referred to as initial autophagic
vacuoles (AVi), typically display a double membrane, which is
visualized as a compartment with two parallel membrane layers
(bilayer), containing cytosolic content or organelles
[38]. Fusion of the autophagosome with lysosomes results in
the formation of the autolysosome, structure that can some-
times be differentiated by the degradation status of its content.
Immunolabeling of samples using commercial antibodies that
detect LC3, one of the few proteins that remain attached to the
autophagosome throughout the autophagy pathway, is also
available.

2. There are some difficulties to consider when using TEM. It
requires a lot of expertise and it is time-consuming. Proper
identification of the autophagy structure is also critical for
qualitative and quantitative purposes, which might be the
most difficult criteria to meet when using TEM since many
subcellular components might have double membranes,
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including mitochondria, endoplasmic reticulum (ER), and
endosomes. Therefore, TEM is best used in combination with
other methods to accumulate conclusive data to ensure the
proper measurement of autophagy in cultured cells or tissues.

3. Longer than 4 h incubation with bafilomycin may be toxic to
some cell types.

4. The mammalian orthologues of Atg8 are subdivided in two
families: the LC3 subfamily and the GABARAP subfamily
[12, 39]. Isoforms in the LC3 subfamily are referred to as
LC3 for simplicity reasons, and since LC3 remains attached
to the autophagosomal membrane throughout the entire
autophagic pathway [12], it has become the most widely used
marker for autophagosome and the autophagic process. Dur-
ing the early process of autophagosome formation, LC3 is
conjugated to phosphatidylethanolamine (PE), referred to as
LC3-PE, which remains attached to the autophagosomal
membrane during the autophagy process, from formation of
the phagophore to the degradation of the double membrane of
the lysosome [12]. While membrane-bound LC3-PE (also
known as LC3-II) has a higher molecular weight than free
cytosolic LC3 (also referred to as LC3-I), LC3-II shows faster
electrophoretic mobility in SDS-PAGE gels probably due to
increased hydrophobicity. Both LC3-I (approximately
16–18 kDa) and LC3-II (approximately 14–16 kDa) are
detected by western blot using the protocol described (see
Subheading 3.2) (Fig. 3). The amount of LC3-I and LC3-II
can be quantified by Western blotting, and ratios of these iso-
forms compared to loading controls, such as actin, can be used
to estimate the overall autophagic status of cells under induc-
tion or inhibition of autophagy [33, 34, 40]. It is important to
note that the levels of LC3-I or LC3-II alone cannot be used as
a measurement of autophagic flux. To this end, western blot-
ting must be combined with other methods such as those
described in the Subheading 3.

5. When performing western blot detection and quantification of
LC3-II, levels should be compared to housekeeping genes such
as β-actin. Stain-free gels can also be used to quantify the total
amount of protein loaded and can be used as an alternative to
housekeeping genes [40].

6. Autophagic flux is often calculated by the turnover or differ-
ence in the amount of LC3-II measured by western blot in the
presence or absence of lysosomal degradation inhibitors such as
bafilomycin A1 [33, 34, 40]. Saturating levels of this inhibitor
can be used to measure LC3-II transit through the autophagy
pathway. If autophagic flux is occurring, LC3-II will accumu-
late in the presence of an autophagy inhibitor. When analyzing
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whether a treatment affects the autophagy pathway, LC3-II
levels must be measured during treatment alone, inhibitor
(such as bafilomycin) alone, combination of treatment and
inhibitor, as well as no treatment (Fig. 3). An additive effect
in increasing LC3-II levels of treatment plus inhibitor may
suggest that the treatment increases autophagic flux. If the
treatment plus inhibitor causes higher levels of LC3-II com-
pared to inhibitor alone, it may suggest that the treatment
increases the generation of autophagy membranes (Fig. 3a).
If treatment by itself increases LC3-II but treatment plus
inhibitor does not change the levels of LC3-II compared to
inhibitor alone, it may suggest that the treatment causes a
partial or complete block in autophagy flux (Fig. 3b) [41]. Pos-
itive control experiments with autophagy modulators that are
known to induce autophagy are essential to make conclusions
from these experiments.

Fig. 3 Measuring autophagic flux by LC3 turnover. Detection of the conversion of
cytosolic LC3-I to membrane-bound LC3-II under different treatment conditions
by Western Blot. (a) If a treatment (T) alone increases the amount of LC3-II, and
the treatment plus a lysosomal inhibitor (L.I., for instance, bafilomycin A1) has an
additive effect compared to bafilomycin A1 alone may indicate that the treatment
induces the formation of autophagic membranes. (b) If a treatment alone
increases the amount of LC3-II, but the combination with bafilomycin A1 does
not increase LC3-II levels compared to inhibitor alone, it may suggest that the
treatment partially or completely blocks autophagy. T treatment; L.I lysosomal
inhibitor
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7. When determining autophagic flux by LC3-II turnover, it is
essential to use correct positive controls that induce autophagy
flux, such as rapamycin or nutrient starvation. Care must be
taken to use non-saturating and saturating inhibitor/treatment
conditions. Furthermore, it is essential to test at least two
timepoints after treatment, including early and late timepoints,
for instance, 4 h and 24 h after treatment, since some com-
pounds, such as calcium phosphate precipitates, might induce
autophagy at early stages but block it at later timepoints [40].

8. When autophagy is not induced, GFP-LC3 is homogenously
expressed in the cytosol. However, when autophagy is induced,
GFP-LC3 puncta can be observed and quantified in a single-
cell manner. It is recommended to use stable cellular transfor-
mants expressing GFP-LC3 versus using transient transfec-
tants, since stable populations will homogenously express
GFP-LC3, maximizing puncta counting efficiency [40]. As a
negative control, a non-cleavable mutant of GFP-LC3
(GFP-LC3G120A) can be used to measure auto fluorescence
or non-specific effects of inhibitors or treatments
[40]. Although this assay is time-consuming, it is highly sensi-
tive and can be used to quantify autophagy induction and
inhibition under different conditions. Importantly, it is recom-
mended to count GFP-LC3 puncta per cell rather than the
number of cells containing GFP-LC3 puncta [40] and repre-
sent the result as changes in the percentage of GFP-LC3 puncta
per cell under basal or treatment conditions.

9. The GFP-tagged expression vector of LC3 is one of the most
widely used methods to detect formation of autophagosome
and monitor the autophagy process [12]. Measuring GFP-LC3
by fluorescence microscopy, while more time-consuming and
tedious, is more sensitive and quantitative than measuring
LC3-II turnover by western blot. Induction of autophagy
results in formation of phagophores or pre-autophagosomes,
which are labeled as GFP-LC3 structures and can be visualized
as GFP-LC3 dots or puncta (see Subheading 3.3). GFP-LC3-
expressing cell lines can also be used to monitor autophagy by
quantification of cleaved GFP by western blot (see Note 10).

10. For GFP-LC3 puncta quantification, it is recommended to
perform the experiment in technical and biological duplicates,
using stable GFP-LC3 expressing transformants, and to quan-
tify the number of puncta per cell rather than the number of
cells containing GFP-LC3 puncta. Ideally, it is preferable that
both assays are included when studying autophagy to accumu-
late conclusive evidence as to the status of the autophagic
pathway and to compare both sets of results.
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11. GFP-LC3 is a target of autophagy itself and thus has also been
used to measure autophagic flux in transformed cells by West-
ern blot. When GFP-LC3 is transported to the lysosome, the
GFP-LC3 bond is sensitive to proteolysis in the lysosomal
compartment, where it is cleaved and released to the cytosol
as free GFP. Thus, measurement of the ratio of GFP-LC3 and
free cleaved GFP can be monitored by western blot, using the
western blot protocol described in Subheading 3.2. It is impor-
tant to note that complementary methods such as turnover of
LC3-II (see Subheading 3.2) and quantification of GFP-LC3
puncta (see Subheading 3.3) are recommended to be per-
formed in parallel to make strong conclusions about cellular
autophagy status.

12. The basis for the RFP (or mCherry)/GFP-tagged LC3 assay to
measure autophagy is the sensitivity of GFP to the acidic/
proteolytic environment of the lysosome, while RFP and
mCherry are more stable [42]. In this assay, cells are treated
with autophagy inducers or inhibitors, and localization of
RFP/mCherry and GFP puncta is analyzed by microscopy to
identify autophagosomal compartments following the proto-
col described in Subheading 3.4. Coverslips are then analyzed
by fluorescence microscopy. Co-localization of RFP/mCherry
with GFP (yellow puncta) indicates a phagophore or autopha-
gosome compartment, while RFP/mCherry puncta without
GFP signal corresponds to an autolysosome, since GFP signal
is quenched in the lysosomal compartment. One of the advan-
tages of this method is that it allows for the quantification of
autophagic induction and flux without the need to use autop-
hagy inhibitors. The use of early and late timepoints allows for
the visualization of early phagophore formation as well as
lysosomal degradation. Furthermore, this method can be
used for high-throughput screening [40].
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Chapter 11

Lipidomic Analysis of Cancer Cell and Tumor Tissues

Ramiz Islam Sk and Soumen Kanti Manna

Abstract

Due to their role in cellular structure, energetics, and signaling, characterization of changes in cellular and
extracellular lipid composition is of key importance to understand cancer biology. In addition, several mass
spectrometry-based profiling as well as imaging studies have indicated that lipid molecules may be useful to
augment existing biochemical and histopathological methods for diagnosis, staging, and prognosis of
cancer. Therefore, analysis of lipidomic changes associated with cancer cells and tumor tissues can be useful
for both fundamental and translational studies. Here, we provide a high-throughput single-extraction-
based method that can be used for simultaneous lipidomic and metabolomic analysis of cancer cells or
healthy or tumor tissue samples. In this chapter, a modified Bligh-Dyer method is described for extraction
of lipids followed by analysis of fatty acid composition by gas chromatography-mass spectrometry (GC-MS)
or untargeted lipidomics using electrospray ionization mass spectrometry (ESIMS) coupled with reverse-
phase (RP) ultraperformance liquid chromatography (UPLC) followed by multivariate data analysis to
identify features of interest.

Key words Cancer, Lipidomics, RP-UPLC-ESIMS, Fatty acid methyl ester, GC-MS

1 Introduction

Lipids refer to a broad spectrum of molecules ranging from free
fatty acids, prenols, and sterols to complex esterified and conju-
gated moieties such as phosphocholines (PC), phosphoethanola-
mines (PE), phosphoserines (PS), ceramide (Cer), sphingomyelin
(SM), triglycerides (TG), and cholesteryl esters (CE) [1]. These
molecules play diverse roles in cellular structure and functions such
as triglycerides for long-term energy storage, phospholipids in lipid
membranes, sterols in regulating membrane dynamics and hor-
monal functions, and arachidonic acid metabolites in inflammatory
signal transduction and modulation of innate immune response to
name a few. Inflammation is intricately connected to initiation and

Majda Haznadar (ed.), Cancer Metabolism: Methods and Protocols, Methods in Molecular Biology, vol. 1928,
https://doi.org/10.1007/978-1-4939-9027-6_11, © Springer Science+Business Media, LLC, part of Springer Nature 2019

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9027-6_11&domain=pdf


progression of cancer. One of the hallmarks of cancer cell is sus-
tained cell proliferation that demands energy supply as well as
synthesis of new membrane for daughter cells. Thus, it is not
surprising that significant reprogramming of lipid metabolism has
been identified in cancer [2, 3]. A number of studies showed that
cancer cells exhibit elevated fatty acid metabolism [4, 5] as well as
de novo fatty acid synthesis [6–8]. Phospholipase-mediated pro-
duction of free fatty acids and subsequent β-oxidation has been
shown to help cancer cells survive despite blockade of oncogenic
PI3K-AKT-mTOR signaling [9]. A recent study indicated that
alteration in lipid transport and metabolism is also involved in
initiation of metastasis [10], which accounts for a lion share of
deaths from cancer. In addition, de novo lipogenesis has been
shown to be upregulated [11, 12] leading to an increase in lipid
droplets in cancer stem cells [13], which have been found to play a
key role in therapeutic resistance and relapse in cancer. Lipid dro-
plets have also been shown to accumulate in circulating tumor cells
[14] that are promising markers for diagnostic and prognostic
purposes. Several studies have demonstrated that lipidomic profile
of tumor is distinct from the adjacent normal tissue [15–23]. Moni-
toring of such differential lipidomic signature in patient biofluids
[23–29] has been proposed for diagnostic, prognostic, and thera-
peutic applications in cancer. While they are lucrative targets, their
robustness would hinge on correlation between changes in biofluid
lipidome and metabolism of cancer cells in or outside tumor
(in case of hematological malignancies and circulating tumor
cells). In addition, the mechanistic connection between lipidomic
changes and metabolism in cancer cells, as well as its microenviron-
ment, needs to be investigated in detail to evaluate its value as a
potential therapeutic target. Therefore, a detailed untargeted anal-
ysis of lipidomic signature of cancer cells and tissues in tandem with
the analysis of metabolic signature has to be carried out.

Several methods for lipidomic analysis have been described in
several studies –see Cajka T. and Fiehn O. (2014) for a comprehen-
sive review [30]. In this chapter, we describe a simple workflow for
high-throughput lipidomic analysis of cancer cells and tumor tis-
sue, which also allows for simultaneous metabolomic analysis as
shown in Fig. 1 and, thus, allows for an effective analysis of correla-
tion between changes in metabolism and lipidomic signatures. This
protocol is a modified version of the protocol that has been
reported our earlier work [31]. The protocol starts with a biphasic
extraction of lipids followed by either gas chromatography
(GC) coupled with mass spectrometry (MS)-based fatty acid
profiling or reverse-phase (RP) ultraperformance liquid chroma-
tography coupled with electrospray ionization mass spectrometry
(ESIMS)-based untargeted lipidomic analysis.
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2 Materials

2.1 Solvents 1. Water (UHPLC-MS grade).

2. Methanol (UHPLC-MS grade).

3. Acetonitrile (UHPLC-MS grade).

4. Isopropanol (UHPLC-MS grade).

5. Chloroform (GC-MS grade).

6. n-Hexane (GC-MS grade).

2.2 Chemicals 1. Sulfadimethoxine.

2. Chlorpropamide.

3. Heptadecanoic acid.

4. Nonadecanoic acid.

5. LPC(17:0).

6. LPC(19:0).

7. LPA(17:0).

8. PC(17:0/17:0).

9. SM(17:0).

10. CE(17:0).

Cell/Tissue

Biphasic extraction Aqueous layer Metabolomics

RP-UPLC-ESIMS

Multivariate data analysis

MS/MS and database mining

Identification of lipids of interest

Fatty acid methyl esters

GC-MS

Changes in total fatty acid composition

Organic layer

Fig. 1 Schematic representation of the analytical strategy showing a single-step biphasic extraction followed
by GC-MS-based fatty acid analysis and UPLC-ESIMS-based untargeted lipidomic analysis with the option to
perform metabolomic analysis on same tissue (or cell) samples in tandem. The aqueous layer can be used to
proceed for RP or HILIC-based metabolomic analysis as described in Chapter 15
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11. Methyl heptadecanoate.

12. Methyl nonadecanoate.

13. Sodium chloride.

14. Anhydrous sodium sulfate.

15. Ammonium formate.

16. Fatty acid methyl ester (FAME) mixture, C4–C24.

17. Formic acid.

18. 1.25 M methanolic HCl.

19. Authentic standards for lipids of interest.

2.3 Consumables 1. 1 mL glass sample vials.

2. 0.6 mL crimp top amber microvials (diameter 8 mm).

3. Crimp seals with aluminum cap and PTFE-silicone seals (diam-
eter 8 mm).

4. PTFE non-disposable sleeves (O.D. � H 12 mm � 32 mm).

5. 2 mL screw-cap polypropylene tubes with gasket.

6. 5 mL glass tubes.

7. 15 mL screw-cap glass tube with teflon liner.

8. 1.4 mm zirconium oxide beads.

9. Graduated glass pipettes.

10. Liquid nitrogen.

11. Helium gas (purity >99.999%).

12. Nitrogen gas (purity >99.999%).

13. Argon gas (purity >99.999%).

2.4 Instruments 1. Refrigerated tissue homogenizer.

2. Pipettements (1–10 μL, 10–100 μL, 20–200 μL,
100–1000 μL).

3. Refrigerated centrifuge (capable of 18,000 � g at 4 �C).

4. Vortex.

5. Crimper.

6. Heating bath.

7. Sonicator bath.

8. Fume hood (with nitrogen connection).

9. Drying block fitted with nitrogen flow inlets.

10. SYNAPT G2 HDMS ESI qTOF coupled with Acquity™
UPLC platform (Waters Corp, Milford, MA) (see Note 1).

11. Agilent 7890B GC coupled with 5977B single quadrupole
mass spectrometer (Agilent Technologies, Santa Clara, CA)
(see Note 1).
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2.5 Chromatography

Columns

1. 100 mm Acquity UPLC BEH C18 (particle size 1.7 μm,
i.d. 2.1 mm) for reverse-phase (RP) UPLC-ESIMS analysis
(see Note 1).

2. 30 m Agilent HP5-MS column (i.d. 0.25 mm, film thickness
0.25 μm) for GC-MS analysis (see Note 1).

2.6 Buffer and Lipid

Extraction Solvents

1. Phosphate-buffered saline (PBS): 10 mM Na2HPO4, 2.7 mM
KCl, 1.8 mM KH2PO4, 137 mM NaCl, pH ¼ 7.4.

2. Extraction solvent 1 (ES 1): 5 μM chlorpropamide and 4 μM
nonadecanoic acid in methanol.

3. Extraction solvent 2 (ES 2): 2 μM each of LPC(17:0), PC
(17:0/17:0), SM(17:0), and 5 μM LPA(17:0) in chloroform.

2.7 Solvents

for Reconstitution

and Dilution

1. LC reconstitution solvent: 5 μM LPC(19:0) in chloroform/
methanol (1:1).

2. LC dilution solvent: Acetonitrile/isopropanol/water (1:2:1).

2.8 Solvents

for Liquid

Chromatography

1. Eluent A: 10 mM ammonium formate in 60% aqueous aceto-
nitrile containing 0.1% formic acid.

2. Eluent B: 10 mM ammonium formate in a acetonitrile/iso-
propanol mixture (1:9) containing 0.1% formic acid.

2.9 Fatty Acid Stocks

and Calibration

Standards

for Quantitation

1. Stocks: 10 mM solution of fatty acid of interest in hexane.

2. Diluent: 4 μM nonadecanoic acid in hexane.

3. Calibration standards: Serially diluted 100, 50, 25, 12.5, 6.25,
3.125, 1.562, 0.781, 0.390, 0.195, 0.098, 0.049, 0.024, and
0.012 μM solutions of fatty acid of interest in hexane each
containing 4 μM nondecanoic acid (see Note 2).

2.10 Softwares 1. Microsoft Excel.

2. MassLynx package including MarkerLynx and TargetLynx
(Waters, Milford, MA).

3. MassHunter Software package (Agilent, Santa Clara, CA).

4. SIMCA-P12+ (Umetrics, Kinnelon, NJ).

5. Prism version 6 (Graph Pad, La Jolla, CA).

2.11 Online

Databases and Tools

1. LIPIDMAPS: http://www.lipidmaps.org/ [32, 33].

2. LipidBlast: http://fiehnlab.ucdavis.edu/projects/
LipidBlast [34].

3. METLIN: https://metlin.scripps.edu/ [35].

4. HMDB: http://www.hmdb.ca/ [36].

5. MetaboAnalyst: http://www.metaboanalyst.ca/ [37].
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3 Methods

3.1 Sample

Collection and Storage

3.1.1 Tissue

Tissue samples should be placed immediately on ice after excision
and flash-frozen into liquid nitrogen within 15 min (see Note 3)
and eventually stored at �80 �C (see Note 4) in labelled cryovials.

3.1.2 Cell lines

Adherent Cells

1. Take supernatant media gently from the side of the adherent
cell culture plate (see Note 5).

2. Gently scrape the cells, and collect them on one side of the
plate with a rubber-tipped cell scraper (see Note 6).

3. Add 1 mL of the medium that was used to culture the cell to
the plate and transfer it to a 2 mL screw-cap tube.

4. Take out an aliquot for counting cells (see Note 7). Process
~5 � 106 cells.

5. Centrifuge the rest at 300 � g for 5 min at 4 �C, and remove
the supernatant media.

6. Wash with 1.5 mL PBS by centrifuging as above and remove
the supernatant.

7. Wash with PBS for a second time and centrifuge at 500 � g for
5 min at 4 �C. Remove the supernatant as much as possible.

8. Proceed with lipid extraction (see Subheading 3.2) or flash-
freeze in liquid nitrogen and store at �80 �C.

Non-adherent Cells

(Suspension Culture)

1. Count cells (see Note 7). Take out volume of culture medium
containing ~5 � 106 cells, and proceed to step 2.

2. Centrifuge culture medium containing cells at 300 � g for
5 min at 4 �C, and remove supernatant media as much as
possible.

3. Gently wash the cell pellet with 1.5 mL ice-cold PBS by cen-
trifuging as above, and remove the supernatant.

4. Wash the cell pellet with 1.5 mL PBS, centrifuge at 500 � g for
5 min at 4 �C, and remove supernatant.

5. Proceed for lipid extraction (see Subheading 3.2) or flash-freeze
in liquid nitrogen, and store at �80 �C.

Patient-Derived Cells 1. Resuspend cells (seeNote 8) into a suitable medium that allows
cells to be viable.

2. Take an aliquot and count cells.

3. Take out medium containing minimum 2 � 106 cells.

4. Centrifuge medium containing cells at 300 � g for 5 min at
4 �C, and remove supernatant media as much as possible.
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5. Gently wash the cell pellet twice with 1.5 mL ice-cold PBS by
centrifuging as above, and remove the supernatant.

6. Proceed for lipid extraction (see Subheading 3.2) or flash-freeze
in liquid nitrogen, and store at �80 �C.

3.2 Lipid Extraction The following method is an adopted version of Bligh-Dyer method
[38] (see Note 9).

3.2.1 Cell Extraction

for Complex Lipid Analysis

1. Add 330 μL of ice-cold water (seeNote 10) to the cell pellet to
resuspend, take 30 μL out for protein estimation (using Brad-
ford method), and transfer into 2 mL screw-capped polypro-
pylene tubes with gasket.

2. Add 400 μL of chilled methanol containing internal standards
(ES 1), and mix well by pipetting up and down.

3. Flash-freeze in liquid nitrogen, thaw, vortex vigorously for
30 s. Repeat freeze-thaw cycle 4 times.

4. Add 800 μL of chilled chloroform containing internal stan-
dards (ES 2).

5. Vortex for 30 s and shake at room temperature for 20 min.

6. Centrifuge at 18000 � g for 20 min at 4 �C.

7. Take out the upper aqueous layer as much as possible without
disrupting the protein disk between two layers. Save the aque-
ous layer for metabolomic analysis (see Note 10).

8. Take out the lower organic layer carefully using a glass pipette
penetrating by the side of the protein disk into 1 mL glass vial
(see Note 11).

9. Transfer 400 μL from the glass vial into 5 mL glass tubes, and
dry under nitrogen flow.

10. Reconstitute sample with 100 μL chloroform/methanol (1:1)
containing 5 μM LPC(19:0), and transfer into 1 mL glass vials
for LC-MS analysis.

11. Add three volume (300 μL) acetonitrile/isopropanol/water
(1:2:1), and proceed toUPLC-ESIMS analysis (see Subheading
3.5.1).

12. Transfer another 200 μL from glass vial (see step 8 above) into
15 mL Teflon-capped glass tubes, and proceed for the prepa-
ration of fatty acid methyl esters (see step 1 of Subheading 3.3
below) for subsequent GC-MS-based fatty acid analysis (see
Subheading 3.6).

3.2.2 Tissue Extraction

for Complex Lipid Analysis

1. Take 10–20 mg tissue into 2 mL screw-capped vials with
gasket.

2. Add 300 μL of ice-cold water and 400 μL chilled methanol
containing internal standards.
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3. Add 1.4 mm fresh zirconium oxide beads (~10–15) (see Note
12).

4. Place samples inside the homogenizer and homogenize at
6000 rpm (2 � 20 s with 30 s gap in between) at 10 �C (see
Note 13).

5. Add 800 μL of chilled chloroform containing internal
standards, and repeat steps 5–12 as described above in Sub-
heading 3.2.1.

3.3 Preparation

of Fatty Acid Methyl

Esters

1. Evaporate 200 μL of organic lipid extract under a stream of
nitrogen in the 15 mL tube.

2. Add 1 mL methanolic HCl and screw the cap.

3. Heat at 50 �C overnight (or reflux for 2 hours).

4. Cool the reaction mixture on ice and add 4 mL of saline and
4 mL n-hexane.

5. Vortex vigorously for 2 min. Allow tubes to stand at RT for
10 min.

6. Centrifuge at 1000 � g for 10 min.

7. Remove the upper hexane layer with a clean glass pipette into a
new glass tube.

8. Add 50mg of anhydrous sodium sulfate, vortex, and centrifuge
as mentioned above.

9. Transfer the supernatant carefully into another glass tube, and
evaporate the solvent under stream of nitrogen.

10. Resuspend in 200 μL of hexane, transfer it with glass pipettes
into 600 μL amber crimp top sample vials, cap and place them
into PTFE sleeves, and proceed for GC-MS analysis (see Sub-
heading 3.6.1).

11. Treat 200 μL each of pooled (see Subheading 3.4.1, step 3),
extraction blank (see Subheading 3.4.2, step 3), and calibration
standards (see Subheading 2.9, item 3) in exactly the same
manner as described in steps 1–10 above to use for GC-MS
analysis (see Subheading 3.6.1).

3.4 Preparation

of Quality Control

(QC) Samples

3.4.1 Pooled Samples

1. Take 20 μL (more if the total sample number is less than 30 or
less if the total sample number is more than 50) organic extract
from each individual sample (after step 8 of Subheadings 3.2.1
or 3.2.2) into a glass vial to make a pooled extract with total
volume � 600 μL.

2. Take 400 μL of this pooled extract and process as per steps
9–11 of Subheading 3.2.1 to prepare a pooled sample for
UPLC-ESIMS-based lipidomic analysis (see Subheading 3.5.1
below).
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3. Take another 200 μL of the pooled extract from step 1 above
into 15 mL Teflon-capped glass tube, and prepare fatty acid
methyl ester as described in steps 1–10 of Subheading 3.3
above.

3.4.2 Extraction Blank 1. Add 300 μL water and extraction solvents in an empty 2 mL
screw-capped tube, and perform all steps as described in steps
1–8 of Subheading 3.2.1 (for cells) or Subheading 3.2.2 (for
tissues). These will lead to extraction blank samples for cell and
tissue extraction, respectively.

2. Take out 400 μL organic layer from the step above, and per-
form steps 9, 10, and 12 as described in Subheading 3.2.1 to
obtain extraction blank for UPLC-ESIMS analysis.

3. Take out another 200 μL organic layer, and perform steps
1–10 as described in Subheading 3.3 to obtain extraction
blank for GC-MS analysis.

3.4.3 Solvent Blank 1. Take 100 μL chloroform/methanol (1:1) into 1 mL glass vial,
and add 300 acetonitrile/chloroform/water (1:2:1) contain-
ing 5 μM chlorpropamide to prepare solvent blank for UPLC-
ESIMS analysis.

2. Use hexane containing 4 μM methylnonadecanoate as solvent
blank for GC-MS analysis.

3.4.4 Authentic Standard

Mixture

1. Standard mixture for UPLC-ESIMS: 10 μM heptadecanoic
acid, 10 μM nonadecanoic acid, 2 μM LPC(17:0), 5 μM LPA
(17:0), 2 μM PC(17:0/17:0), 2 μM SM(17:0), 2 μM CE
(17:0) in acetonitrile/isopropanol/water (1:2:1).

2. Standard reference mixture for GC-MS: FAME mixture
C4–C24.

3.5 UPLC-ESIMS-

Based Untargeted

Lipidomic Analysis

3.5.1 UPLC-ESIMS

Experiment

1. Room temperature should be maintained at 22 � 1 �C (see
Note 14). Turn on and stabilize the source voltage and gas
flow over at least 30 min.

2. Infuse 200 ng/mL sulfadimethoxine at 20 μL/min as lock-
spray (m/z ¼ 311.0814 in ESI + and 309.0658 in ESI modes).

3. Prepare a randomized sample list using a random number
generator function of Microsoft Excel with six pooled samples
at the beginning (see Note 15) and pooled, extraction blank,
solvent blank, and standard mixture samples injected intermit-
tently throughout the run.

4. Optimize cone and lens voltages to achieve desired mass accu-
racy, peak shape, and intensity for the lock mass (sulfadi-
methoxine) in positive (m/z ¼ 311.0814) and negative mode
(m/z ¼ 309.0658) as per instructions in the operator’s manual
of the mass spectrometer. Define these as lock masses in the MS
method for respective modes.
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5. Calibrate the mass axis (50–1000 Da) using 0.1 mg/mL
sodium formate in 90% isopropanol as per instructions in
operator’s manual.

6. Set up typical experimental parameters (see Note 16) for the
positive mode analysis of lipids in them/z range 50–1000 Da in
the sensitivity mode with capillary voltage at 3.1 kV, sampling
cone at 55 V, source temperature at 125 �C, desolvation tem-
perature at 400 �C, desolvation gas (N2) at 850 L/hr., cone gas
(N2) at 50 L/h.

7. For negative mode (see Note 16), perform the analysis in the
same m/z range in sensitivity mode with capillary voltage at
3.2 kV, sampling cone at 70 V, source temperature at 125 �C,
desolvation temperature at 400 �C, desolvation gas (N2) at
850 L/h, cone gas (N2) at 50 L/h.

8. Perform the chromatographic separation of lipids on a 100 mm
Acquity UPLC BEH C18 column using a gradient program
shown in Table 1.

9. Load glass sample vials, and maintain the sample chamber at
12 �C, and inject 5 μL of each sample for analysis.

3.5.2 Data Inspection,

Quality Control,

and Feature Extraction

1. Inspect chromatograms and check for any sudden shift in
baseline in QC samples or drop in intensity in standard mix
and pooled samples.

2. Inspect chromatograms of solvent blank samples for any carry-
over (see Note 17) by looking for peaks of compounds present
in the immediate preceding sample.

Table 1
LC gradient condition

Time Segment (min) Flow rate (ml/min) Solvent A (%) Solvent B (%)

0 0.4 60 40

0–2 0.4 57 43

2–2.1a 0.4 50 50

2.1–12 0.4 46 54

12–12.1a 0.4 30 70

12.1–18 0.4 1 99

18–18.1 0.4 60 40

18.1–20 0.4 60 40

aIndicates segments with ballistic gradient
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3. Inspect extraction blanks for any contamination or artifacts
(peaks other than internal standards present in ES 1 and ES 2).

4. Extract standard mix chromatograms for peaks corresponding
to chlorpropamide (m/z ¼ 277.0415+, 275.0257�), nonade-
canoic acid (m/z¼ 297.279�), LPC(17:0) (m/z¼ 510.356+),
LPC(19:0) (m/z ¼ 538.387+), LPA (17:0) (m/
z ¼ 445.233�), SM(17:0) (m/z ¼ 717.591+), and PC(17:0/
17:0) (m/z ¼ 762.601+) to check for consistency of retention
time and mass error (in ppm).

5. Check sample chromatograms for consistency of baseline and
retention time of internal standards. Figure 2a, b shows repre-
sentative chromatograms of a lipid extract in positive and neg-
ative ionization modes.

6. Overlay pooled samples (see Fig. 3) to check for reproducibility of
chromatograms, integrate extracted ion chromatograms of inter-
nal standards as well as representative endogenous peaks such as
LPC(16:0) (m/z¼ 496.34+), LPC(18:2) (m/z¼ 520.34+), PC
(38:4) (m/z ¼ 810.61+) in ESI+ mode or LPE(18:0) (m/
z ¼ 480.3�), PE(38:5) (m/z ¼ 764.53�), PC(36:3) (m/
z ¼ 828.58�, formate adduct), etc. Check mass error range.

7. Calculate coefficients of variation (CV) (seeNote 18) for inter-
nal standard as well as endogenous peaks. Figure 4a shows
extracted ion chromatograms of ion with m/z ¼ 810.61+
(shown in Fig. 4b) that shows a CV < 6% across multiple
injections of pooled sample and a retention time shift of
0.15 min (compared to its peak width of 0.4 min) across a
run consisting over 50 injections. CVs should typically be less
than 10% for representative peaks and retention time shift less
than half of the peak width.

8. Process the centroided and integrated mass spectrometric data
using MarkerLynx method with a mass window of 0.02 Da,
retention time window of 0.5 min, and intensity threshold of
200 counts and with box for data deisotoping checked in the
method (see Note 19).

3.5.3 Data Preprocessing 1. After total ion count (TIC)-normalization of MarkerLynx-
generated data matrix comprising features (m/z-retention
time pairs), perform principal components analysis of the
Pareto-scaled data matrix using SIMCA-P + 12. Check if sol-
vent blank, extraction blank, and standard mix samples are
tightly clustered in the scatter plot. Otherwise, check chroma-
tograms for quality, extraction parameters, instrument log, and
repeat experiment (see Note 20).

2. Remove, solvent blanks, extraction blanks, and standard mix
samples from the analysis.
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3. Exclude features that show missing values in more than 10% of
pooled samples. Also exclude all features with �75% missing
values in individual samples. Replace all remaining missing
values by a number ten times smaller than the lowest value in
the data matrix.

4. Inspect whether pooled samples are clustered tightly compared
to individual samples in the scatter plot before proceeding to
the next step (see Note 21).
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Fig. 2 Representative total ion chromatogram of an untargeted lipidomic analysis of liver tissue in ESI (a)
positive and (b) negative modes. Typical retention time window for compond classes are shown. LPC,
lyspophosphocholine; LPE, lysophosphoethanolamine; MG, monoacylglycerol; PC, phosphocholine; PE, phos-
phoethanolamine; SM, sphingomyelin; CER, ceramide; DG, diacylglycerol; TG, triacylglycerol; FA, fatty acid;
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5. Remove pooled samples from the data matrix, and upload on to
the MetaboAnalyst webserver as a peak intensity table (with
unpaired samples in rows and features in columns) for statistical
analysis. Choose sum normalization, log transformation (see
Note 22), and Pareto-scaling of the data to analyze intercorre-
lation between features across sample set.

6. Download the correlation matrix and screen features with cor-
relation coefficients >0.9 (see Note 23), compare their elution
profile, and remove potential adducts or fragments. For exam-
ple, Fig. 5a shows the extracted chromatograms of a highly
correlated co-eluting ion cluster comprising of the parent ion
(m/z ¼ 538.391+), K+ adduct (m/z ¼ 576.343+), Na+ adduct
(m/z ¼ 560.371+) as well as in-source fragments due to loss of
one water molecule (m/z ¼ 520.376+) and two water mole-
cules (m/z ¼ 502.377+), as found in the mass spectrum
(Fig. 5b) under the LPC(19:0) peak at 2.68 min.
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Fig. 3 Overlay of total ion chromatograms (ESI positive mode) of 5 pooled samples injected intermittently
during a run of over 50 samples to check consistency of mass spectrometer performance and chromatogram
reproducibility
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7. Remove all adducts and fragments except the putative parent
ion from the data matrix (see Note 24).

8. Remove all features consistently present in solvent blank
and extraction blank samples (see Subheading 3.5.2), and use
this trimmed data matrix for pattern recognition and feature
identification.

3.5.4 Pattern Recognition

and Identification

of Features of Interest

1. For tissue samples, normalize ion counts for each feature with
respect to tissue weight or total ion count. For cell lines,
normalize with respect to cell count, total protein concentra-
tion or total ion count.

2. Define class variables after importing the normalized data
matrix into SIMCA-P 12+. Define class variable (Y) as “0” for
non-cancerous tissue or cell and “1” for cancer tissue or cell.
No class variable needs to be defined for pooled samples.

3. Exclude “Y” variables, and perform a principal components
analysis on Pareto-scaled data to check that clustering is tight
for pooled samples compared to individual samples in the
scores scatter plot.

4. Remove pooled samples from the analysis, check for any segre-
gation of non-cancer and cancer samples. In case non-cancer
and cancer samples are clustered distinctly, identify ions con-
tributing to such segregation from the loadings plot.
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Fig. 4 (a) Extracted ion chromatograms for m/z ¼ 810.61+ in pooled samples showing integrated area under
each peak and the retention time along with (b) the mass spectrum under the peak on the right. The CV was
calculated to be 6%, and a retention time drift of 0.15 min were observed over a run of 50 samples
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5. If there is no segregation of cancer and non-cancer samples,
remove most abundant ions, and repeat the PCA analysis. PCA
is driven by most abundant features. They tend to mask rela-
tively low abundant features that might be of interest with
respect to the correlation between metabotype and phenotype.

6. Perform supervised orthogonal projection to latent structures-
discriminant analysis (OPLS-DA) (see Note 25), and identify
ions contributing significantly to class prediction from the
loadings S-plot with p(corr)[1] > 0.8 or p(corr)[1] < �0.8.

7. Submit normalized and class-labelled data matrix (without
pooled samples) to MetaboAnalyst server and choose no nor-
malization, log transformation, and Pareto-scaling of the data.

8. Perform heatmap analysis to get an idea about the pattern of
change in lipidome. Use “volcano plot” analysis with p < 0.05
using nonparametric test assuming unequal variance, and apply
the FDR correction to identify features that change signifi-
cantly between classes.

3.5.5 Lipid Identification 1. Submit masses of features of interest to databases like LIPID-
MAPS, HMDB, or METLIN. Use mass error window of
according to results obtained in steps 4 and 6 of Subheading
3.5.2 (see Note 26). In addition to protonation or deprotona-
tion, choose common adducts (e.g., Na+, K+, NH4+ for ESI+
and Cl�, HCOO� for ESI-) or fragments (e.g., –H2O,
–2H2O) (see Note 27).

Fig. 5 (a) Extracted ion chromatograms of LPC(19:0) (m/z ¼ 538.391+) and it’s K+ adduct (m/z¼ 576.343+),
Na+ adduct (m/z ¼ 560.371+) as well as in-source fragments due to loss of one (m/z ¼ 520.376+) and two
water molecules (m/z ¼ 502.377+) along with (b) the mass spectrum under the peak at 2.68 min
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2. Perform MS/MS analysis on ions of interest by ramping up
collision energy 5 to 50 eV (see Note 28) with argon as the
collision gas. Chromatography and other mass spectrometry
conditions including lockspray should be similar to that
described above for the respective sample and mode of analysis
(refer to steps 6–8 in Subheading 3.5.1).

3. Compare experimental fragmentation pattern reported in the
database or theoretical fragmentation pattern with the
observed fragmentation pattern.

4. The integer mass of the molecular ion (M+H or M�H) of
lipids (see Table 2) can help to reduce plausible structures. In
addition, several lipid classes produce signature fragmentation
patterns (see Table 2) that can not only help to identify the lipid
class but also to identify the fatty acid side chains, specifically,
number of carbons and unsaturations to help in identification
of the species [39–43]. For example, Fig. 6a shows that LIPID-
MAP returns three and six hits for ions with m/z value 480.31
and 568.36, respectively, in the negative ionization mode
assuming possible Cl–, HCOO–, CH3COO– adducts and
M-CH3 fragments along with M�H. Presence of the 283 frag-
ment in MS/MS spectra (Fig. 6b) unequivocally suggests the
species to be LPE(18:0). Similarly, presence of the 283 frag-
ment in the MS/MS spectra of the 568 peak suggests it to be
formic acid adduct of LPC(18:0). The neutral loss of 60 mass
units corresponds to a loss of (HCO2 + CH3) from the formic
acid adduct [43].

Table 2
Signature fragments for lipid identification

Lipid
Classa Molecular ion m/zb

ESI
Pos

ESI
Neg Signature fragmentsc Neutral lossesd

PCe Even Y Y 184þ, 104þ, 224�, 140� 60 (�)

PE Even Y Y 196�, 140� 141 (þ)

PS Even Y 153� 185 (þ), 87 (�)

PI Odd Y 223�, 241�, 259�, 297�, 315�
PG Odd Y 153�, 227�, 171�
PA Odd Y 153�, 135�
SM5 Odd Y Y 184þ, 104þ 60 (�)

aPC glycerophosphocholine, PE glycerophosphoethanolamine, PS glycerophosphoserine, PI gycerophosphoinositol, PG
glycerophosphoglycerol, PA glycerophosphate, SM sphingomyelin
bBoth (MþH)þ and (M�H)� will have same odd/even characteristic.
cThe mode of ionization indicated next to the m/z value of the ion. Numbers in Da.
dThe mode of ionization, where the neutral loss is observed, is presented in brackets
ePC and SM shows up as formate adduct in negative mode due to presence of formate in the buffer and undergoes a
neutral loss of 60 (HCO2þCH3) as seen in Figure 6c.
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5. While selecting a particular precursor ion forMS/MS, it should
be remembered that due to structural or stereoisomerism,
multiple lipids in the same class may have same molecular
weight eluting at different times. For example, the ion
782.57+, which returns 16 (see Note 29) hits in LIPIDMAPS
search (Fig. 7a), shows two peaks at 7.27 min and 8.55 min
(Fig. 7b). MS/MS analysis (Fig. 7c) shows a phospholipid
signature (dotted box) along with LPC(16:0) fragment for
the former and LPC(18:2) fragment for the latter, suggesting
them to be PC(16:0/20:4) and PC(18:2/18:2), respectively.

6. Finally, whenever possible, run authentic standards to confirm
the identity by comparing the retention time and the fragmen-
tation pattern (see Note 30).

Fig. 6 (a) LIPIDMAPS database showing three and six possible identities for 480.31- and 568.34-, respec-
tively, with a mass error of 0.01 units. (b) MS/MS analysis showing the 18:0 fatty acid ion to identify 480.31-
as LPE (18:0). (c) MS/MS analysis showing the 18:0 fatty acid peak to identify 568.34- as formic acid adduct
of LPC (18:0)
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3.6 GC-MS-Based

Analysis of Fatty Acid

Methyl Esters

3.6.1 GC-MS Experiment

1. Place samples into the autosampler.

2. Use hexane and methanol for strong and weak wash of injector
needle.

3. Inject at least five pooled samples before injecting individual
samples (see Note 15).

4. Create a randomized sample list using random number gener-
ator function of Microsoft Excel with pooled, extraction blank,
and solvent blank samples (see Subheading 3.3, step 11) and
reference FAME mixture C4–C24 inserted intermittently
throughout the run.

5. Add methyl esters of serially diluted calibration standard before
and after the run (see Subheading 3.3, step 11).

6. Inject 1 μL of sample into the inlet, and analyze in splitless
mode using helium as the carrier gas (1 mL/min) and

Fig. 7 (a) LIPIDMAPS database showing 16 possible identities for 782.57+ ion which (b) shows peaks at 7.27
as well as 8.55 min in the chromatogram. (c) MS/MS analysis revealed signature for the phosphocholine head
group (showed with dotted box) under both peaks while showing LPC (16:0) and LPC (18:2) fragments under
7.27 min and 8.55 min peaks, respectively, to identify them as PC(16:0/20:4) and PC(18:2/18:2)
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following instrument parameters: inlet temperature at 300 �C,
transfer line temperature at 300 �C, source temperature at
230 �C, quadrupole temperature at 150 �C, mass range at
46–500 Da.

7. Equilibrate the column for 1 min at 70 �C before injection,
maintain the column at 70 �C for 4 min, and ramp it at 5 �C/
min to 320 �C, and hold at that temperature for 5 min.

8. In the MS section of the method, enter solvent delay of 6 min
to keep the MS off during first 6 min of the run.

3.6.2 Data Analysis 1. Open chromatograms using MassHunter Qualitative analysis
suite or MSD ChemStation. The chromatogram for the
C2–C24 FAME reference standard is shown in Fig. 8a.
Figure 8b shows the fatty acid methyl ester profile of a liver
sample, while Fig. 8c shows that for HepG2 cells. Typical
retention time for FAME standards are given in the Table 3.

2. Examine the solvent blank samples for any carry-over by look-
ing for peaks present in the sample immediately preceding it
and extraction blank samples for contamination.

Fig. 8 Total ion chromatogram of fatty acid methyl esters from (a) reference fatty acid methyl ester mixture
(C4–C24), (b) liver tissue extract, and (c) HepG2 cell extract. Retention time of representative fatty acid methyl
esters is given in Table 3
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Table 3
Retention times of fatty acid methyl ester standards

Compound Structurea Retention time (min)

Methyl octanoate 8:0 10.1

Methyl decanoate 10:0 15.84

Methyl undecanoate 11:0 18.5

Methyl dodecanoate 12:0 20.95

Methyl tridecanoate 13:0 23.29

Methyl myristoleate 14:1 25.23

Methyl myristate 14:0 25.53

Methyl cis-10-pentadecenoate 15:1 27.34

Methyl pentadecanoate 15:0 27.6

Methyl palmitoleate 16:1 29.2

Methyl palmitate 16:0 29.64

Methyl cis-10-heptadecenoate 17:1 31.1

Methyl heptadecanoate 17:0 31.5

Methyl linolenate 18:3 32.5

Methyl linoleate 18:2 32.8

Methyl oleate 18:1 33.04

Methyl stearate 18:0 33.38

Methyl arachidonate 20:4 35.68

cis-8,11,14-Eicosatrienoic acid methyl ester 20:3 36.0

cis-11,14-Eicosadienoic acid methyl ester 20:2 36.3

cis-11-Eicosenoic acid methyl ester 20:1 36.4

Methyl eicosanoiate 20:0 36.83

Methyl heneicosanoate 21:0 38.45

cis-4,7,10,13,16,19-Docosahexaenoic acid methyl ester 22:6 38.84

cis-13,16-Docosadienoic acid methyl ester 22:2 39.56

Methyl docosanoate 22:0 40.0

Methyl tricosanoate 23:0 41.51

Methyl cis-15-tetracosenoate 24:1 42.63

Methyl tetracosanoate 24:0 42.97

aIndicates the number of carbon atoms followed by number of double bonds
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3. Check for any considerable shift (> half of the peak width) in
retention time (see Note 31).

4. Identify fatty acids present in samples by comparing retention
time and fragmentation pattern of the corresponding methyl
esters in the C4–C24 FAME mixture reference and the sample
(see Note 32).

5. Create a method for extraction of each of these peaks by
defining the retention time window and assigning an abundant
and characteristic ion as qualifier along with two other charac-
teristic ions as qualifier (see Note 33).

6. Integrate the area under the extracted chromatogram of peaks
for reference standards and representative peaks from the
pooled samples to calculate the coefficient of variation. Typi-
cally, it should be within 5% for reference standards and, at
most, 10% for pooled samples.

7. For serially diluted methyl ester calibration standards, define
the highest concentration of the fatty acid of interest used,
dilution factors, and number of dilutions to generate desired
number of concentration levels for each standard.

8. Use nonadecanoic acid as the internal standard, and validate
the method, and choose to integrate and analyze.

9. Find the limit of quantitation and linear dynamic range for
r > 0.95. In case the concentration range of the fatty acid of
interest is beyond the linear dynamic range, either concentrate
or dilute samples as appropriate.

10. Finally, normalize fatty acid concentrations by tissue weight for
tumor and adjacent normal tissues. For cells, normalize values
using the cell count or the total protein concentration.

3.7 Statistical Tests 1. To test the significance of difference in fatty acid or lipid
composition of cells or tissues, use Mann-Whitney U test
with 95% confidence interval and apply correction for multiple
testing (such as Bonferroni’s correction) using Prism software.

2. Examine correlation between any phenotype of interest and
level of fatty acid or lipids using Pearson correlation analysis.

3. Perform receiver operator characteristic (ROC) analysis to
examine the ability of lipidomic signatures to distinguish
between cancer and normal or any other phenotypically distinct
sample sets.

4 Notes

1. The method described here was developed and optimized
using aforementioned instruments (see Subheading 2.4) and
softwares (see Subheading 2.10). However, the basic analytical
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approach is platform-independent, and it can be adopted for
similar instruments from other vendors. Similar columns for
ultrahigh-performance liquid chromatography (UHPLC) or
gas chromatography from other vendors could also be used.

2. Prepare 100 μM solution of fatty acid to be quantitated in
hexane containing 4 μM nonadecanoic acid. This solution is
serially diluted 1:1 (v/v) with hexane containing 4 μM non-
adecanoic acid to produce calibration standards for respective
fatty acids.

Often, more than one fatty acid are desired to be quanti-
tated. In such case make a mixture containing 100 μM of each
of the fatty acid of interest, and dilute as described above.
Proceed for preparation of fatty acid methyl ester as described
in Subheading 3.3 and GC-MS analysis as described in Sub-
heading 3.6. After GC-MS analysis, create method (see step 5,
Subheading 3.6.2) for quantitation of fatty acids by defining
the extraction window according to the retention time
observed with the authentic standards and assigning the molec-
ular ion of respective fatty acid as the quantifier or one of the
qualifier ions.

3. Degradation starts immediately after excision of the tissue.
Delay>15minmay cause changes in phospholipid profiles [44].

4. Storage is not recommended beyond 1 year. Significant degra-
dation of proteins and lipids is associated with long-term stor-
age [45, 46]. If multiple use of the same samples is foreseen,
samples should be cut into small single-use portions on dry ice
using surgical blades, and stored at �80 �C. Preferably, use
separate surgical blades for each sample to avoid cross-
contamination. In the case in which the same blade is used,
wipe with fresh lint-free tissue paper; dip it into water, followed
by methanol followed by chloroform; and air-dry before the
use on the next sample.

5. Plates are preferred over T-flasks for the ease of harvesting cells,
particularly, for harvesting with dry ice and scraping.

6. Avoid trypsinization, particularly, if simultaneous metabolomic
analysis is foreseen or planned. It has been shown to cause
significant metabolite loss [47].

7. Use trypan blue staining to count dead cells. Culture should
have no more than 10% of dead cells. Both cells under compar-
ison should have a similar number of dead cells. The lipid
composition may be skewed by of the presence of dead cells
or cell debris. If needed live cells should be separated from dead
ones by centrifugation or using Ficoll before further
processing.
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8. Patient-derived cancer cells, such as those from hematological
malignancies or circulating tumor cells, are collected through a
variety of techniques including immune capture, density gradi-
ent centrifugation, or size selection. Many of the chemicals
used in these procedures, such as Ficoll, may interfere with
MS analysis. They should be removed by thorough wash before
proceeding for extraction.

9. Methanol/chloroform/water-based biphasic extraction has
been used by several researchers and works well for untargeted
profiling. However, if specific lipid class is of interest, extraction
method should be chosen accordingly. Visit following sites for
more on lipid-specific extraction protocols:

http://www.cyberlipid.org/
http://lipidlibrary.aocs.org/History/content.cfm?
ItemNumber¼40362
http://lipidlibrary.aocs.org/Analysis/content.cfm?
ItemNumber¼40376#G

10. Since patient-derived cells or tissues are often available in small
quantities, it is a good idea to performmetabolomic analysis on
the same sample. More importantly, it allows for analysis of
correlation between metabolic reprogramming and lipidomic
changes observed in the cancer cells or tissue and thus helps to
give a better mechanistic understanding of both metabolomic
and lipidomic data. Add 5 μM alpha-aminopimelic acid if
simultaneous metabolomic analysis is planned. This aqueous
layer can be analyzed using untargeted metabolomics
approaches. Otherwise, modify the protocol to use saline
instead of water. This helps to improve the recovery of lipids
into the organic phase.

11. Be steady and gentle while penetrating the disk and taking out
the lower organic layer to ensure that disk is not totally dis-
rupted and no particulate matter comes into the organic layer.
In case the volume of the cleanly collected organic layer is not
sufficient, modify the steps 10–12 accordingly.

12. For most normal and tumor tissues, these beads will work.
However, use 2.8 mm beads for bony and fibrous tissues.

13. Typically, two cycles of 6000 rpm (20 s-30 s-20 s) suffices for
most tissues. However, check samples to ensure that it has
become a homogenous slurry, and use additional cycles before
proceeding to the next step.

14. Mass accuracy of TOF instruments may be affected by temper-
ature fluctuations. Check the room temperature profile if sud-
den changes in mass profile are noted during a long run.

15. Significant change in response and shift in retention time is
observed between the first injection into a clean column and
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subsequent injections of the same sample. Therefore, column
should be conditioned by injecting few pooled samples after
which the chromatogram becomes more reproducible.

16. For every platform these experimental parameters should
always be optimized afresh.

17. Lipids are more likely to stick to the column compared to
metabolites/small molecules. Strong wash with a nonpolar
solvent is essential to minimize carry-over. Make sure that
column is not overloaded. This would lead to peak shift and
tailing. The proportion of tissue and reconstitution volume
needs to be optimized.

18. While calculating coefficient of variation of higher lipid species
such as PC, PE, TG, etc., remember that there may be multiple
species with exactly same molecular weight due to structural
isomerism. For example, Fig. 4a shows the four peaks at
around 11.3, 11.8, 12.3, and 12.7 min in the extracted chro-
matogram of m/z ¼ 810.61+, representing different structural
isomers of PC(38:4) under the chromatographic conditions
used here. In such case, be careful to compare only
corresponding peaks to calculate CV. Achieving good chro-
matographic separation is essential along with retention time
reproducibility across the chromatogram to successfully imple-
ment the method described here. In case significant drift in
retention time is observed, retention time locking can be
helpful.

19. These numbers should be based on the retention time consis-
tency and mass error as found in earlier steps and baseline
noise, i.e., data quality. Windows narrower than those
observed in the experiment will lead to artifacts such as peak
splitting during deconvolution; windows too broad will lead to
merging of closely eluting peaks during processing. Since lipid
chromatogram often has very closely eluting peaks and masses
of constituents often differing by two units (such as due to
increasing or decreasing unsaturation in fatty acid side chain),
these values should be chosen carefully. Otherwise, it might
lead to artifacts during deisotoping. This makes data prepro-
cessing very important before proceeding to multivariate anal-
ysis for identification of features of interest that might be
enriched or depleted in cancer cell line or tumor. Inspect the
baseline of the blank and standard mix samples to determine an
initial cutoff for ion counts. Optimize it by minimizing spuri-
ous features (with no bona fide elution profile across samples
and missing values) in the dataset by repeated extraction of
features at various cutoffs above and below the initial value.

20. Changes in instrument response over a long run may lead to
such results. The quality control steps help to detect such
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events. However, use of very narrow mass and retention time
window or very low ion count cutoff in MarkerLynx can lead
to peak splitting or falsely introducing noise into the dataset,
counting them as real signals.

21. This may be caused by poor sample stability during a long run
as well as points mentioned inNote 19 above. Quality control
steps using pooled samples are designed to capture such inci-
dents. Inspect for any turbidity or precipitation in the sample in
such case. Although very rare, this situation may also arise if the
CVs of metabolic features (biological) are indeed comparable
to their respective experimental CVs. In such case, check for
any confounding factors, rethink if the cohort is suitable for
analysis of differential signatures associated with cancer, and
increase the sample number until the samples are significantly
more scattered in the PCA scores scatter plot than the pooled
samples.

22. In sum normalization, ion counts for each feature are divided
by the total ion count for that sample. Most of the statistical
analysis and model building that are performed assume a
Gaussian (Bell-shaped distribution) of the data. However,
owing to a huge variation in the relative abundance of individ-
ual metabolites within and across samples as well as due to a
limited sample size (in most experiments), the data distribution
is often skewed. Log transformation allows for the data distri-
bution to appear more Gaussian and allows for further statisti-
cal analysis that assumes such parametric distributions.

23. This cutoff value depends on the data quality. Check correla-
tion coefficients of known ion clusters originating from the
same molecule (e.g., LPC(19:0) and ions related to it as
shown in Fig. 5). The correlation coefficient for such ion
clusters found in standard mixture or pooled samples can be
used to decide the cutoff value for the correlation coefficient. It
should also be noted that a correlation between features may
also arise if they belong to biologically connected pathways.

24. Please note that there may be lipid molecules with retention
times very close to one another and structurally related. Unless
you are confident about an ion being a common adduct (Na+,
K+, NH4

+) or fragment of another ion, please refrain from
excluding them. For example, if there are two ions with differ-
ence in m/z value of 18 and the lower m/z value (say, M)
represents a molecule with unsaturated fatty acid side chain,
the ion with higher m/z value (M + 18) may either be a simple
non-covalent water adduct or be a different molecule with the
side chain having one unsaturation less than M along with an
additional hydroxyl group. Be particularly careful about
excluding such related ions, if the retention time shift is
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significant over the run. Identity of such moiety can eventually
be confirmed using authentic standard and/or MS/MS.

25. R2 and Q2 values should, respectively, be at least 0.5 and 0.4.
High R2 with poor Q2 value indicates over-fitting of the
model. Any model with negative Q2 value should not be used
to identify features contributing to class prediction.

26. Upon analysis of mass error of authentic standards and endog-
enous compounds in steps 4 and 6 of Subheading 3.5.2, find
the highest error observed in these QC samples during the
experiment. The mass error window for the database search
should be either comparable or higher than the largest mass
error observed.

27. Under ESIMS conditions described in this chapter, doubly or
triply charged ions are generally not seen, so they should be
excluded from query unless spacing between isotopic peaks
indicates otherwise. In addition, adducts like CH3COOH
and MeOH could also be excluded since under the aforemen-
tioned experimental conditions they are unlikely to be present.

28. Some fragments may be very labile and may not produce
enough intensity of characteristic fragments upon ramping
the collision voltage. In such case, stepwise increase collision
energy to catch labile fragments.

29. In principle, it is possible to have more candidates than those
16 that was returned by LIPIDMAPS search form/z¼ 782.57
– due to regio- and stereoisomerism involving double bonds
on fatty acid side chains. MS/MS alone is often insufficient to
distinguish between such regio- and stereoisomers and to
identify position of double bonds on carbon chain. For such
detailed analysis, cation doping, MSn analysis, and ion mobility
mass spectrometry can be useful [48–53].

30. Authentic standards are sometime unavailable or expensive. In
cases where the fragmentation pattern does not give a clear clue
and leaves too many possibilities, some of them can be
excluded based on an informed guess about the retention
time. This depends on the lipid class as well as the structure.
It helps to run representative compounds for each lipid class so
that the approximate retention time window under experimen-
tal conditions can be estimated. However, this takes significant
expertise on chromatographic behavior of molecules, and
exclusions should be conservative.

31. If considerable shift is observed, use retention time locking.

32. Samples present several bona fide peaks other than those
matching with C4–C24 standards. NIST Library can be used
to identify plausible candidates (match score > 800) followed
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by confirmation by matching retention time and fragmentation
pattern using authentic standards.

33. Check extracted chromatograms and make sure ions are
co-eluting. Analyze the spectra to choose one of the most
abundant ions as the quantifier. Use the molecular ion (M+)
as the quantifier whenever possible or, at least, as one of the
qualifier ions. The level of uncertainty in the ratio of the
quantifier and qualifier ions for extraction of the peak of inter-
est should be less than half of the actual abundance ratio of the
ion pair. For example, if the abundance of qualifier 1 and 2 is
40% and 20%, respectively, the uncertainty level for qualifier
1 and 2 should be <20% and <10%, respectively. Examine
linearity, dynamic range, and the limit of quantitation to iden-
tify best pairs for quantitation.
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Chapter 12

Mass Spectrometry-Based Profiling of Metabolites
in Human Biofluids

Tanushree Chakraborty and Soumen Kanti Manna

Abstract

Cancer poses a daunting challenge to researchers and clinicians alike. Early diagnosis, accurate prognosis,
and prediction of therapeutic response remain elusive in most types of cancer. In addition, lacunae in our
understanding of cancer biology continue to hinder advancement of therapeutic strategies. Metabolic
reprogramming has been identified as integral to pathogenesis and progression of the disease. Consequently,
analysis of biofluid metabolome has emerged as a promising approach to further our understanding of
disease biology as well as to identify cancer biomarkers. However, unbiased identification of robust and
meaningful differences in metabolic signatures remains a non-trivial task. This chapter describes a
generalized strategy for global metabolic profiling of human biofluids using ultra-performance liquid
chromatography (UPLC) and mass spectrometry, which together offer a sensitive, high-throughput, and
versatile platform. A step-by-step protocol for performing untargetedmetabolic profiling of urine and serum
(or plasma), using hydrophilic interaction liquid chromatography (HILIC) or reverse-phase
(RP) chromatography coupledwith electrospray ionizationmass spectrometry (ESI-MS) tomultivariate data
analysis and identification of metabolites of interest has been detailed.

Key words Urine, Serum, Plasma, Metabolomics, Untargeted profiling, HILIC, RP, UPLC-ESI-MS

1 Introduction

Initially elucidated in the phenomenon of aerobic glycolysis (War-
burg effect) [1], metabolic reprogramming has been established as
a hallmark of cancer. However, the role of metabolic reprogram-
ming has expanded far beyond accelerated energy production from
glucose in cancer cells. Emerging evidences suggest that metabolic
reprogramming is essential to channel nutrient-derived carbon and
nitrogen into de novo synthesis of nucleic acids, amino acids, amino
sugars, nucleotide sugars, as well as fatty acids, which are building
blocks for different macromolecules required for proliferating cells
[2–5]. In addition, it has also been well-established that epigenetic
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events, such as methylation and acetylation, essential for changes in
gene expression, are intricately connected to metabolic processes
[6, 7]. In fact, some metabolites have been shown to directly
promote the oncogenic property of cells. Consequently, metabo-
lites like 2-hydroxyglutaric acid [8, 9], fumaric acid [10, 11], and
succinic acid [12, 13] have been dubbed as ‘oncometabolites’.
Several studies have shown thatmetabolic signatures of tumor tissue
[14–17] as well as biofluids, such as plasma [18, 19], serum
[20–24], urine [25–30], saliva [31], bile [32], and cerebrospinal
fluid [33] from cancer patients, are distinct from those from healthy
individuals. These bear the promise of utility of metabolic profiling
of human biofluids in providing useful minimally-invasive alterna-
tive for screening, diagnosis, and monitoring of therapeutic
response in cancer patients [34, 35], subject to validation in multi-
ple independent cohorts and establishment of mechanistic associa-
tion between putative biomarkers and pathogenesis.

However, very few studies have so far established unequivocal
mechanistic association between changes in a single or a set of
metabolites in biofluids and cancer in humans. Some of the exam-
ples are metabolites related to specific genes that contribute to
pathogenesis of the disease, such as 2-hydroxyglutaric acid, which
was identified as a product of IDH1 mutants in glioblastoma and
subsequently other cancers [9, 36] or fumaric acid, which accumu-
lates as a consequence of mutation in fumarate hydratase genes
[37]. This is not only because most cancers involve multiple
genes, gene products, and pathways but also the fact that the
human biofluid metabolome is very diverse and influenced by
multiple extrinsic factors, in addition to genetic architecture;
including diet, lifestyle, habitat, environmental exposure and gut
flora, which are difficult to control. This essentially warrants untar-
geted metabolic profiling to be an integral step for identification of
cancer-associated signatures.

Mass spectrometry coupled with chromatography and nuclear
magnetic resonance (NMR) spectroscopy are two most widely used
techniques for global metabolic profiling. However, it should be
noted that biofluid may contain metabolites with concentrations
varying over ten orders of magnitude and the metabolite(s) of
interest may be of very low abundance. Although NMR gives
quite unequivocal structural identification for many molecules
and offers robust quantitation, it is relatively insensitive and, there-
fore, of limited use as a global profiling-based discovery tool aimed
at identification of orthogonal signatures of interest. In addition,
NMR cannot distinguish between molecules with similar and repet-
itive motifs such as lipid molecules. Thus, superior sensitivity and
structural information make mass spectrometry the preferred tool
for global profiling of human biofluids. Mass spectrometry is typi-
cally coupled with gas chromatography or liquid chromatography
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to help in separation, ionization, identification, and quantitation of
metabolites. Compared to gas chromatography, liquid chromatog-
raphy not only allows analysis of biofluid metabolome with minimal
sample preparation but also offers a higher throughput. Through-
put is important from the viewpoint of discovery as well as
translation. Recent advances in chromatography, particularly,
development of ultra-performance liquid chromatography
(UPLC), have significantly helped to further increase the through-
put as well as sensitivity and reproducibility, making it a powerful
tool for unbiased discovery of cancer-associated signatures in bio-
fluids. It should be noted that biofluids may contain metabolites
that are highly polar (such as amino acids, nucleosides) as well as
non-polar (such as lipids), which behave quite differently in terms
of their chromatographic properties. Therefore, there is no one--
size-fits-all method for untargeted metabolic profiling of biofluids
using chromatography and mass spectrometry.

As mentioned above, several studies have reported targeted as
well as untargeted metabolic profiling of a variety of human biofluid
samples in the context of cancer. Targeted metabolic profiling is
focused and, therefore, relatively convenient to execute. Untar-
geted metabolic profiling, on the other hand, does not presume
an association between any metabolite or metabolic pathway and
pathology of interest. Thus, it offers an opportunity to identify
novel features that may not only lead to orthogonal signatures for
a particular type or subtype of cancer but also further our under-
standing of cancer biology. This was successfully demonstrated by
our previous works in the context of lung cancer and colorectal
cancer. While the lung cancer study identified a novel metabolite
D-ribofuranosylcreatine to be a potential noninvasive biomarker
for lung cancer [28], the colorectal cancer study revealed novel
noninvasive metabolic signatures of aberrant methylation [38].

Therefore, the aim of this protocol is to provide a method and
guidelines for global profiling of both polar and non-polar meta-
bolites in commonly sampled biofluids such as urine, plasma, or
serum using ultra-performance liquid chromatography (UPLC)
coupled with electrospray ionization mass spectrometry (ESIMS).
Although, the method described hereneath is for the aforemen-
tioned biofluids, it can be adopted for other biofluids, such as saliva,
bile, and cerebrospinal fluid. This article describes details of experi-
mental setup and generalized methodology for data analysis to
identify signatures of interest along with recommendations and
advice from our personal experience. Special emphasis has been
given to quality control and data preprocessing to reduce chances
of spurious associations.
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2 Materials

2.1 Solvents 1. Water (UHPLC-MS grade).

2. Methanol (UHPLC-MS grade).

3. Acetonitrile (UHPLC-MS grade).

4. Isopropanol (LC-MS grade).

2.2 Chemicals 1. Chlorpropamide.

2. Difluoromethylornithine (DFMO) hydrochloride hydrate.

3. α-Aminopimelic acid.

4. 4-Nitrobenzoic acid.

5. Debrisoquine sulfate salt.

6. Ammonium acetate.

7. Ammonium hydroxide.

8. Acetic acid.

9. Sulfadimethoxine.

10. Sodium hydroxide.

11. Formic acid.

12. Authentic standards for metabolites of interest.

2.3 Stock

and Working Solutions

1. Lockspray solution: 250 pg/μL sulfadimethoxine in 50% aque-
ous acetonitrile.

2. Chlorpropamide stock: 5 mM chlorpropamide in methanol.

3. α-Aminopimelic acid stock: 5 mM aqueous
α-aminopimelic acid.

4. Difluoromethyornithine stock: 5 mM aqueous
difluoromethylornithine.

5. Debrisoquine stock: 2 mM aqueous debrisoquine.

6. 4-Nitrobenzoic acid stock: 10 mM 4-nitrobenzoic acid in
methanol.

7. A solution containing 1 μM debrisoquine and 5 μM difluoro-
methylornithine was prepared either in water for reverse-phase
analysis or in acetonitrile/water/methanol solvent mixture
(65:30:5) for hydrophilic interaction liquid chromatography.

8. Authentic standard cocktail: 20 μMof each authentic standards
comprising of representative metabolites present in urine (see
Note 1) and serum in 40% aqueous acetonitrile (for reverse-
phase analysis) or in acetonitrile/water/methanol solvent mix-
ture (65:30:5) (for hydrophilic interaction liquid
chromatography).
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2.4 Diluents 1. Diluent A: 5 μM chlorpropamide in 50% aqueous acetonitrile.

2. Diluent B: 10 μM chlorpropamide in 70% aqueous acetonitrile
solution.

3. Diluent C: 5 μM chlorpropamide and 10 μM α-aminopimelic
acid in acetonitrile/water/methanol (60:35:5).

2.5 Solvents

for Chromatography

2.5.1 RP

1. Eluent A: 0.1% aqueous formic acid degassed by sonication (see
Note 2).

2. Eluent B: 0.1% formic in acetonitrile degassed by sonication.

2.5.2 HILIC 1. Eluent A: 10 mM ammonium acetate in 90% acetonitrile
degassed by sonication.

2. Eluent B: 10 mM ammonium acetate in 10% acetonitrile
degassed by sonication.

2.6 Instruments 1. Pipettements (1–10 μL, 10–100 μL, 20–200 μL,
100–1000 μL).

2. Refrigerated centrifuge (capable of 18,000 � g at 4 �C).

3. Vortex.

4. Xevo G2 QTof coupled with a Acquity™ UPLC platform
(Waters Corp, Milford, MA) (see Note 3).

2.7 Chromatography

Columns

1. 50 mm Acquity UPLC BEH C18 (particle size 1.7 μm,
i.d. 2.1 mm) for reverse phase (RP) (see Note 3).

2. 50 mm Acquity UPLC BEH amide column (particle size
1.7 μm, i.d. 2.1 mm) for hydrophilic interaction liquid chro-
matography (HILIC) (see Note 3).

2.8 Gasses 1. Nitrogen (purity >99.999%).

2. Argon (purity >99.999%).

2.9 Software 1. Microsoft Excel.

2. MassLynx package including MarkerLynx and TargetLynx.

3. SIMCA-P12+ (Umetrics, Kinnelon, NJ).

4. Prism version 6 (GraphPad).

2.10 Online

Databases

1. METLIN: https://metlin.scripps.edu/ [39].

2. HMDB: http://www.hmdb.ca/ [40].

3. MassTRIX: http://masstrix3.helmholtz-muenchen.de/
masstrix3/ [41].

4. MetaboAnalyst: http://www.metaboanalyst.ca/ [42].
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3 Methods

3.1 Clinical Samples Collect first-pass midstream urine samples from empty-stomach
subjects. Fasting blood samples should be collected. It should be
allowed to clot standing at room temperature for 30 min and spun
at 2000 � g for 10 min at 4 �C to collect the serum. For plasma,
blood samples are collected in tubes containing anticoagulants
(preferably, lithium heparin) followed by centrifugation at 4 �C to
separate cells and collect plasma. All samples are stored in �80 �C
until further use (see Note 4). Since plasma and serum samples are
processed in similar manner in this protocol, in the following
section, only serum is mentioned for convenience.

3.2 Metadata While samples should be identified by anonymous bar codes or
sample identification number, details of age, gender, BMI, ethnic-
ity, and clinical, pathological status, any ongoing treatment or
medication and any other relevant lifestyle-related information,
such as smoking and drinking status, etc. should be carefully col-
lected for each sample (see Note 5).

3.3 Sample

Preparation

3.3.1 Quality Control

(QC) Samples

1. Blank: Use respective diluents as blank samples to investigate
any carry-over.

2. Standard mix A: Prepare a mixture of exogenous compounds
such as 1 μM debrisoquine, 10 μM 4-nitrobenzoic acid, and
5 μM DFMO in diluent A (for RP) or in diluent C for HILIC.

3. Standard mix B: Prepare a mixture of representative endoge-
nous metabolites (see Note 1) present in urine and serum in
diluent A (for RP) or in diluent C for HILIC.

4. Pooled sample: Take 50 μL aliquot from individual urine or
20 μL aliquot from individual serum samples to prepare a
pooled urine or serum sample. This sample should be used to
prepare pooled quality control samples for each run as
described below.

3.3.2 Urine Samples

for HILIC

1. Thaw urine samples on ice and vortex for 30 s.

2. Aliquot 200 μL urine sample into 1.5 mL snapcap tubes, and
add 800 μL (see Note 6) pre-chilled (see Note 7) diluent C.

3. Vortex for 30 s.

4. Centrifuge samples at 18000 � g at 4 �C for 25 min.

5. Take tubes out (see Note 8), and carefully take out 800 μL of
supernatant into glass sample tubes (see Note 9).

3.3.3 Urine Samples

for RP

1. Thaw urine samples on ice and vortex for 30 s.

2. Aliquot 500 μL urine sample into 1.5 mL snapcap tubes and
add 500 μL of pre-chilled diluent A (see Note 6).

3. Vortex for 30 s.
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4. Centrifuge samples at 18000 � g at 4 �C for 25 min.

5. Take tubes out (see Note 8) and carefully take out 800 μL of
supernatant into glass sample tubes (see Note 9).

3.3.4 Serum Samples

for HILIC

1. Thaw serum samples on ice (see Note 10) and vortex for 30 s.

2. Add 50 μL of serum sample directly into 950 μL of chilled
diluent B (see Note 11).

3. Vortex for 30 s.

4. Centrifuge samples at 18000 � g at 4 �C for 25 min.

5. Take tubes out (see Note 8), and carefully take 800 μL of
supernatant into glass sample tubes (see Note 9).

3.3.5 Serum Samples

for RP

1. Dispense 300 μL of UPLC grade water into glass vials for RP.

2. Take 300 μL of sample out of the 800 μL of supernatant
mentioned above into corresponding glass vials.

3. Mix by pipetting up and down.

3.4 UPLC-ESI-MS

Analysis

1. Turn the source voltages and gas flow on, and let it stabilize
over at least 30 min.

2. Make sure the room temperature is well-maintained around
22 � 1 �C (see Note 12).

3. Acquire the lockspray mass spectra with 250 pg/μL sulfadi-
methoxine in 50% aqueous acetonitrile; adjust cone and lens
voltages as required to achieve desired mass accuracy, intensity,
and peak shape in both positive (m/z ¼ 311.0814) and nega-
tive mode (m/z¼ 309.0658) following guidelines as per opera-
tor’s manual.

4. Calibrate the mass axis (50–1000 Da) using 0.1 mg/mL
sodium formate in 90% isopropanol as per instructions in
operator’s manual.

5. Typical experimental parameters (seeNote 13) for ESI-positive
mode analysis of samples: choosem/z range of 50–850 Da and
sensitivity mode with capillary voltage at 3.1 kV, sampling cone
voltage at 40 V, source temperature at 150 �C, desolvation
temperature at 650 �C, desolvation gas (N2) at 850 L/h, and
cone gas (N2) at 50 L/h. Infuse lockspray solution continu-
ously at 30 μL/min for real time mass correction. Define lock
mass as 311.0814+ with lockspray capillary voltage at 2.3 kV.

6. Typical experimental parameters (see Note 13) for
ESI-negative mode analysis of samples: choose m/z range of
50–850 Da and sensitivity mode with capillary voltage at
2.9 kV, sampling cone voltage at 30 V, source temperature at
150 �C, desolvation temperature at 550 �C, desolvation gas
(N2) at 850 L/h, and cone gas (N2) at 50 L/h. Acquire data in
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sensitivity mode. Infuse lockspray solution continuously at
30 μL/min, and define lock mass as 309.0658- with lockspray
capillary voltage at 2.7 kV.

7. Prepare and save inlet methods separately for HILIC and RP
mode for urine and serum analysis.

8. For RP mode separation of serum constituents, use the follow-
ing gradient with BEH C18 column maintained at 60 �C:

Time segment
(min)

Flow rate
(mL/min)

Solvent A
(%)

Solvent B
(%)

0–0.5 0.5 95 5

0.5–4 0.5 95–40 5–60

4–8 0.5 40–0 60–100

8–9 0.5 0 100

9–9.2 0.5 0–95 100–5

9.2–11 0.5 95 5

Representative chromatograms of serum samples analyzed
using this method in ESI positive and negative mode are shown
in Fig. 1a and 1b, respectively.

9. For RP separation of urine constituents, use the following
gradient with BEH C18 column maintained at 40 �C:

Time segment
(min)

Flow rate
(mL/min)

Solvent A
(%)

Solvent B
(%)

0–0.5 0.5 98 2

0.5–4 0.5 98–80 2–20

4–8 0.5 80–5 20–95

8–8.2 0.5 5–1 95–99

8.2–9.1 0.5 1 99

9.1–9.3 0.5 1–98 99–2

9.3–11 0.5 98 2

10. For HILIC mode separation, use the following gradient with
BEH amide column maintained at 40 �C:
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Time
0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80 7.00

%

0

100 4.84

4.63

0.28

3.97

1.52
3.66

4.53

4.72

6.91

5.50

5.00

5.265.35

6.15

5.65

Time
0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00 6.20 6.40 6.60 6.80

%

0

100 2.12

0.31

4.84

4.63

3.42
3.07

2.89

6.66

5.49

5.00

5.44
5.38

6.00

Serum, RP, ESI+

Serum, RP, ESI-

A

B

Fig. 1 Representative total ion chromatogram of serum samples analyzed by UPLC-ESIMS in (a) positive and
(b) negative ionization modes with a 2.1 mm � 50 mm Acquity BEH C18 reverse-phase column (particle size
1.7 μM)
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Time segment
(min)

Flow rate
(mL/min)

Solvent A
(%)

Solvent B
(%)

0–0.5 0.4 99 1

0.5–4 0.4 99–40 1–60

4–8 0.4 40–20 60–80

8–8.5 0.3 20 80

8.5–8.8 0.3 20–99 80–1

8.8–9.8 0.3 99 1

9.8–12 0.4 99 1

Representative chromatograms of urine samples analyzed
using this method in ESI positive and negative mode are shown
in Fig. 2a and 2b, respectively.

11. Load sample vials (or 96-well plates) into the Acquity UPLC
sample chamber maintained at 12 �C and choose appropriate
sample bed layout.

12. Prepare a sample list with appropriate MS and inlet methods
for desired mode of analysis with 5 μL injection volume for
each sample.

13. Sample list should start with couple of injections of standard
mix A and B followed by at least six injections of the pooled
sample before injection of individual samples (see Note 14).

14. Samples should be injected in a randomized fashion. Use ran-
dom number generator function in Microsoft Excel to ran-
domize the order of sample injections.

15. Standard mixtures and pooled samples should be injected
intermittently throughout the run.

3.5 Data Inspection

and Quality Control

1. Manually inspect chromatograms, check for any sudden drop
or increase in counts or shift in baseline of blank, standard
mix A, B, and pooled samples.

2. Check blank samples for any carry-over by looking for peaks for
compounds present in the immediate preceding sample.

3. Extract these chromatograms for ions corresponding to
authentic standards (standard mix A and B) and representative
metabolites that are found in all samples (pooled samples) as
well as internal standard (chlorpropamide in RP and
α-aminopimelic acid in HILIC) to check for consistency in
retention time and m/z values. Tabulate retention time for
each peak, and determine the mean and standard deviation
(see Note 15).
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4. Calculate them/z error range (in ppm) for each of these peaks.
This value should be used for feature extraction and database
search in subsequent analysis (see Subheadings 3.10 and 3.13).

5. Integrate peaks to get areas under the curve and calculate the
coefficient of variation (CV) of these representative peaks

Time
0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00

%

0

100 0.41

0.37

1.01

0.78
0.61

0.50

0.89

2.29

2.081.46

1.30

1.92

1.66

2.94

2.61

2.76

3.333.20

3.47

3.69

3.87 4.37

Time
0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 4.20 4.40 4.60 4.80 5.00 5.20 5.40 5.60 5.80 6.00

%

0

100 0.65

0.40

1.40

1.00

0.74

0.92

1.06

1.21

2.30

2.13

1.96

3.51

2.77 3.06
3.36

Urine, HILIC, ESI+

Urine, HILIC, ESI-B

A

Fig. 2 Representative total ion chromatogram of urine samples analyzed by UPLC-ESIMS in (a) positive and (b)
negative ionization modes with a 2.1 mm � 50 mm Acquity BEH amide hydrophilic interaction liquid
chromatography (HILIC) reverse-phase column (particle size 1.7 μM)
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across run (see Note 16). The CV for representative peaks
should be less than 20% to proceed further with analysis.

3.6 Feature

Extraction

1. Process the centroided and integrated mass spectrometric data
using MarkerLynx.

2. For RP analysis of urine samples, process 0.1–6.5 min region of
the chromatogram with a mass window of 0.02 Da, retention
time window of 0.15 min, and intensity threshold of
200 counts, and deisotope (see Note 17).

3. For RP analysis of serum, process 0.1–7.2 min region with
retention time window of 0.2 min and other parameters same
as those in RP analysis of urine samples (see Note 17).

4. For HILIC mode analysis, process 0.1–5 min region of the
chromatogram with retention time window of 0.3 min and
other parameters same as those in RP analysis of urine samples
(see Note 17).

3.7 Data

Preprocessing:

Exclusion

and Reduction

1. Normalize intensities of individual features (m/z, retention
time pairs) in the raw data matrix obtained after processing
chromatograms using MarkerLynx with respect to total ion
count (TIC) for respective samples.

2. Perform unsupervised principal components analysis (PCA) on
the TIC-normalized and Pareto-scaled data matrix using
SIMCA-P + 12. The blank, standard mix A, B samples should
be clustered very tightly together in the PCA scores scatter plot
as shown in Fig. 3a. If yes, proceed to next step. If not, inspect
chromatograms, extraction parameters, and instrument log,
and repeat experiment (see Note 18).

3. Remove blank, standard mix A and B sample from the analysis.
Remove features that show missing values in more than 10% of
pooled samples. Further remove all features that show missing
values in 75% of individual samples. Replace all missing values
by a number ten times smaller than the lowest value in the data
matrix.

4. Inspect if the pooled samples are clustered tightly, whereas
individual samples are scattered in the scores scatter plot as
shown in Fig. 3b. If yes, proceed to the next step. If not, see
Note 19.

5. Examine PCA scores scatter plot for outliers, and examine their
association with factors other than the disease; such as diet,
dietary supplements, smoking or drinking status, current med-
ications, coexisting pathologies, etc. or any other relevant and
available metadata. Specifically, in case of any current medica-
tion or dietary supplement, examine the loading plot to iden-
tify ion(s) that contribute to their segregation. Inspect if these
ions represent any known drugs, dietary supplements,
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pollutants, or their metabolites by searching against databases
(see Subheading 3.13). Remove all such ions of putative exoge-
nous origin from the data matrix.

6. The data matrix is then uploaded on to the MetaboAnalyst web
server as a peak intensity table (with unpaired samples in rows
and features in columns) for statistical analysis. Choose sum
normalization, log transformation (see Note 20), and Pareto
scaling of the data to analyze intercorrelation between features
across sample set. An example of result of analysis of intercor-
relation between features in RPLC-MS analysis of urine sam-
ples is shown in Fig. 4.

7. The correlation matrix table is downloaded, and highly corre-
lated features (Pearson correlation coefficient > 0.9; see Note
21) are screened for similarity in retention times. In case the
retention times of these features are close, their elution profile
is compared. In case there is a significant overlap between
elution profiles, the mass differences between these ions are
calculated to investigate if they correspond to common
in-source fragments (e.g., –H2O, –CO2, –NH3, –HCOOH,
etc.) or adducts (Na+, NH4

+, etc. in the positive mode and Cl�,
HCOO�, CH3COO�, etc. in the negative mode as well as
solvent adducts) within the experimental mass error. For exam-
ple, inset of Fig. 5 shows raw as well as extracted chromato-
grams of a number of co-eluting ions, which were eventually
identified to be Na+ -adduct (202.049+) and in-source
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Fig. 3 Principal component analysis of the MarkerLynx processed data from reverse-phase UPLC-ESI-MS
analysis of urine samples showing (a) tight clustering of external quality control samples, i.e., blank, standard
mix A and standard mix B indicating consistent response and (b) tight clustering of pooled samples indicating
reproducibility of ion chromatograms throughout the run
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fragments (105.035+, 77.041+) of hippuric acid (180.066+)
that eluted at 2.6 min in RP analysis of urine samples.

8. Remove all adducts and fragments except the putative parent
ion from the data matrix (see Note 22).

3.8 Normalization 1. After trimming of the data matrix as mentioned in Subheading
3.7, steps 7 and 8, the data is finally normalized before pro-
ceeding to the identification of features that distinguish the
biofluid metabolome of controls and cases.

2. Normalize the urine metabolomics data either with respect
to the total ion count or the creatinine peak (see Note 23).

3. For creatinine normalization, find out the creatinine peak
(m/z ¼ 114.066+ or 112.05�; RT ¼ 0.8 min in HILIC and
0.3 min in RP mode in the method described above) from the
standard mix and pooled samples. Divide ion count of all peaks
by creatinine ion count in the respective sample.

4. For serum, normalize the data with respect to total ion count.

Fig. 4 Heat map representation of correlation between extracted features (m/z, retention time pair) across
samples in reverse-phase UPLC-MS analysis of urine samples. The color scale for correlation coefficient is
shown on the right side
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3.9 Pattern

Recognition

and Identification

of Features of Interest

3.9.1 SIMCA-P12+

1. Import the normalized data matrix to SIMCA-P12+, and
define class variable (Y) as “0” for healthy controls and “1”
for cases. Pooled samples need not be given any Y value.

2. Make sure that pooled samples are forming a tight cluster,
whereas individual samples are significantly scattered compared
to them.

3. Exclude pooled samples and the ‘Y’ variable to subject the
Pareto-scaled data matrix to PCA analysis. Check for any segre-
gation of the samples in the scores scatter plot (e.g., see Fig. 6a).
Correlate the segregation with disease status or any other infor-
mation available as metadata. If the segregation is according to
phenotype of interest, evaluate the loading plot, and select ions
that are contributing to the segregation (see Note 24).
Figure 6b shows the loading plot corresponding to Fig. 6a
along with ions that contribute to segregation of controls
vs. cases.

4. If the segregation is not according to any phenotype (see Note
25) of interest, remove most abundant ions and repeat the
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Fig. 5 Mass spectrum under the peak at 2.6 min in reverse-phase analysis of urine samples showing
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ions all of which originate from hippuric acid are shown in the inset. m/z values at 180.066+ and 202.049+
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PCA analysis. PCA is driven by most abundant features. They
tend to mask relatively low abundant features that might be of
interest with respect to the correlation between metabotype
and phenotype.

5. If PCA indicates a good dataset (with tight clustering of pooled
samples, few outliers, and most variances justified), proceed
with orthogonal partial least squares discriminant analysis
(OPLS-DA) by including the Y values to identify features that
show significant difference between controls and cases.

6. R2 and Q2 values should at least be 0.5 and 0.4 for the OPLS-
DA analysis. High R2 with poor Q2 value indicates over-fitting
of the model. Discard any model with negative Q2 value.

7. Use the loading S-plot (representative example shown in
Fig. 7), and generate a list of ions with p(corr)[1] > 0.8 (ele-
vated in cases, shaded in red in Fig. 7) or p(corr)[1] < �0.8
(depleted in cases, shaded in green in Fig. 7).

3.9.2 MetaboAnalyst 1. For feature identification using MetaboAnalyst, submit the
normalized data matrix after step 2 or 3 or 4 of Subheading
3.8 with samples labeled 0 and 1 according the phenotype
category under comparison (e.g., 0 for healthy controls and
1 for cancer cases), and choose no normalization, log transfor-
mation, and Pareto scaling of the data (see Note 26).

2. Choose “volcano plot” for analysis and define fold change
(typically 1.5); on the x-axis, choose comparison type (say
0/1), and on the y-axis, choose non-parametric test assuming
unequal variance; define P value threshold (0.05 or lower), opt
for FDR correction and submit.
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Fig. 6 (a) Representative scores scatter plot from principal component analysis showing segregation of
controls and cases along first principal component and (b) corresponding loading plot. Ions that were more
abundant in cases are shaded in red, whereas those more abundant in controls are shaded in green
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3. The resulting plot should look something like that shown in
Fig. 8. View detailed data table, and select features that show
significant difference in abundance between controls and cases.

3.10 Pathway

Analysis

1. Go to MassTRIX webpage to submit a new job.

2. Paste list of ions found to be significantly altered between
control and cases.

3. Choose appropriate ionization mode along with potential
adducts, e.g., Na+ or K+ for positive mode (see Note 27).

4. Choose mass error range according to the error range calcu-
lated from quality control samples.

5. In the database option, choose KEGG/HMDB/LIPIDMAPS
without isotopes.

6. Choose Homo sapiens as the organism and submit the job.

7. Once completed, go to the result page and click on each of the
pathways to find putative identity of ions belonging to the
pathway.

8. Cancer is often associated with coordinate derangement of
metabolism. Thus, a metabolic pathway that is altered as a
result of upstream signaling events is likely to show changes
in multiple metabolites. The more the association between the
pathway and pathogenesis of cancer, the likelihood of differen-
tially regulated ions belonging to the pathway increases. Thus,
if an ion of interest has multiple hits, i.e., candidate compounds
(see Subheading 3.13) from database mining, it belongs to a
pathway that has an overall higher fraction of metabolites
altered. Pathways may be prioritized for metabolite identifica-
tion accordingly.

3.11 Statistical Tests 1. Perform final statistical tests using GraphPad Prism software.

2. Use Mann-Whitney U test with 95% confidence interval, and
apply correction for multiple testing (such as Bonferroni cor-
rection) to test the significance of difference in level of a
metabolite of interest between controls and cases or other
groups according to metadata (demographics, lifestyle, BMI,
disease status, treatment status, etc.).

3. Examine correlation between the phenotype of interest and
abundance of a metabolite by Pearson correlation analysis.

4. Inspect the sensitivity and specificity of metabolites to distin-
guish between phenotypes of interest using receiver operating
characteristics (ROC) analysis.

3.12 MS/MS Analysis 1. PerformMS/MS analysis on ions of interest that show a signif-
icant power to discriminate between controls and cases to get a
preliminary idea about the type of structural and functional
motifs.
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2. Use the quad to select the ion of interest with unit mass
resolution, and fragment it through collision-induced dissocia-
tion using argon as the collision gas and ramping the collision
energy from 5 to 40 eV (see Note 28). Chromatography and
other mass spec conditions, including lockspray, should be
similar to that described in Subheading 3.4 for the respective
sample and mode of analysis.

3.13 Database

Mining

1. Submit the list of ions of interest to metabolomic databases to
identify putative targets before confirmation through MS/MS
analysis.

2. METLIN offers a comprehensive list of both exogenous and
endogenous compounds along with fragmentation pattern for
some of them (see Note 29). Choose a mass window as appro-
priate from the analysis of QC samples. Choose plausible
adduct and fragmentation for the respective mode of ionization
(see Note 30).

3. If the list of hits against the query masses contains fragmenta-
tion pattern in the databases, compare them with the fragmen-
tation pattern of the ion obtained in your experiment, and
screen according to similarity of fragmentation pattern (see
Note 31).

4. Examine the structure of the hits, and screen compounds further
based on an informed guess (see Note 32) considering their
expected retention time and retention time of the ion of interest.

3.14 Confirmation

of Identity

of the Metabolite

1. In case compounds are available commercially, procure highest
purity standards.

2. Make a 20–50 μM solution of standards in diluent A, B, or C as
appropriate.

3. Run the following samples: standard sample, biofluid sample
spiked with the standards (see Note 33), and biofluid sample
alone.

4. Extract all chromatograms for the mass of the ion of interest to
inspect if the retention times of the extracted peaks of these
chromatograms match (see Note 34).

5. If they do, run anMS/MS analysis on the target ion, and check
if fragmentation patterns match for all three spectrum to con-
firm the identity.

6. Even if no authentic standards are available or none of them
match by retention time and/or fragmentation pattern, bona
fide signatures that distinguish cases from controls or show a
high correlation with a particular phenotype are of utmost
interest, and they should be reported as a m/z retention time
pair along with fragmentation pattern whenever possible (see
Note 35).
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Identification should be followed up by quantification of target
compounds using multiple reaction monitoring (MRM) optimized
using authentic standards in a tandem mass spectrometer such as a
triple quad. The statistical significance of difference in abundance of
individual metabolites should be tested correcting for multiple
comparisons using the appropriate statistical test (e.g., with con-
siderations such as whether the dataset is normally or non-normally
distributed). For most unpaired case-control type studies, Mann-
Whitney U test, which doesn’t make any assumption on data distri-
bution, with Bonferroni correction, is recommended for selecting
potential biomarkers. Sensitivity and specificity of such biomarker
(s) should be evaluated using receiver operating characteristic
(ROC) analysis. In addition, pathway enrichment analysis is recom-
mended to examine whether identified signatures are coordinated
and connected to pathways that are known to get dysregulated in
cancer [38]. Whenever feasible, correlation between gene expres-
sion signatures should also be examined to further establish such
mechanistic associations [30, 38].

4 Notes

1. This may vary depending on the type of sample as well as
experiment/analysis. For example, typically, we use a mixture
of creatinine, creatine, deoxyuridine, L-glutamic acid, citric
acid, L-arginine, hippuric acid, L-tryptophan, kynurenic acid,
and indolelactic acid for urine.

2. Use of degassed solvent is a must in UPLC operations to avoid
increase in back pressure and erratic chromatograms. However,
due care should be exercised while sonicating organic solvents
since sonication causes heating and builds up vapor inside the
bottle. The cap must not be tightened too much so that pres-
sure can be released during the process.

3. The method described here was developed and optimized
using the aforementioned instruments, columns and
softwares. However, the basic analytical approach is platform-
independent, and it can be adopted for similar instruments
from other vendors. Ultrahigh performance liquid chromatog-
raphy (UHPLC) columns from other vendors could also
be used.

4. As anticoagulant, EDTA should be avoided as it interferes with
mass spectrometry-based metabolomic profiling, while citrate
cannot be used since it is an endogenous metabolite. Multiple
freeze-thaw cycle affects stability of the metabolome. There-
fore, samples should be preferably divided into single-use ali-
quots and stored in �80 �C.
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5. In most cases, analysis of human biofluids for identification of
cancer-associated metabolomic signatures is carried out in a
relatively small number of samples. In absence of appropriate
metadata on drug, diet, and lifestyle, there is a possibility of
spurious associations or masking of features of interest.

6. Urine samples may vary in overall concentration due to differ-
ences in water intake or underlying pathology. It may also vary
in protein concentration due to differences in kidney function
or coexisting pathologies (albuminuria), etc. If the sample is
too concentrated or has a higher protein content, diluent/
urine ratio should be increased. Two pooled samples contain-
ing control and cases, respectively, should be prepared and used
to standardize the diluent/urine ratio. Typically, 1:5 dilution
suffices for most urine samples.

7. Diluents should be kept for at least few hours in �20 �C
freezer. Addition of the chilled diluent helps to precipitate
proteins and other sparingly soluble compounds that may pre-
cipitate out of the solution during the course of analysis when
the sample sits in a sample chamber maintained at 12 �C.
Precipitation during analysis might result in artefacts and false
positives.

8. Samples should not be left too long after centrifugation as the
pellet starts re-suspending. Also, if samples start showing some
turbidity upon standing at the sample chamber of the instru-
ment, it might indicate incomplete deproteination. In such
case, a higher amount of organic solvent or higher diluent/
sample ratio should be used.

9. In case the number of samples is large, Waters 96-well Sirocco
(1 mL) protein precipitation plates could be used instead of
48-well sample holder. Typically, 500 μL of sample is loaded
into each well. For a large number of samples, the diluent
addition, supernatant transfer, and any further dilution can
also be performed using robotic liquid handlers. If available
sample volume is low, a total of 300 μL of the urine and diluent
mixture can be prepared keeping urine/diluent ratio the same,
out of which 200 μL of supernatant can be transferred into
300 μL 12 � 32 mm polypropylene vials with PTFE septa for
UPLC-MS analysis. These vials give better results compared to
350 μL 96-well Sirocco plates. While using any 96-well plate,
make sure to choose the correct sample bed layout in the
autosampler settings.

10. Serum samples should typically be either colorless or light
yellow and slightly turbid. Note presence of significant turbid-
ity in any sample. This is sometimes observed in advanced-
stage cancer patients with significant cachexia and lipolysis
[43, 44]. Also note any reddish or brownish colored samples.
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This indicates hemolysis that might be due to improper
handling of samples or hemolytic anemia that is observed in
some cancer patients [45]. These should be specifically
inspected during the analysis, particularly if they turn out to
be outliers in the PCA analysis.

11. Addition of serum into the chilled diluent B should result in
visible cloudiness starting from the pipette tip. In case no
cloudiness is noted, organic content of the diluent may have
changed. Use freshly prepared and chilled diluent B to ensure
deproteination.

12. Significant temperature fluctuations may adversely affect the
mass accuracy in TOF instruments. In case sudden changes in
mass profile are noted during a long run, do check the room
temperature profile for temperature variations.

13. These experimental parameters should always be optimized by
the operator of a particular platform.

14. It is often observed that the first couple of injections of a
sample give a different response than the subsequent ones of
the same sample. Therefore, injecting a few pooled samples is
essential to condition the column with the constituent analytes
and other matrix components. Only after the repeated injec-
tion of the pooled sample starts giving reproducible signature,
samples of interest should be injected. This is typically achieved
after six consecutive injections.

15. In most cases, the retention time reproducibility using the
method described is very good, and drift in retention time is
typically less than peak width. However, dirty samples or insuf-
ficient column equilibration may result in shifts in retention
time. QC samples, such as blanks or pools, should help to
identify such phenomenon, and if needed, an alignment of
chromatograms should be performed.

16. This can be executed by creating a method using “TargetLynx”
module of the MassLynx software mentioning them/z value of
the ion of interest and retention time along with respective
windows. The resulting file can be collated in excel to calculate
the CV for each peak.

17. If the retention time or mass window is narrower than those
experimentally observed in QC pooled samples, it might lead
to peak splitting in the MarkerLynx results. Lowering the ion
count cutoff also introduces noise into the data matrix. Choose
retention time and mass window according to the results
obtained in QC analysis. Inspect the baseline of the blank and
standard mix samples to determine an initial cutoff for ion
counts. Optimize it by minimizing spurious features (with no
bona fide elution profile across samples and missing values) in

226 Tanushree Chakraborty and Soumen Kanti Manna



the dataset by repeated extraction of features at various cutoffs
above and below the initial value.

18. This may be caused by changes in instrument response during
the run. The quality control steps reduce such chances. How-
ever, use of very narrow mass and retention time window or
very low ion count cutoff in MarkerLynx can lead to peak
splitting or falsely introducing noise into the dataset, counting
them as real signals.

19. In addition to the points mentioned in Note 17, this may also
be caused by poor sample stability during a long run. Quality
control steps using pooled samples are designed to capture
such incidents. Inspect for any turbidity or precipitation in
the sample in such case. Although very rare, this situation
may also arise if the CVs of metabolic features (biological) are
indeed comparable to their respective experimental CVs. In
such case, check for any confounding factors, rethink if the
cohort is suitable for analysis of differential signatures asso-
ciated with cancer, and increase the sample number until the
samples are significantly more scattered in the PCA scores
scatter plot than the pooled samples.

20. Sum normalization basically refers to dividing ion count for
each feature by total ion count in that sample. Most of the
statistical analysis and model building that are performed
assume a Gaussian (bell-shaped) distribution of the data. How-
ever, owing to a huge variation in the relative abundance of
individual metabolites within and across samples as well as due
to a limited sample size (in most experiments), the data distri-
bution is often skewed (see Fig. 9a). Log transformation allows
for the data distribution to appear more Gaussian (see Fig. 9b)
and allows for further statistical analysis that assume such para-
metric distributions.

21. This cutoff depends on the data quality. Check correlation
coefficients of known ion clusters originating from the same
molecule (e.g., hippuric acid and its Na+ adducts and fragments
as shown in Fig. 5). The correlation coefficient between these
ions in standard mixture B or pooled samples can be used to
decide the cutoff value for the correlation coefficient. It should
be noted that a correlation between features may also arise if
they belong to biologically connected pathways.

22. This assumes that the relative abundance of adduct and frag-
ments with respect to the putative molecular ion (protonated
or deprotonated species in positive and negative ESI-MS,
respectively) is not significantly different across samples, and,
therefore, the putative molecular ion itself can faithfully repre-
sent the changes in the abundance of the parent compound in
these samples. Although this is a reasonable assumption in
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most cases, a better alternative is to sum up the intensities of all
ions arising from the putative molecular ion and use that for
further statistical analysis. Progenesis QI (Nonlinear Dynam-
ics) (or other equivalent software) examines various adduct/
fragment relationships among a co-eluting cluster of ions and
helps to sum up the total intensity of all such ions that are

Fig. 9 Effect of data normalization on the shape of data distribution
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presumably generated from the same parent compound. Such
trimming of the data matrix reduces chances of model over-
fitting and identification of spurious associations.

23. A large number of exogenous compounds are excreted in
urine. These include but are not limited to drugs, drug meta-
bolites, metabolites related to the diet and dietary supple-
ments, pollutants, etc. Although some ions/features related
to these compounds may be identified and eliminated during
data processing, many others may remain. Total ion count
(TIC) normalization including these peaks would artificially
alter relative abundance of endogenous peaks in samples that
have different abundance of peaks related to these exogenous
compounds. This would affect the supervised as well as unsu-
pervised analysis and may lead to spurious associations between
features and phenotypes. Therefore, TIC normalization may
not be ideal. In addition, endogenous metabolomic signature
may be affected by dilution (due to change in water intake) or
changes in glomerular filtration rate (GFR). Creatinine con-
centration can be used as a surrogate to normalize the data for
any dilution or changes in GFR. Please note that unlike TIC
normalization, creatinine normalization is unlikely to artifi-
cially alter the relative abundance of an endogenous metabo-
lite. It is recommended that the data is normalized by both
methods to identify unmistakable changes associated with the
disease/phenotype. Another alternative for data normalization
in the biofluid metabolomic analysis is probabilistic quotient
normalization that has been described elsewhere [46].

24. If any of the internal standards turns out to be a differentiating
feature in PCA or OPLS-DA analysis, in spite of satisfactory
results in QC analysis, this might indicate a problem with the
data normalization as described in Note 23. Ways to deal with
this problem include (1) removal of overabundant features that
are potentially non-endogenous, (2) checking metadata for
confounding factors, (3) recruitment of additional samples,
and (4) critical analysis of the study design.

25. PCA is more appropriate for inspecting the overall data quality
and not so much for the identification of features of interest,
unless they are obvious. Some samples may look like an outlier
in the PCA analysis. This may be caused by biological factors
(significantly different metabolic profiles or presence of com-
pounds of exogenous origin) or may be an analytical artifact.
Removal of outliers to achieve better model fit and segregation
of data should be avoided.

26. Data exclusion in MetaboAnalyst may be skipped since follow-
ing the protocol mentioned earlier for data preprocessing (see
Subheading 3.7), the number of features would be less than
5000 in most cases.
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27. AlthoughMetaboAnalyst also offers the option to use rawmass
spectrometry data to analyze putative pathways, it doesn’t offer
the option to search for adducts that MassTRIX does. This
gives MassTRIX an edge in identifying putative pathways and
allows for biomarker identification, since adducts like Na+ and
Cl� are quite common.

28. Using an energy ramp helps to sample different fragmentation
reaction in a single go. However, some molecules may be very
labile and undergo in-source fragmentation. In such cases, the
fragmentation spectra should be recorded by increasing colli-
sion energy stepwise: 0, 10, 20, 30, etc.

29. In addition, the LC-MS search option in the HMDB database
can also be used to search for potential hits that have been
reported to be present in human samples. The criteria for mass
error window and selection of potential adduct and fragments
should be similar to that described for the METLIN database.

30. Although METLIN provides a host of adducts and fragments,
they should be judiciously chosen during submission of a
query. For example, upon selection of the positive mode ioni-
zation, solvent adducts such as CH3CN and MeOH are shown
as plausible species. However, if neither sample nor mobile
phases contain the solvent (e.g., MeOH in case of RP analysis
of urine samples), such solvent adducts need not be chosen
during search. In addition, ions with multiple charges (e.g.,
M + 2H,M + 3H,M +H +Na, etc.) are generally not observed
for small molecules, and they should not be selected in the
METLIN search, unless the isotopic peak pattern for the ion
clearly indicates that the ion is multiply charged.

31. Please note that the fragmentation pattern depends on colli-
sion energy as well as on the type of an instrument. Also, while
METLIN contains fragmentation patterns at different ener-
gies, this method describes a ramp from 5 to 40 eV to sample
all possible fragments. Therefore, the MS/MS spectra, partic-
ularly relative abundance of different fragments, reported in
METLIN are likely to be different from those observed using
the method described here. So, fragmentation at different
energy levels reported in METLIN should be inspected while
comparing with experimental MS/MS spectra.

32. Look at the structure of the hit and compare it with structures
of compounds in the authentic standard mix B that was run as a
QC sample. Assess the similarity of chromatographic behavior
based on structural motifs, functional groups, and polarity. For
example, in the RP mode analysis described here for urine
samples, the authentic standard of hippuric acid elutes at
2.6 min. If a peak of interest has a retention time similar or
less than that of hippuric acid and a hit for the ion contains an
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indole or naphthol or indane moiety without any other signifi-
cantly polar group (such as sulfate, glucuronide, etc.), it is very
unlikely that the peak will match with the hit in retention time.
On the other hand, hits with structures like nucleosides are not
likely to be true if the retention time for the ion of interest is
similar to or more than that of hippuric acid. Inclusion of a
number of endogenous metabolites representing different
structural/functional motifs and polarity in the standard mix
B helps in the process of elimination and reduces the number of
authentic standards to be run for compound identification.
Caution: This is a non-trivial step that should be attempted
only by experts in chromatography. Those not very familiar
with chromatography may choose to seek guidance from an
expert.

33. It is recommended to run at least two biofluid samples spiked
with the standard, one with the lowest abundance and the
other with more than an average abundance. Both of these
samples should also be run without spiking the standard so that
an increase intensity of the ion of interest in the extracted
chromatogram is reliably detected at the desired
retention time.

34. At times, the retention profile of the pure compound may be
slightly different from that of the spiked sample due to matrix
effect. Using low and high abundance samples as mentioned
above in Note 33 often helps to resolve the issue.

35. A large number of features (m/z, retention pairs) remain
unidentified. Even when potential candidates are reported in
the literature, authentic standards may not be available com-
mercially. In such case, the only option is to synthesize candi-
date molecules and to confirm them by comparing retention
time and fragmentation pattern. This is a challenging task.
However, only untargeted metabolomic profiling holds the
promise of identification of such novel molecules and/or
related pathways [28, 40, 47], which can significantly further
our understanding of cancer biology.
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Chapter 13

Gas Chromatography-Mass Spectrometry and Analysis
of the Serum Metabolomic Profile Through Extraction
and Derivatization of Polar Metabolites

Jodi Rattner, Farshad Farshidfar, and Oliver F. Bathe

Abstract

Metabolite profiling in complex biological matrices such as serum requires high-throughput technologies
capable of accurate and reproducible quantitative analysis and detection of slight differences in metabolite
concentrations. Gas chromatography-mass spectrometry (GC-MS) is widely used for characterizing the
metabolome. This chapter summarizes the necessary preparatory steps required to profile the metabolome
using GC-MS. While this chapter focuses on evaluating polar metabolites in serum samples, the methods
can be adapted to quantify nonpolar metabolites in other biological matrices.

Key words Gas chromatography-mass spectrometry, Serum, Metabolite profiling, Biomarker, Cancer

1 Introduction

The detection and classification of small molecule intermediaries
(metabolites) in complex matrices such as serum are one way to
characterize normal and perturbed biological systems [1–3] (see
Note 1). Nuclear magnetic resonance (NMR) spectroscopy, liquid
chromatography-mass spectrometry (LC-MS), and gas
chromatography-mass spectrometry (GC-MS) are widely used ana-
lytical platforms in the field of metabolomics [4, 5]. No single
platform has the capability to accurately cover the whole metabo-
lome, and each platform has its advantages and disadvantages. All of
these platforms have the sensitivity to detect even low abundance
features such as metabolites [6]. 1H-NMR spectroscopy is the only
fully quantitative modality, and it is highly reliable and accurate
[7–10]. However, it has limited utility in a clinical laboratory
because of its size, the need for a special facility to house a powerful
magnet, and its limited capacity for high-throughput testing, as
well as relatively low sensitivity [11]. LC-MS can detect a large
number of compounds (more than GC-MS) [12, 13]. However,
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the measurement of more compounds comes with the cost of a
lower signal-to-noise ratio, resulting in greater difficulty construct-
ing a stable metabolomic model during discovery work. GC-MS
allows for the identification and quantification of a diverse array of
(polar and nonpolar) metabolites within a single sample, covering a
broad range of metabolic pathways. GC-MS is sensitive and robust,
and standard protocols have been created for instrument mainte-
nance, as well as compound identification [14, 15]. Finally, GC-MS
is capable of high-throughput testing, and it is relatively compact,
typically occupying the footprint of a desktop. GC-MS is therefore
easy to utilize in a clinical laboratory setting (see Note 2).

In the gas chromatograph, compounds elute from the column
at different times (retention times), according to their physico-
chemical properties. They are transported by the mobile phase to
the mass spectrometer, where they are ionized and separated fur-
ther by atomic mass. The GC-MS spectrum therefore resolves
metabolite fragments by retention time, atomic mass, and charge.
The height of the peaks (or Gaussian curves) is proportional to each
ion’s concentration. The most common type of mass spectrometer
paired with GC is a quadrupole MS. Time-of-flight (TOF)-MS has
a number of advantages over quadrupole instruments, including
greater resolution and faster scan times, which improves its high-
throughput testing capabilities.

GC-MS is semiquantitative, although it is capable of detecting
even small changes in metabolite concentrations. The addition of
internal standards allows accurate quantification, reduces measure-
ment variance, and smooths out inter-batch and intra-batch varia-
bility. The state-of-the-art approach to assay design for the
quantification of targeted metabolites by mass spectrometry
employs isotopic labeling, which involves spiking each sample
with a known quantity of selected metabolites that have been
labeled with a nonradioactive isotope, such as deuterium. This
causes a measurable shift in the mass-to-charge spectrum, making
it possible to quantify the unlabeled peak. Deuterium-labeled meta-
bolites are relatively inexpensive and widely accessible. All
deuterium-labeled metabolites should be tested to define the
dynamic range of detection in a given instrument; standard curves
consisting of known quantities of the corresponding non-labeled
metabolites should be constructed to determine their linearity, as
well as the accuracy and reliability of measurements.

The following chapter will describe the experimental approach
for the detection of polar compounds in serum samples. GC-MS is
also capable of detecting nonpolar metabolites. This would require
a different GC column and different preparation procedures
described by others [16–19]. Our description will detail the exper-
imental design, experimentation, spectral analysis, as well as data
preprocessing and cleaning. While we will touch on the statistical
analysis and interpretation of results, a detailed description is out of
the scope of this chapter.
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2 Materials

The preparation of solutions requires the usage of analytical grade
reagents and pure deionized water. Themethanol-chloroform solu-
tion, chloroform H2O solution, methoxyamine hydrochloride in
pyridine solution, and alkane standard mix solution can be stored at
room temperature (unless stated otherwise). N-Methyl-N-tri-
methylsilyltrifluor(o)acetamide (MSTFA) must be stored in a 4 �C
fridge. All waste disposal instructions must be followed.

2.1 Extraction 1. 2:1 Methanol-Chloroform: In a 1000 mL graduated cylinder,
measure 1000 mL of methanol (with >99.8% purity), and
transfer to a glass beaker. Measure 500 mL of chloroform
(with >99.9% purity). Transfer to same glass beaker as metha-
nol. Store at room temperature.

2. 1:1 Chloroform H2O: In a 1000 mL graduated cylinder, mea-
sure 500 mL of ultrapure, deionized H2O, and transfer to a
glass beaker. Measure 500 mL of chloroform (with >99.9%
purity). Transfer to same glass beaker as deionized H2O. Store
at room temperature.

3. Alkane Standard Mix Solution: Weigh 3 mg each of
n-Docosane, n-Hexacosane, n-Nonadecane, and
n-Triacontane into glass vials. Dissolve each in 1 mL of hexane
(with purity >99.9%). Measure 4 μL each of n-Decane,
n-Dodecane, and n-Pentadecane into glass vials. Dilute each
in 1 mL of hexane (with purity>99.9%). Transfer each solution
to one glass vial. Vortex to ensure mixture. Store at room
temperature.

2.2 Derivatization 1. N-Methyl-N-trimethylsilyltrifluor(o)acetamide (MSTFA).
Store in 4 �C fridge.

2. Weigh 20 μg of methoxyamine hydrochloride. Transfer to a
glass vial. Using a syringe, measure out 4 mL of pyridine, and
deposit in the glass vial (seeNote 3). Vortex to ensure mixture.

3 Methods

There are diverse applications for GC-MS including drug detection
and identifying the metabolic effects of toxins or disease
[20–22]. Typically, experiments designed to identify metabolic
alterations associated with a disease state will identify a pattern of
changes in metabolites [23]. This metabolomic profile could repre-
sent a biomarker or a meta-biomarker [24, 25]. If the intent of the
experiment is biomarker development, then experimental design
hinges on the end use of the biomarker. Metabolomic studies can
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be performed on any biofluid, including serum, plasma, urine, etc.
[26, 27]. Sometimes, the choice of biofluid is a pragmatic one,
dependent on sample availability. Ideally, the sample type selected
should be the most appropriate for addressing the clinical need. If a
clinical end use is considered, then convenient, minimally invasive
tests would be most widely accepted by a patient. Urine and serum
(or plasma) collections are standards of practice and could easily be
implemented in a clinical lab.

A suitable study cohort must be available. Ideally, the cohort
should be designed prospectively, before sample procurement.
There are some important features of the study cohort that should
be considered. First, the samples must be a representative of the end
use. For example, if a disease biomarker is being developed, then
the study cohort should reflect the features of the population.
Features to consider include gender distribution, ethnicity, and
environmental features including diet and time of sampling. This
is a particularly important experimental design consideration for
metabolomic experiments, where the metabolome can be affected
by genetic and environmental factors. Second, an appropriate con-
trol must be available. For a disease biomarker, that would consist
of a disease-free control; for studies on drug toxicities, controls
might consist of individuals on the drug who do and do not have
the toxicity; for studies on the metabolic effects of drugs, appropri-
ate controls are individuals who did not receive the drug. It is
critical that the sample collection and storage conditions in com-
parator groups are exactly the same. Third, confounders must be
considered. The experimental and control groups should be age-
and gender-matched. Comorbidities that may systematically bias
results should be considered, and this includes diabetes mellitus
and other prevalent diseases with obvious and gross metabolic
effects.

The experimental design should include separate discovery
(training) experiments and validation steps. If we have sufficient
samples, we randomly assign 2/3 of the samples to the discovery set
and 1/3 to an independent validation cohort. A metabolomic
model is constructed after testing the discovery cohort, and then
the model is tested in the validation cohort to see if it accurately
predicts the condition (i.e., experimental vs. control). Subsequent
studies on a separate prospectively collected cohort would further
validate the biomarker.

In order to accurately and reproducibly quantify metabolites on
any analytical platform based on MS, internal standards are
required. For GC-MS, deuterated metabolites represent the best
internal controls. Internal controls should at least represent each
chemical class of metabolites that will be considered and should also
be representative of the range of retention indices of metabolites
targeted for analysis. Internal standards are designed to reduce
measurement variation that is introduced through sample
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preparation, as well as variations in ionization efficiency and chro-
matographic retention. Therefore, internal standards should be
introduced to each sample prior to the extraction phase of the
preparation procedure (see Note 4).

In some instances, large numbers of samples will be tested,
requiring analysis in multiple separate batches depending on instru-
ment capacity. The distribution of samples to different analytical
batches must be carefully considered, at least in the discovery phase.
One approach is to randomly assign samples to batches but stratify-
ing comparator groups. For example, each batch should contain
equal numbers from the experimental and control groups; each
batch could be further stratified by ensuring a similar age and
gender distribution.

For the extraction procedure for metabolites, we use the
method described by Bligh and Dyer [28], which separates meta-
bolites into two phases of water (non-lipids) and chloroform
(lipids). We have described a customized workflow below, derived
from the protocol described by Migne et al. [29].

3.1 Extraction

Experimentation:

Preparation of

Samples and Addition

of Internal Standards

1. Prepare an ice bucket. Take the serum samples from the
�80 �C freezer, and place them in the bucket to thaw. While
serum samples are thawing, prepare the 2:1 methanol-
chloroform by placing it into the ice bucket to cool.

2. Prepare compounds that will constitute internal standard solu-
tion. Mark and set aside four vials for each internal standard
dilution mixture, and label them A, B, C, and D.

3. While the 2:1 methanol-chloroform cools and the serum sam-
ples thaw, label three sets of 2 mLmicrocentrifuge tubes: #1 for
sample, #2 for upper fraction (UF, aqueous layer), and #3 for
lower fraction (LF, organic layer). Label three sets of 2 mL
tubs: #1 for mixture solutions (A, B, C, D), #2 for UF, and #3
for LF.

4. Transfer 50 μL of biofluid samples into #1 labeled tubes.
Transfer 50 μL of internal standard solutions (A, B, C, and
D) into #1 labeled tubes.

5. Add 300 μL of cold 2:1 methanol-chloroform and 50 μL of
mixture solution B to each serum sample, and securely close the
cap. Do not add to vials labeled A, B, C, and D.

6. Add 300 μL of cold 2:1 methanol-chloroform to all vials.

7. Vortex each sample until a homogenous solution is formed.

8. Remove each tube, check all caps are secure, and place into a
floating rack.

9. Sonicate for at least 15 min to ensure a good mix.

10. Add 100 μL from each layer of the 1:1 chloroform-H2O
solution into each tube.
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11. Centrifuge for 7 min at 16,600 � g (see Note 5).

12. Remove a batch of tubes and restart the centrifuge.

13. Carefully pipette the upper fraction (c. 200 μL), ensuring that
none of the lower fraction, or pellet, is also present. Transfer
this upper fraction into #2 labeled tubes.

14. Without greatly disturbing the pellet, remove all remaining
liquid. This will contain the lower fraction and some upper
fraction. Briefly allow this to settle in the pipette tip and expel
into tubes #3 for lower fraction and #2 for upper fraction as
relevant.

15. Repeat steps 11–14 for all samples.

16. Load upper fraction tubes into the SpeedVac, and evaporate to
dryness for 8 h (the time needed depends on the instrument).
The upper fraction samples contain the aqueous metabolites
suitable for gas chromatography-mass spectrometry or NMR
analysis.

17. Put the tubes containing pellets and those containing lower
fraction into a fume hood with caps open to allow for evapora-
tion. These lower fraction organic metabolites are suitable for
FAME or liquid chromatography-mass spectrometry lipid
analysis and can be stored at �20 �C.

3.2 Derivatization

Process of Samples for

GC-MS Run

The derivatization step is a key step used to improve the reproduc-
ibility of experimental results in GC-MS analysis. Derivatization
increases thermal stability and volatility, allowing the metabolites
to pass through the gas chromatograph. Derivatization should
improve the resolution between overlapping peaks and coeluting
metabolites [30, 31]. The process entails the chemical transforma-
tion of metabolites within the matrix through the addition of a
derivatizing agent, such as N-methyl-N-trimethylsilyltrifluor(o)
acetamide.

1. Prepare ~20mg/mLmethoxyamine hydrochloride in pyridine.

2. Add 50 μL of 20 mg/mL methoxyamine hydrochloride/pyri-
dine to each dried aqueous sample.

3. Shake at 37 �C for 2–3 h.

4. Add 50 μL ofMSTFA to each sample. Be sure to seal remaining
MSTFA with parafilm and store at 4 �C fridge.

5. Shake at 37 �C for an additional 30–60 min.

6. Dilute each sample with 500 μL of hexane.

7. Centrifuge all samples at 16,600 � g for 4 min to remove any
solid particle. This step is important even if no particles are
visible by the eye, as microparticles can interfere with the
GC-MS.
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8. Transfer 200 μL of supernatant to GC-MS vial with glass insert.

9. Make quality control samples (100 μL of every disease-free
control sample (DFC)) into a giant 1000 μL tube. Distribute
into five 200 μL glass vials to put in with every solvent-only
(blank) and standard sample/vial (i.e., after ~every 10 samples)
(see Note 6).

10. Create a sample list file. The sample list should contain all
samples to be run through GC-MS, including samples, internal
standard concentration vials, retention time standard samples,
and solvent-only samples.

11. Place vials onto rack in sample list order, and begin run. Please
refer to the instrument’s instruction manual, as details vary
based on the instrument’s brand and the technology used.

12. Check the saturated peaks on the GC-MS, and continue with
the adjusted concentration for the rest of your samples. Ideally,
peaks from metabolites of interest should be well inside the
instrument’s dynamic range and should not saturate the detec-
tor if they are in the biologic range of concentration.

3.3 Analysis of

Spectra

Metabolomic studies that utilize the GC-MS platform aim to iden-
tify and quantify (either the relative or absolute) levels of metabo-
lites in complex matrices such as serum. GC-MS is capable of
detecting small differences in abundance of metabolites, which
makes it an excellent platform for looking at differential metabolite
patterns between experimental conditions (or experimental
groups). Ions from individual metabolites can be identified based
on retention pattern, atomic mass, and charge. When signals from
different ions (mass/charge values) are found at the same retention
time, observed fragments can be assumed to originate from the
same metabolite (or of the similar chemical structure). However,
retention times of metabolites can vary based on factors such as the
chromatography column and other features of the mass spectrom-
eter. Retention index is used for standardization of retention times
across a variety of experimental conditions and is obtained through
logarithmic adjustment that relates retention time of the sample to
the retention time of a standard that elutes before and after the peak
of the sample. This provides a value that is system-independent and
can therefore be used to compare peak intensities across many
platforms (see Note 7).

To identify metabolites that are differentially abundant
between experimental conditions, mass spectral data must first be
processed. Software such as MetaboliteDetector, SIMAT, and Open-
Chrom are freely available tools to use for both targeted and non-
targeted comprehensive analysis of spectra produced by GC-MS
[32]. The following section will describe a general workflow for the
metabolomic data processing using the software
MetaboliteDetector.
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3.4 Import and

Calibrate

1. Using the software provided by instrument’s manufacturer,
convert the raw files generated by the GC-MS into CDF files.

2. Import sample CDF files into MetaboliteDetector. After
importing the files, the folder containing the .CDF files will
now contain .bin and .idx files.

3. Open Tools, and click on RI-Calibration Wizard. This step will
standardize retention times across a variety of experimental
conditions, including different instruments, columns, carrier
gases, etc. This will allow for all compounds detected on chro-
matogram to be searched and referenced in a library for metab-
olite identification (see Fig. 1). Most of these libraries are public
and specific for GC-MS metabolite analysis (e.g., Golm Meta-
bolome Database [33]). Select one of the standards from the
list containing your samples.

4. The compounds in the reference chromatogram will be
detected. Open the Settings, and choose a high threshold
value, so that the software may detect the compounds present
in your standard.

5. The standard you chose should have a distinct number of
peaks, depending on the standard chosen. If this is not the
case, change the standard sample file as multiple standard vials
should have been run (see Fig. 2).

6. A calibration table will appear. Ensure that the retention time
values for the standard peaks are correct. This is done by
clicking on one of the standard peaks, which brings up a
window showing detected peaks. Check that the suggested
retention time is the same as the retention time you see in the
tables as you select the triangles below the peaks. Make correc-
tions as necessary by changing the values in the calibration
table—the numbers identified will automatically appear. This
step is also necessary if no retention time has been suggested.

7. Choose all sample and blank chromatograms in .bin format.
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Fig. 1 A chromatogram of a standard 7-alkane solution used for retention times normalization and generation
of Retention Index (RI). A wide range of time is covered by these alkanes, which provide a comprehensive
basis for times standardization

242 Jodi Rattner et al.



8. Check that all chromatograms are present. Remove any
unwanted duplicates.

9. Next, open Settings and change the threshold from very high to
a low value, so that the software may detect compounds with
much lower intensity. Ensure this threshold value is appropriate
in that it may identify and pick up all peaks of your interest.

10. Allow calibration to complete.

3.5 Compound

Detection

1. Open Settings, and addmass filters for known contaminant ions
that should not be identified by the software and that you want
to remove. Example of such ions includes 73.00 and 146.0 in
MSTFA-derivatized samples.

2. Select Tools, and open Compound Detection Wizard.

3. Choose all chromatograms of the sample set, and click “rede-
tect all compounds.” Allow software to complete detection.

3.6 Batch

Quantification

1. Open Tools and select Batch Quantification. Unless samples
were run in different batches, create one group containing all
samples.

2. Depending on which type of analysis is preferred to be done,
the software can complete both targeted and nontargeted ana-
lyses. For nontargeted analysis, select this option, and allow the
software to complete this step. For targeted analysis, seeMeta-
boliteDetector instruction for further instruction on how to
prepare a list of metabolites for targeted profiling.

Fig. 2 A screenshot of the assignment procedure for seven alkane compounds in the RI standard solution in
Metabolite Detector. Retention times and nominal retention indices (RI) can be found in the “Analysis Results”
table
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3. Detection and quantification results are now present in a tab on
the bottom left corner of the screen. For metabolite detection,
libraries such as GolmMetabolomeDatabase, NIST, andMass-
Bank mass spectral database may be used to create in-house
libraries for identification [34, 35].

4. Export results into a .CSV file.

3.7 Data Cleaning

and Preprocessing

Normalization of sample chromatographic results is necessary to
compensate for sample-to-sample variation in the overall peak
intensities. There are several approaches to normalization, includ-
ing the incorporation of an internal standard (fully quantitative
approach) or applying a calculated scaling factor such as probabilis-
tic quotient normalization (PQN) [36] (semiquantitative
approach). PQN is a robust normalization method that accounts
for dilution of complex biological matrices, such as serum. PQN
identifies the most common scale factor between spectra and
divides the peak values for each spectrum by this scale factor. This
approach reduces the influence of missing peaks in individual spec-
tra and can be readily done in an R-based application or within
Microsoft Excel.

Missing data are problematic. Replacing them with a numerical
value of 0 is misleading and can significantly skew results, resulting
in inaccurate quantitative and qualitative representations of meta-
bolites when submitting them as part of a multivariate analysis.
Therefore, methods for data imputation are more appropriate.
Various approaches exist for data imputation, such as mean, singu-
lar variable decomposition, and half minimum [30], and should
take into account whether missing values are random or systematic.

Scaling is particularly important in biomarker investigation and
analysis of complex samples. Scaling allows for spectrum-
distinguishing features that are often not the largest peaks or con-
sidered part of background noise. Scaling provides a mechanism for
the enhancement of the contribution of the medium peaks, without
inflating the background noise. There are different approaches for
scaling, including unit variance and Pareto scaling, which can both
be done in SIMCA (Umetrics AB, Malmö, Sweden) [37].

Intra-batch and inter-batch corrections are also essential.
Within a particular batch, instrument drift and other technical
factors may affect the appearance of the MS spectrum. The inter-
mittent addition of pooled quality control samples at regular inter-
vals within the batch enables one to monitor for unexpected
perturbations. If there is a systematic drift in the peak intensities,
then the quality control samples can aid in correcting for the drift.
When doing larger sample sets, it may be impossible to run all of the
samples in a single batch (on the same day). This compounds any
potential measurement error. Batches are subject to systematic and
random variations that may be quite profound. In addition to
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variability in metabolite ion peak intensities that can be introduced
by variations in extraction and derivatization, batches run on dif-
ferent days are subject to a myriad of instrument-dependent tech-
nical factors. One approach to correct for batch-dependent
variation is the use of the ComBat method (part of the sva package
in R) which can identify and estimate surrogate variables for
unknown sources of variation and remove that from the high-
dimensional dataset [38]. The need for any correction is diminished
with the addition of internal standards, which should allow com-
parison between samples within a batch and between batches.

3.8 Statistical

Analysis

There are multiple approaches to analyzing metabolomic data
[39–41]. Typically, we perform an unsupervised principal compo-
nent analysis (PCA) to identify any latent features or patterns that
distinguish the experimental group and the control group [42]. We
then apply a filtration step that removes the “noise” comprised of
non-related compounds that are clearly no different between the
experimental and control groups. Subsequently, a supervised mul-
tivariate analysis can be applied to identify metabolites that signifi-
cantly contribute to the model that distinguishes the experimental
group from the control group. For example, supervised orthogonal
partial least squares discriminant analysis (OPLS-DA) can be used
to reduce the dimensionality of the data and to identify important
metabolites that distinguish comparator groups. Commercial mul-
tivariate analysis software, such as SIMCA (version 15.0.0; Ume-
trics AB, Malmö, Sweden), or open-source software such as
packages in R are available (https://cran.r-project.org/web/
views/ChemPhys.html).

3.9 Interpretation Once the metabolomic model is finalized (and perhaps validated), it
is important to understand the underlying biological significance of
the pattern of differentially abundant metabolites. Data software
packages can be used to interpret metabolomic data. By inputting
the data generated from multivariate analysis into software such as
MetaboAnalyst and Pathview, one can see the components of
primary metabolic pathways that are perturbed [43–46].

4 Notes

1. The methods described focus on serum as the biological
matrix, which requires little sample processing. Urine testing
is similarly relatively straightforward. Analysis of solid tissues,
which would be expected to contain higher concentrations of
metabolites, requires additional sample processing and optimi-
zation. The methods in this chapter focus on the analysis of
polar metabolites. Efficient elution of nonpolar components is
optimized through different preparation procedures [16–19].
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2. GC-MS is a sensitive method for identifying differentially
abundant metabolites in two or more groups of experimental
samples. GC-TOF-MS improves the resolution of individual
metabolites. Good experimental design is perhaps the most
important feature of a successful and valid comparison between
groups of samples. Ideally, internal standards and the addition
of intermittent quality control samples will be included in the
experimental design. This is especially important for larger data
sets, in which multiple batches are required to analyze all of the
samples.

3. Use a syringe instead of a pipette to get pyridine from the stock
to avoid contamination of the stock solution with plasticizers.

4. The metabolites that make up the internal standard solution are
the compounds that represent different physiochemical classes
to cover the portion of the metabolome that you wish to
analyze. Examples would include glucose and phenylalanine.
Once your compounds are chosen and the concentration gra-
dients have been selected based on the dynamic range of quan-
tification, choose four concentration dilutions that will cover
the concentration gradient, and put them into vials A, B, C,
and D. This will enable comparison of each compound found
in your samples to these solutions, based on the gradients. For
example, the highest concentration of the internal standard mix
can be assigned to vial A, while the lowest concentration can be
assigned to vial D. These internal standards should be run with
every batch for comparison.

5. The outlined number is a minimum g force that should be
applied for the separation of particles in the size range from
serum (as the matrix). Using a greater g force will not damage
the samples or separation—on the contrary, the separated par-
ticles will make a tighter layer that cannot be disturbed easily.

6. A blank is an analyte-free solvent which is carried through the
analysis to examine and clean any contamination or carry-over
in the experimental procedure. If not used, contamination can
be carried through the whole analysis procedure. A blank vial
should be placed every 5–10 samples in the run of the GC-MS.

7. The methods above describe the characteristics of a discovery
phase of experiments, which involves the untargeted
(or exploratory) analysis of metabolites. In such an experiment,
there is a scan of the full spectrum, considering all peaks in a
spectrum over a large mass-to-charge range. After discovery
and training, it is possible to perform selective ion monitoring
for targeted analysis.
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Chapter 14

Metabolite Profiling of Clinical Cancer Biofluid Samples
by NMR Spectroscopy

Beata Mickiewicz, M. Eric Hyndman, and Hans J. Vogel

Abstract

Metabolomics is a comprehensive characterization of the small polar molecules (metabolites) in different
biological systems. One of the analytical platforms commonly used to study metabolic alterations in biofluid
samples is proton nuclear magnetic resonance (1H NMR) spectroscopy. NMR spectroscopy is very specific,
quantitative, and highly reproducible. Moreover, sample preparation for NMR experiments is very simple
and straightforward, and this gives NMR spectroscopy a distinct advantage over other metabolic profiling
methods. It has already been shown that 1H NMR-based profiling of biological fluids can be effective in
differentiating benign from malignant lesions and in investigating the efficacy of specific cancer treatments.
Therefore, 1H NMR spectroscopy may become a promising tool for early noninvasive diagnosis and rapid
assessment of treatment effects in cancer patients. Here, we describe a detailed protocol for 1H NMR
metabolite profiling in serum, plasma, and urine samples, including sample collection procedures, sample
preparation for 1H NMR experiments, spectral acquisition and processing, and quantitative profiling of 1H
NMR spectra. We also discuss several aspects of appropriate study design and some multivariate statistical
methods that are commonly used to analyze metabolomics datasets.

Key words Metabolomics, 1H NMR, Quantitative profiling, Cancer, Serum, Plasma, Urine

1 Introduction

Metabolomics is a rapidly evolving division of the “omics” sciences.
It represents the small-molecule changes induced by upstream
alterations in the genome, transcriptome, and proteome. Genetic
mutations in cell cycle pathways of cancer cells can influence cellular
metabolism and therefore metabolic profiles [1–4]. Alternatively,
mutations in metabolic enzymes such as in fumarate hydratase, as in
papillary renal cell carcinoma, can directly affect metabolism and
contribute to a malignant phenotype [5]. Tumor growth, invasion
into adjacent tissues, and the immune response often trigger a
cascade of cytokines, which, in turn, can affect metabolism of the
tumor itself and the surrounding tissue [4, 6]. Unlike genomic
changes, the metabolic response to malignancy can be rapid and
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dependent on many biological processes. This can lead to chal-
lenges in differentiating the malignant metabolic signal from the
noise, but by being able to detect a rapid alteration in metabolic
pathways, it may allow early noninvasive diagnosis and rapid assess-
ment of treatment effects in biological fluids.

It is well known that an appropriate study design for
metabolomics-based studies is crucial for obtaining optimal and
reliable results. A number of studies have already demonstrated
that factors such as sample size, sample collection methods and
sample storage conditions, patient’s gender, age, genetics, diet,
gut microbiota, etc. can have an enormous impact on the quality
of metabolic data [7–9]. A well-planned metabolomics study
should therefore be designed in such a way that all possible con-
founding factors are controlled, and thus, any unwanted variance in
the metabolomics data is minimized. Consequently, it is important
to collect an adequate number of samples, to be consistent in
sample collection, storage, and preparation, employ strong con-
trols, and attempt to balance the groups where appropriate. Ideally,
the sample size for human-based studies will be �50 samples per
group [10]. Additionally, the sample preparation and sample analy-
sis should be performed in a random order to avoid progressive
bias. Furthermore, the results need to be validated in a different,
independent cohort to confirm the relevance of metabolic patterns.

Currently, the most widely used analytical platforms in meta-
bolomics studies are nuclear magnetic resonance (NMR) spectros-
copy and mass spectrometry (MS). NMR spectroscopy is focused
on measuring the magnetic properties of atomic nuclei such as 1H,
31P, or 13C, in various compounds [11]. Each molecule has a
unique NMR peak pattern, which can be used to identify and assign
spectral signals to specific metabolites. NMR spectroscopy is well
known to be a very specific, quantitative, and highly reproducible
analytical method [11]. However, the sensitivity of NMR instru-
ments is lower than MS-based platforms. Nonetheless, in our
recent studies, the 1H NMR technique was sufficiently sensitive to
detect significant changes in metabolic profiles in various biofluid
samples collected from cancer patients [12–15]. The NMR tech-
nique does not require a special and sophisticated sample prepara-
tion protocol. In most cases simply adding H2O/D2O and buffer
for pH adjustment is sufficient to prepare a biological sample for
the NMR experiment [16]. Because of this simplicity, NMR spec-
troscopy can be used to analyze a wide range of biological fluids,
e.g., blood, urine, cerebrospinal fluid, synovial fluid, semen, and
pancreatic juice [17–21]. The protocol presented here describes in
detail the process for metabolite profiling in serum, plasma, and
urine samples as these biofluids can be obtained in a relatively
noninvasive manner, and they are the most often studied in our
laboratory. Examples of 1H NMR spectra collected for serum and
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urine samples from a bladder cancer patient from one of our meta-
bolomics studies are shown in Fig. 1.

There are in principle two ways to perform metabolite profiling
in 1H NMR spectra: spectral binning and quantitative (sometime
called “targeted”) profiling [22]. Spectral binning consists of divid-
ing the spectrum into a number of regions (bins) of a fixed width.
Next, the total area of each bin is calculated and compared between
different 1H NMR spectra to identify which bins are changing
significantly across the samples. The selected bins are analyzed in
order to assign the metabolite identities found in the bin. Although
spectral binning is quite fast and provides an efficient way of metab-
olite profiling, it does not separate metabolic peak patterns that
could overlap. For these reasons, some of the metabolite identities
can be missed, and significant erroneous differences in metabolite
concentrations may be calculated. On the other hand, quantitative

Fig. 1 Typical 1H NMR spectra for (a) serum and (b) urine samples collected from a bladder cancer patient,
obtained in one of our metabolomics studies [40]. Only the aliphatic region of the spectrum is shown. The
spectra were obtained on a 600 MHz Bruker Ultrashield Plus NMR spectrometer (Bruker BioSpin Ltd., Canada),
equipped with a 5 mm TXI probe at 298 K. A 1-h and 28-min acquisition time for each NMR spectrum was
used. The singlet peaks at 0.0 ppm represent the internal reference standard (DSS) and are clearly separated
from regular metabolites
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profiling involves the identification of different compounds by their
characteristic peak patterns (that are stored as individual metabolite
1H NMR spectra in an external reference database) and assigning
these individual clusters based on appropriate regions of the spec-
trum (Fig. 2) [22]. The concentration of each metabolite is repre-
sented by the area under the peak(s). Therefore, by knowing the
exact concentration of an internal standard, the relative concentra-
tion of all identified compounds can be easily calculated.

Many biological samples, particularly biofluids such as plasma
and serum, often contain high molecular weight metabolites (e.g.,
lipids vesicles or micelles and proteins). These macromolecules give
rise to broad signals in the NMR spectra. The metabolite profiling
approach is directed specifically toward low molecular weight com-
pounds, and so the broad spectral resonances from lipids and
proteins are unwanted as they can interfere with the quantitative
analysis of the metabolites in the NMR spectra. Several approaches
can be used to facilitate the selective observation of the narrow
resonances from small metabolites, such as implementing the Carr-
Purcell-Meiboom-Gill (CPMG) NMR pulse sequence, extraction
of the sample with organic solvents or perchloric acid, or ultrafiltra-
tion (Fig. 3) [23–26]. The CPMG experiment improves the detec-
tion of the spectra of the small metabolites but does not completely
suppress resonances from mobile lipids, and there is still a consid-
erable overlap in the NMR spectrum from these lipids. Therefore,
profiling and metabolite quantification of CPMG spectra remains
fraught with difficulties. Extraction and ultrafiltration methods
have been studied as well, and it has been shown that ultrafiltration
provides high reproducibility and is superior for the removal of
high molecular metabolites when compared to extraction methods
[27, 28]. Additionally, in our experience ultrafiltration increases the
resolution of the NMR spectrum and provides an opportunity to
observe aromatic signals, which are typically not visible in a CPMG
spectrum. Therefore, the sample preparation protocol that will be
described here for metabolite profiling of biofluid samples includes
an ultrafiltration step for optimal reduction of broad NMR reso-
nances and improvement of the signal-to-noise ratio.

In addition to 1D 1H NMR, other 2D NMR spectroscopy
techniques can be used for metabolite profiling of biofluid samples,
for example, homonuclear 2D J-resolved NMR spectroscopy [29],
correlation spectroscopy (COSY), total correlation spectroscopy
(TOCSY), or heteronuclear single-quantum correlation (HSQC)
spectroscopy [30, 31]. Overall, these 2D NMR techniques are
normally utilized to improve metabolite signal assignment and/or
to confirm a prior 1D spectral assignment [32].

The number of small-molecule metabolites that can be
detected by 1D 1H NMR in a biofluid sample ranges from a few
dozen to hundreds. In order to analyze such big and very often
heterogenic datasets, specific statistical analysis tools need to be
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Fig. 2 Examples of metabolite profiling of 1H NMR spectra: (a) and (b) spectral binning and (c) quantitative
(“targeted”) profiling. Spectral binning is based on dividing the NMR spectrum (a) into a number of regions
(bins) of a fixed width, (b) while quantitative profiling (c) is used to identify different compounds by their
characteristic peak shift assignment
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implemented. The most popular method applied for metabolic data
analysis is multivariate data analysis, which includes principal com-
ponent analysis (PCA) and partial least squares (PLS) analyses
[33]. The PCA and PLS methods aim to distinguish between
separate cohorts in highly complex datasets, despite a large back-
ground and the “within-class” variability. Unsupervised PCA is
used to reveal initial groupings of samples in the dataset and to
identify possible outliers, while the supervised PLS and orthogonal
PLS (OPLS) analyses aim to determine data discrimination and
classification based on the class identifiers (e.g., benign versus

Fig. 3 The 500 MHz 1H NMR spectrum of a blood plasma sample: (a) before and (b) after protein removal using
10 kDa centrifugal filters (Reprinted from Anal Chim Acta [51] with permission from Elsevier)
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malignant). It should be noted that, often, before the statistical
analysis is carried out, the data needs to be normalized (e.g., total
sum normalization, median fold change) and/or log transformed,
scaled (e.g., unit variance scaling, Pareto scaling), and centered
(e.g., mean centering) to ensure normal distribution of the data
and to account for differences in sample dilution [34, 35].

While NMR has its known limitations with respect to sensitivity
and initial investment compared to other analytical platforms, it
does have inherent strengths that allow it to be a useful tool for
assessing the cancer metabolome. Processing of fluids is simple and
allows for rapid and reproducible initial setup. This straightforward
preparation allows for the retrospective analysis of diverse biobanks
and biofluids relatively easily. Recent advances in NMR technology
allow for even more improvements in the metabolomics field
[36]. High-throughput epidemiological 1H NMR-based metabo-
lomics studies have already been carried out which consisted of
more than 5000 samples [37, 38]. Currently there are several
large-scale clinical research projects ongoing in our laboratory,
which are concentrating on bladder, prostate, and breast cancer
[39, 40]. These projects involve larger number of samples, with
on the order of 300–1400 samples per study. NMR-based metabo-
lomics also has the ability to identify unknown metabolites that can
be further characterized, thereby making it a discovery platform as
well as an analytical tool. Direct measurements of in vivo metabo-
lites using NMR can also be performed with magnetic resonance
imaging (MRI)-based spectroscopy methods, and development of
this technology may allow for noninvasive tissue metabolite analysis
without sample preparation [41]. Be that as it may, most
NMR-based metabolomics studies of clinical cancer samples,
reported to date, have focused on metabolic disease biomarker
discovery in various biofluid samples. Since collection of blood
and urine samples is well established, economical, and also well
accepted by patients, biofluid analysis will remain a major method
for clinical assessment in the future.

2 Materials

2.1 Reagents Prepare all solutions using ultrapure water (purified deionized
water, resistivity of�18.2 MΩ·cm at 25 �C), and use only analytical
grade reagents. Prepare and store all reagents at room temperature
(unless otherwise indicated). Follow all safety procedures and waste
disposal regulations when working in the laboratory and disposing
waste materials.

1. Sample buffer: 6.8995 g monosodium phosphate monohy-
drate (NaH2PO4 · H2O), 0.0546 g 2,2-dimethyl-2-silapen-
tane-5-sulfonate sodium salt (NaDSS), and 100 mL D2O (see
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Note 1). Final concentration of 0.5 M NaH2PO4 and 2.5 mM
DSS (see Note 2).

2. D2O (�99.8%).

3. 1 M NaN3.

2.2 Equipment 1. Sterile silicone-coated vacutainers (serum tubes or serum-
separating tubes, no additive).

2. Sterile sodium heparin- or lithium heparin-coated vacutainers.

3. Sterile urine containers.

4. Centrifuge with temperature control.

5. Container with ice.

6. Cryovials/2D barcode sample storage tubes.

7. Bucket with ice.

8. 10 kDa centrifugal filters (filter and microtubes) (see Note 3).

9. Centrifuge with temperature control.

10. Vortex.

11. 1 mL serological pipettes.

12. Glass Pasteur pipettes.

13. 5 mm NMR tubes which do not require spinners (length,
103.5 mm; outside diameter, 5 mm; wall thickness,
0.43 mm) (Fig. 4) (see Note 4).

Fig. 4 NMR equipment. (a) 5 mm NMR tube which does not require spinners
(length, 103.5 mm; outside diameter, 5 mm). (b) 96-well-plate-sized NMR tube
rack (view from the top, top figure; side view, figure below). The tube positions
are highlighted in circles and marked with numbers
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14. 600 MHz Bruker Ultrashield Plus NMR spectrometer (Bruker
BioSpin Ltd., Canada) equipped with the Bruker® SampleJet
and a 5 mm TXI probe at 298 K (see Note 5).

15. 96-well-plate-sized NMR tube rack (Fig. 4).

2.3 Software (See

Note 6)

1. TopSpin (Bruker, Canada).

2. IconNMR (Bruker, Canada).

3. Chenomx NMR Suite (Chenomx Inc., Canada).

4. SIMCA (Umetrics, Sweden).

3 Methods

3.1 Biofluid Sample

Collection

For optimal clinical metabolomics-based studies, it is crucial to
ensure that information about the medication and dietary intake
of the patients is recorded for up to 24 h prior to biofluid sample
collection.

3.1.1 Blood 1. Collect blood from an existing arterial or central venous cathe-
ter, or with intravenous insertion, or blood culture draw. If
possible more than one sample from each individual should be
collected.

2. Serum is obtained by collecting the blood into sterile silicone-
coated vacutainers (serum tubes, red top; serum-separating
tubes with no additive, gold top). The vacutainer type used in
a study should be consistent throughout the whole process of
sample collection. Immediately after sample collection, the
blood is allowed to clot for 45 min at room temperature, and
serum is subsequently isolated via centrifugation (1200 � g for
15 min at 4 �C) (see Note 7).

3. Plasma is obtained by collecting the blood into sterile sodium
heparin (green top) or lithium heparin (light green top) con-
taining vacutainers (see Note 8). The vacutainer type used in a
particular study should be consistent throughout the whole
process of sample collection. Immediately after collection,
gently invert blood samples several times, and next centrifuge
at 1200 � g for 15 min at 4 �C.

4. After centrifugation collect the supernatant (serum or plasma),
transfer to cryovials or aliquot if necessary into 2D barcode
sample storage tubes, and immediately freeze at �80 �C.

3.1.2 Urine 1. Urine: the samples can be obtained by Foley catheter or col-
lected directly as midstream urine into sterile urine containers.
The samples should be processed within 2 h after collection
(storage at 4 �C between collection and processing) [42].
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2. The samples are immediately treated with NaN3 (final concen-
tration of NaN3: min 0.05% weight/volume) over ice [17] and
centrifuged at 1600 � g for 5 min at 4 �C to remove any
particulate matter [42].

3. After centrifugation the supernatant is pipetted into cryovials
or aliquoted if necessary into 2D barcode sample storage tubes
and stored at �80 �C.

3.2 Sample

Preparation

All samples should be prepared fresh and in a random order to
avoid progressive bias. Samples should be kept on ice all the time to
minimize potential metabolic alterations.

1. Allow the serum/plasma/urine samples to thaw on ice.

2. Clean the 10 kDa centrifugal filters in order to remove glycerol
contamination from the filter: place filters in the microtubes
and fill up each filter with 600 μL ultrapure water (purified
deionized water, resistivity of �18.2 MΩ·cm at 25 �C). Next,
centrifuge the tubes at 20,000 � g for 8 min at 4 �C (see
Note 9).

3. Dump the filtrate in the sink and repeat the filters’ washing step
four more times.

4. Rinse the microtubes of the 10 kDa filters and the filters with
more ultrapure water to remove any remaining trace of filtrate.
Insert the filters into the microtubes.

5. Properly label the washed microtubes.

6. Transfer the thawed biofluid samples (250 μL) into the 10 kDa
centrifugal filters. For blank samples, transfer 250 μL of D2O
into the 10 kDa centrifugal filters. Centrifuge the microtubes at
20,000 � g for 60 min at 4 �C (see Notes 10 and 11).

7. After 60 min of centrifugation, add 100 μL of D2O to the
filtered protein and blank samples, and continue centrifuging
at 20,000 � g for 45 min at 4 �C (see Note 12).

8. After 45 min of centrifugation, remove the 10 kDa centrifugal
filters from the microtubes. Dispose the centrifugal filters
according to the local waste disposal regulations (seeNote 13).

9. To every sample (filtrate in the microtube), add 112 μL of
sample buffer and 10 μL of 1 M NaN3 aqueous solution (see
Note 14).

10. Close the sample microtubes and vortex each microtube
for 15 s.

11. Using a 1 mL serological pipette, measure the volume of the
sample in the microtube.

12. Bring the sample volume up to 560 μL with D2O (see Note
15). The final concentration of DSS in the sample is 0.5 mM.
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13. Close the sample microtubes and vortex each microtube
for 10 s.

14. Using glass Pasteur pipettes, transfer the samples into the
5 mm NMR tubes.

15. Place the sample tubes in a 96-well-plate-sized NMR tube rack
(rack for tubes which do not require spinners).

3.3 Spectral

Acquisition

If using the Bruker® SampleJet system and 5 mm Bruker® Sample-
Jet NMR tubes, make sure that the 5 mm shuttle operating mode is
activated in the sample changer.

1. Load a 96-well-plate-sized NMR tube rack with the sample
tubes in the sample changer.

2. Open the TopSpin software and check that the temperature is
set up to 298 K and the air flow is set to 400 L/min
(command: edte).

3. Insert the first sample tube (representative sample) into the
magnet (command: sx tube’s position, e.g., sx 401, where 4 indi-
cates a rack number and 01 indicates a tube’s position in the
rack) (Fig. 4), and wait till the magnet equilibrates.

4. Based on this representative sample, (a) “Lock” the system
(command, lock; select a proper solvent from the list);
(b) tune the probe (for automatic tuning use the command
atma; for manual tuning, atmm); (c) shim the sample (for
automatic gradient shimming, use the command gradshim).

5. Next, reduce the lock signal to ~67%, and run an example
NMR spectrum (number of scans (NS) ¼ 1; command: zg).

6. Inspect if the example NMR spectrum is correct, e.g., phase the
spectrum and confirm that the upfield DSS peak is at 0.0 ppm
and that it has a regular shape with a width at half-height of not
more than 1.5 Hz (command, nl; peak’s width at half-height
range, 0.8–1.5 Hz). If the DSS peak doesn’t have a good shape
and/or is too wide, it can be corrected by adjusting manually
the first-, second-, and third-order shims (see Note 16).

7. After confirming that the example NMR spectrum is correct,
save the shims (command: wsh).

8. Next, determine the 90� pulse length (P1) and save the correct
value.

9. Open the IconNMR software, and in the list, select (double
click) a sampler holder number that corresponds to the sample
(tube’s position) which was inserted into the magnet (Fig. 4).

10. From the pulldown menu, select or type the following infor-
mation: (a) “Name,” name of the folder where the NMR data
will be saved; (b) “No,” number of the NMR spectrum;
(c) “Solvent,” type of sample’s solvent; (d) “Experiment,”
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name of the experiment (pulse program); and (e) “Title,” title
of the NMR dataset.

11. Next, select from the top menu bar “Parameters ! Edit all
acquisition parameters.”

12. The TopSpin window appears. In order to set up required
parameters, write a command: ased. Select a proper pulse pro-
gram (PULPROG: noesypr1d), acquisition time (AQ), delay
between pulses (D1), number of scans (NS), number of
dummy scans (DS), and the 90� pulse length (P1, the value
determined in step 8) (see Note 17).

13. Return to IconNMR, and copy the row with the established
parameters to the remaining sampler holder numbers (each
number corresponds to the sample tube in a 96-well-plate-
sized NMR tube rack). Remember to update the title for
each sample. “No” (number of the NMR spectrum) will be
updated automatically by the software.

14. Highlight the rows and select “Submit.” Next, click on the
“Set Automation mode and start the run” button in the top
menu bar. Mark the option “First sample in the magnet (locked
and shimmed),” and then click “Start” to start the
measurements.

15. When the spectral acquisition is finished, open the 1D NMR
spectrum in TopSpin (command re Number of the NMR spec-
trum), and briefly check the quality of the spectrum:
(a) Fourier transform the spectrum (command: efp);
(b) adjust phasing (zero order and first order); (c) perform
baseline correction (command: abs); (d) set DSS peak at
0.0 ppm; and (e) check the peak width at half-height (com-
mand, nl; the width should not be more than 1.5 Hz). If the
spectrum has defects (e.g., uneven baseline, wide DSS peak,
irregular shape of DSS peak), the 1D NMR spectrum needs
to be rerun.

16. After initial inspection of the NMR spectra and confirming
spectral quality, the spectra can be transferred to the Chenomx
NMR Suite (Chenomx Inc.) software as Bruker 1r or fid files
for further processing and metabolite profiling.

3.4 Spectral

Processing

NMR spectra are normally processed using the processor module in
the Chenomx NMR Suite (Chenomx Inc.) software. The NMR
data can be imported as Bruker 1r or fid files to the processor
module. While processing the spectra, the user can select automatic
or manual spectral processing options. The protocol below
describes all the steps for manual spectral processing.

1. Line broadening: in the top menu bar, select Processing and
next Line Broadening (or click on the Line Broadening button
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under the spectrum window). Set the Line Broadening value to
0.2 Hz. Accept the change.

2. Phasing: from the Processing menu tab, select Phase Correc-
tion (or click on the Phase Correction button under the spec-
trumwindow). Adjust the zero-order and the first-order phases
by moving the pivots in a proper direction and using the
Normal, Fine, and Very Fine modes (scale of changes made
with changing the phases). Click the Accept button to con-
tinue. The NMR spectrum is correctly phased when its baseline
looks like a smooth line (curve) along the entire spectrum (see
Note 18).

3. Water deletion: from the Processing menu tab, choose Region
Deletion. Before deleting the water peak, make sure that there
are no peaks of interest near to the water peak (zoom in the
region). To delete highlighted water peak region, click Accept.
You can choose a narrower or broader region to be deleted by
changing the range of ppm.

4. Baseline correction: from the Processing menu tab, select Base-
line Correction (or click on the Baseline Correction button
under the spectrum window). Choose Auto Spline option.
You can smooth the line by manually adding and/or moving
the breakpoints. A flat baseline allows for a better peak integra-
tion and subsequently for better quantification results. When
finished click Accept.

5. Shim correction: from the Processing menu tab, select Shim
Correction (or click on the Shim Correction button under the
spectrum window). This function allows to smooth and correct
the peak shapes. Zoom in the highlighted DSS peak and over-
lap the blue contour with the peak. You may also slightly
narrow or broaden the DSS peak by moving the side pivots or
changing the value of Target Linewidth (Hz). The peak
width should not be more than 1.5 Hz. Accept the changes
(see Note 19).

6. Calibrate CSI: click on the Calibrate CSI button under the
spectrum window. This step allows one to set the upfield DSS
peak to 0.0 ppm and to establish the concentration of the
internal standard (0.5 mM). Zoom in the highlighted DSS
peak and overlap the red contour with the peak by moving
the lower pivot. Use the upper pivot to adjust the peak height
and side pivots to slightly narrow or broaden the DSS peak.
When finished accept the changes.

7. Save the processed spectrum as a cnx file. Such a processed
spectrum can be further profiled in the Profiler module in
Chenomx NMR Suite (Chenomx Inc.) software.
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3.5 Metabolite

Profiling

Start metabolite profiling by first analyzing the NMR signals of
DSS. Next, move to other regions of the NMR spectrum to profile
more compounds or search for specific compounds (that you have
identified in prior or preliminary studies) using the Quick Search
option.

1. Click on the Select Region button in the top menu bar. Next,
highlight the area around the upfield DSS peak (0.0 ppm).

2. Right click inside of the highlighted area, and select the Search
for Compounds in this Region option. The suggested com-
pounds appear in the Compound Table under the spectrum
window. The best match is marked in bold (DSS Chemical
Shape Indicator) (see Note 20).

3. Inspect all signals associated with DSS by clicking on each ppm
value in the left top corner of the spectrum window. The 1H
NMR spectrum of DSS exhibits four signals: singlet at 0.0 ppm
and three multiplets at 0.6 ppm, 1.75 ppm, and 2.9 ppm (see
Note 21).

4. A green ppm value indicates a good fit of the suggested com-
pound with the actual signal. You can adjust the fitting of the
suggested signal into the spectrum by moving the lower and
upper pivots.

5. After profiling (fitting) all the signals of DSS, move to other
regions of the NMR spectrum and search for other com-
pounds. Repeat all the steps of the procedure described above
for other peaks in the spectrum (see Note 22). Ideally, all
signals observed in the NMR spectrum will be profiled and
matched with specific compounds (see Note 23). To assure
correct selection of the compounds, you can verify the com-
pounds with 2D NMR spectra and available metabolite data-
bases (e.g., Human Metabolome Database [43]).

6. When finished save the profiled spectrum as a cnx file.

7. In order to export the metabolite profiling results into a
spreadsheet, select Batch Export function from the Tools (top
menu bar). Follow the steps: (a) choose the type of data you
wish to export (concentrations in different units, matched
clusters, etc.), and select the cnx files you want to export, and
provide the name of a target file for the exported data, and click
next; (b) select what compounds should be exported (choose
Export Data for All Profiled Compounds), and click next;
(c) select (or not) additional information you would like to be
included in the exported data (e.g., KEGG Compound ID,
HMDB Accession Number, Formula), and click next;
(d) choose (or not) additional spectrum information to export
(e.g., Magnet Frequency (MHz), Pulse sequence), and click
next; and (e) select data format (Default, cnx file names in rows,
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compounds in columns; Transposed, compounds in rows, cnx
file names in columns), and click finish.

8. Open the exported file (metabolite concentrations in profiled
spectra) in Excel (Microsoft Corporation, USA), in order to
perform further data processing and statistical analysis as
appropriate for your study.

3.6 Statistical

Analysis

The statistical analysis procedure implemented in our laboratory
consists of 1H NMR data preprocessing (median fold change nor-
malization [44]) in Excel, while further data processing (logarith-
mic transformation, mean centering, and unit variance scaling) is
completed in the commercially available SIMCA software (v. 14.1,
Umetrics, Sweden). Next, the SIMCA software is used for all
multivariate statistical analysis such as unsupervised PCA and super-
vised PLS and OPLS methods [45] (see Note 24).

1. Start the SIMCA program and create a new project from
File ! New ! Regular project.

2. Select type of data (supported files—default setting) and find
the dataset (Excel file). Next, click Open. The selected Excel
spreadsheet will be imported to the SIMCA software.

3. Specify Primary ID and as many Secondary IDs as desired for
both variables and observations. Specify quantitative, qualita-
tive, and date/time variables. Click on the Finish button to
finalize importing a currently open spreadsheet. Save the file as
a new SIMCA project file (.usp).

4. Depending on the observation/variables ID assignment, an
unsupervised PCA or a supervised PLS model will alternatively
be created by the software. However, this requires further
fitting and analysis (see Subheading 3.6, step 5).

5. To fit the model, select Home ! Autofit. A plot with the
summary of the fit of the model will appear. The fit summary
plot (bar plot) shows R2X(cum) (variation of the data
explained by each component; R2Y(cum) for the supervised
analysis) and Q2(cum) (cross-validated R2X(cum) for the PCA
model or predictive ability of the supervised model based on
the sevenfold cross-validation (default setting) for the super-
vised analysis). The R2X (R2Y) and Q2 values range from 0.0
to 1.0 (see Note 25).

6. To see the score scatter plot for the dataset, select Home !
Scores ! Scatter. By default the plot displays two first
components. The ellipse represents the 95% confidence interval
of the Hotelling’s T-squared distribution (Fig. 5) (seeNotes 26
and 27).

7. To investigate potentially important metabolites, select Home
! Loadings ! Scatter for unsupervised analysis or
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Fig. 5 Examples of (a) PCA score scatter plot, (b) OPLS score scatter plot
(R2Y ¼ 0.89, Q2 ¼ 0.87), and (c) regression coefficient plot for a hypothetical
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Home!Coefficients for supervised analysis. These plots dem-
onstrate which variables (metabolites) are responsible for dif-
ferences between studied patient groups (Fig. 5).

8. To save the plots, first, right click on the plot, and next select
“Save as” function.

9. To save the SIMCA project, File ! Save (or Save as). When
finished click Close.

4 Notes

1. Dissolve 6.8995 g of NaH2PO4 · H2O and 0.0546 g of NaDSS
in approximately 90 mL of D2O. Dissolving NaH2PO4 · H2O
and NaDSS in D2O may require some sonication. Transfer the
solution quantitatively to a 100 mL volumetric flask. Bring the
solution to pH 7 using small aliquots from aqueous solutions
of 1 M HCl and/or 1 M NaOH. Bring the buffer solution to a
final volume (100 mL) using D2O, and mix it thoroughly.

2. For plasma, serum, and other biofluids that contain a signifi-
cant protein content, it is advisable not to use the sodium salt of
3-trimethylsilylpropionic acid (TSP) as an internal reference
standard. TSP can bind to proteins, and therefore, its signal is
much reduced with a very broad line width [17].

3. In our laboratory, we have also used 3 kDa centrifugal filters.
Although the results that we obtained using 3 kDa and 10 kDa
centrifugal filters were very similar, the 3 kDa centrifugal filters
can get clogged easier via accumulated proteins at the bottom
of the filter than the 10 kDa centrifugal filters.

4. In our laboratory, we typically use 5 mm Bruker® SampleJet
NMR tubes without requiring spinners for 600 MHz NMR
spectrometer (tube length, 103.5 mm; outside diameter,
5 mm; wall thickness, 0.43 mm). Depending on the settings
of the NMR spectrometer, other NMR tubes can be used such
as 3 mm Bruker® SampleJet NMR tubes (tube length,
103.5 mm; outside diameter, 3 mm; wall thickness,
0.43 mm), 1.7 mm Bruker® MicroCryoProbe NMR tubes

�

Fig. 5 (continued) metabolomics study: Group A (circles, n¼ 61) versus Group B
(black squares, n ¼ 60). The ellipse in panels (a) and (b) represents the 95%
confidence interval of the Hotelling’s T-squared distribution. In panel (c) only
significant metabolites ( p < 0.05) are shown (n ¼ 13). Positive values of
coefficients (the upper part of the diagrams) indicate increased metabolite
concentrations in Group A (fold change >1), while negative values (the lower
part of diagrams) present a decrease in metabolite concentrations, as compared
to Group B (fold change <1)
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(tube length, 103.5 mm; outside diameter, 1.7 mm; wall thick-
ness, 0.4 mm), standard 5 mm medium wall tubes (tube
length, 178 mm; wall thickness, 0.8 mm), or standard 5 mm
thin wall tubes (tube length, 178 mm; wall thickness,
0.38 mm). The 5 mm and 3 mm NMR tubes can be easily
filled and shimmed, while 1.7 mm NMR tubes are difficult to
fill and are not recommended for routine metabolomics
analysis.

5. In our laboratory, we use a 600 MHz Bruker Ultrashield Plus
NMR spectrometer for metabolomics-based studies. Other
NMR spectrometers and other frequencies can be used, too.
However, the frequency of 600 MHz is a very good compro-
mise between the signal intensity of metabolites and the cost
and time of NMR experiment. Somewhat better spectral reso-
lution is obtained at higher proton (1H) frequencies, which
facilitates the spectral fitting process. It should also be noted
that better sensitivity of detection (and hence shorter acquisi-
tion times) can be obtained by using cryoprobes. However, in
our experience the tuning and matching of cryoprobes are
more sensitive to changes in salt concentrations in the samples
than in regular probes.

6. TopSpin (Bruker, Canada) and IconNMR (Bruker, Canada)
are integral parts of Bruker NMR spectrometer’s operating
system. The Chenomx (Chenomx Inc., Canada) and SIMCA
(Umetrics, Sweden) software are commonly used in our labo-
ratory for metabolite profiling and multivariate statistical data
analysis. However, the protocol described here can be adapted
to other available software.

7. It has been reported that to further minimize any bias asso-
ciated with serum sample collection, it is recommended to
allow all the blood samples to clot on ice for a defined time
period between 20 and 35 min [46].

8. Blood is sometimes also collected into vacutainers with addi-
tives such as citrate or ethylenediaminetetraacetate (EDTA).
However, it is important to remember that when citrate or
EDTA is used as an anticoagulant, additional strong NMR
signals with high intensity are observed in the NMR spectrum
[17]. These interfere with the spectral analysis and reduce the
number of peaks that can be reliably assigned.

9. Always clean more centrifugal filters than the number of ana-
lyzed samples (e.g., �n + 2, n: number of analyzed samples). It
can happen that a few centrifugal filters may have
manufacturing defects, and therefore, it is recommended to
always have some extra clean and washed centrifugal filters
ready. Additionally, wash and clean a few more centrifugal
filters which will be used for preparation of blank samples
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(at least one blank sample for every ten samples). The blank
samples are used to detect potential sources of contamination
during sample preparation.

10. A biofluid sample volume of 250 μL is the most optimal for
clinical NMR-based metabolomics studies. However, in our
laboratory we have also successfully performed metabolomics
NMR measurement using smaller sample volumes such as a
minimum volume of 150 μL. If there is a sufficient sample
volume available, one can also prepare additional pooled QC
samples.

11. The volume of D2O used for the blank samples should be the
same as the sample volume.

12. The filtrate should be clear. If it is not, immediately transfer the
filtrate to a new clean and washed 10 kDa centrifugal filter and
repeat.

13. The filters contain proteins which can be further analyzed for
proteomics analysis, if so desired. In this case remove the filters
from the microtubes, and place them in the Eppendorf tubes.
Label the Eppendorf tubes accordingly. Store the Eppendorf
tubes with the filter at �80 �C until subsequent analysis.

14. The volume of sample buffer varies depending on the type of
the NMR tube. In our protocol we normally use 5 mm Bru-
ker® SampleJet NMR tubes for 600 MHz NMR spectrometer
(tube length, 103.5 mm; outside diameter, 5 mm). The vol-
ume of sample buffer should be 80 μL if the medium wall tubes
(tube length:,178 mm; wall thickness, 0.8 mm) are used or
130 μL for the standard (thin wall) tubes (tube length,
178 mm; wall thickness, 0.38 mm).

15. The final sample volume varies depending on the type of the
NMR tube. In our protocol we routinely use 5 mm Bruker®

SampleJet NMR tubes for 600 MHz NMR spectrometer (tube
length, 103.5 mm; outside diameter, 5 mm). The final sample
volume should be 400 μL if the medium wall tubes (tube
length, 178 mm; wall thickness, 0.8 mm) are used or 650 μL
for the standard (thin wall) tubes (tube length, 178 mm; wall
thickness, 0.38 mm).

16. In order to manually adjust the shims and correct the shape of
DSS peak, press the “onaxis” button on the console and start
changing the shim values. If the peak is broad and/or split on
the top, the first-order shims need to be adjusted (Z,1 X, Y).
The second-order shims (Z,2 XY, YZ, XZ, X2-Y2) need to be
changed if the peak is skewed (asymmetric shape of the peak
from its left or right side). When the peak has a side shoulder,
both, the first- and second-order shims, need to be adjusted.
Symmetric broad tails are often associated with incorrect third-
order shims (Z,3 X,3 Y3, XZ,2 YZ,2 ZXY, Z(X2-Y2)). For more
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information about shim adjustment, see Chmurny et al.
[47]. After changing each shim, run an example NMR spec-
trum (number of scans (NS) ¼ 1; command, zg; when finish
command, efp) to assure that the shape of DSS peak has
improved. When making changes to the shims, always observe
the lock intensity. Generally, continue making changes until a
maximum of lock intensity is achieved (it cannot be improved
anymore).

17. The noesypr1d pulse program provides an optimal water sup-
pression pulse sequence which utilizes the first increment of a
NOESY (Nuclear Overhauser Effect Spectroscopy) pulse
sequence with water irradiation during the relaxation delay
and the mixing time. In our laboratory for all the pilot/discov-
ery studies, we use the noesypr1d pulse program with a mixing
time of 100 ms and the following acquisition parameters: size
of fid (number of time domain points) TD ¼ 57,690, acquisi-
tion time AQ ¼ 4 s, delay between pulses D1 ¼ 1 s, number of
scans NS ¼ 1024, and number of dummy scans DS ¼ 4. The
90� pulse length (P1) is determined based on a representative
NMR sample. The total acquisition time is 1 h and 28 min for
each NMR spectrum. Depending on the purpose of the study,
the NS and AQ values may be reduced which will result in
shortening the total acquisition time to even few minutes. For
other pulse programs that can be applied in metabolomics
studies, see [17].

18. Very often, the water peak has a quite distorted shape when
compared to the rest of the NMR spectrum. Therefore, the
water peak should not be used to adjust phasing. However, a
flat baseline should be obtained on both sides of the water peak
along the entire spectrum.

19. It is important to note that when artificially changing the DSS
peak width in the Chenomx software, some potential spectral
artifacts might appear, e.g., narrowing of the peak will reduce
the signal-to-noise ratio by increasing the noise, while artificial
broadening of the peak will result in spectral line broadening
(effects seen on spectral baseline). Therefore, it is recom-
mended to establish a proper DSS peak width at half-height
during the spectral acquisition (see Subheading 3.3) instead of
changing it significantly during the spectral processing in the
Chenomx software.

20. Although the software gives a recommended best match, it is
often advisable to check other not highlighted compounds that
are also listed in the Compound Table. One should make sure
that all signals of a specific compound match with the peaks in
the spectrum.
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21. If the DSS signals cause a problem (e.g., overlap with the
signals of the metabolite of interest), a deuterated version of
DSS can be used: 2,2-dimethyl-2-silapentane-5-sulfonate-D6
sodium salt (NaDSS-D6). DSS-D6 gives only one signal in 1H
NMR spectrum: the singlet peak at 0.0 ppm. However, the
deuterated version of DSS is available at a much higher cost.

22. If one performs a targeted analysis and is only interested in
certain metabolites, the metabolite profiling can solely be done
on selected compounds instead of assigning all the signals
detected in the 1H NMR spectrum. It should also be noted
that complete manual fitting of the spectra using the Chenomx
software can be time-consuming. Computer programs that
allow for automated peak assignments and concentration
determination are becoming available [48] and may eventually
replace this step. Some automation is also possible in the
current version of the Chenomx software.

23. Some compounds might have signals for which the shape/
position will not directly match with the Chenomx compound
library, e.g., citrate and glucose. One peak from each of
citrate’s doublets is often shifted downfield or upfield. The
glucose’s signal at 3.8 ppm often has an asymmetric shape.
The Chenomx software can make small adjustment for many
compounds depending on pH, salt concentrations, etc. (for
discussion, see also [48]).

24. Multivariate statistical analysis (rather than univariate statistics)
is most often used to analyze the large and complex metabo-
lomics datasets. While PCA and PLS/OPLS analysis are among
the most frequently used approaches, other machine learning
methods such as support vector machines, fuzzy logic, random
forest, or Bayesian network are also starting to be used as
alternative approaches [49, 50].

25. For the supervised analysis (PLS, OPLS) of clinical biofluid
samples, the difference between R2Y and Q2 values should not
be more than 0.3 units. If the differences between R2Y and Q2
are �0.3 units, it indicates that the supervised model is over-
fitted, and hence the model demonstrates poor predictive abil-
ity. Also, the supervised models are considered reliable if the
R2Y �0.5 and Q2 � 0.4 [33].

26. In PCA score scatter plots, sometimes differences are observed
between the sexes and those patients consuming a specific drug
or being exposed to drug treatment. In such cases it may be
advantageous to consider these groups separately, which
implies that the study design gets much bigger, as one should
ideally still try to maintain �50 participants in each group.
Likewise diabetes can sometimes be a cofounder that influ-
ences the outcome of a metabolomics study [12], and ideally
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this should be considered as well if at all possible. Other
cofounders are possible, and therefore an appropriate study
design with a sufficiently powered dataset should be consid-
ered, in order to observe meaningful differences among the
groups of interest.

27. In a well-designed study, it is not uncommon to see no separa-
tion in the PCA score scatter plots. However, subsequent PLS
or OPLS analysis can still give good separation.
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Chapter 15

Assessment of Metabolic Signature for Cancer Diagnosis
Using Desorption Electrospray Ionization Mass
Spectrometric Imaging

Shibdas Banerjee and Soumen Kanti Manna

Abstract

Metabolic reprogramming is a hallmark of tumor development. A technique that can map this complex
biochemical shift by taking a snapshot of various metabolites in a tissue specimen (biopsy) is of high utility
in the context of cancer diagnosis. Desorption electrospray ionization mass spectrometric imaging (DESI-
MSI) is such a powerful and emerging analytical technique to simultaneously visualize the distributions of
hundreds of metabolites, lipids, and other small molecules in the biological tissue. In DESI-MSI, a fine
spray of high-velocity charged microdroplets rapidly extracts molecular species from the tissue surface and
subsequently transfers them to the mass spectrometer, while the sample is continuously moved in two
dimensions under the impinging spray of microdroplets. This allows a detailed multiplex molecular
mapping of the tissue. DESI-MSI enables simultaneous examination of hundreds of putative metabolic
biomarkers, an approach that lends much more predictive power than simply evaluating one or a few
candidate biomarkers. The speed, versatility, lack of complicated sample preparation, and operation at
ambient conditions make DESI-MSI extremely promising as a rapid diagnostic and prognostic tool.

Key words DESI-MSI, Tissue imaging, Cancer margin, Metabolites and lipids, Histopathology

1 Introduction

Currently, microscopic analysis in histology is the gold standard for
diagnosing and grading cancer. Histopathological analysis investi-
gates morphological abnormalities in tissues to identify a neoplastic
lesion. However, because of morphological mimics, artifacts, and
heterogeneity, pathological decision is often subjective, and the
outcome may vary depending on the expertise of the pathologist.
Moreover, an unreliable biopsy report often causes unsuccessful
cancer surgery by leaving tumor cells at the resected specimen
edge, which has been associated in many cancers with an increased
local recurrence and decreased overall survival. This is now a global
challenge to rapidly and accurately detect cancer margin during
surgery (intraoperatively) [1–3] to increase the survival rate and

Majda Haznadar (ed.), Cancer Metabolism: Methods and Protocols, Methods in Molecular Biology, vol. 1928,
https://doi.org/10.1007/978-1-4939-9027-6_15, © Springer Science+Business Media, LLC, part of Springer Nature 2019

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9027-6_15&domain=pdf


decrease the operation time, chance of infection, and the dose of
anesthesia.

Even when a tumor is identified and graded correctly, the
response to therapy may vary widely. This is, primarily, due to
intra-tumoral heterogeneity that confers cancer cells with different
degrees of therapeutic resistance and potential for relapse. Intra-
tumoral heterogeneity arises due to innate differences in genetic
and epigenetic makeup of individual cancer cells within the same
tumor that leads to differences in their biochemical phenotype
[4–6]. Thus, a method that can quickly and accurately capture the
distribution of tumor cells as well as enable characterization of
intra-tumoral heterogeneity based on the biochemical signature is
highly warranted.

Global change in metabolism is a hallmark of neoplasia
[7]. Such metabolic alteration is the consequence of dysregulation
of oncogenes or tumor suppressor genes [8, 9]. Oncogenes are
known to regulate key genes involved in several metabolic pro-
cesses, notably glycolysis (Warburg effect), pentose phosphate
pathway, Krebs cycle, and lipid metabolism [10]. These phenomena
are attributed to significant changes in production of several bio-
synthetic intermediates and increased channeling of glucose carbon
into nucleic acids, amino acids, and phospholipids. Therefore, met-
abolic reprograming in tumorigenesis contributes to the different
aspects of cellular processes, including energy production, cell
growth, proliferation, signaling, differentiation, and motility
[11–13]. Assessment of metabolic signature from biopsy specimen
can offer a trustworthy method for detection and classification of
cancer margin.

Indeed, a major headway has been made in the last decade by
monitoring metabolic biomarkers in the tissue to diagnose and
prognosticate cancer [14–18]. Mass spectrometry imaging (MSI)
is a powerful emerging analytical technique for evaluation of the
spatial distribution of tissue metabolome to diagnose different
types of cancers [19]. Although a number of ionization techniques,
including matrix-assisted laser desorption/ionization (MALDI)
and desorption electrospray ionization (DESI), have been used in
MSI, DESI has potential advantage over other ionization techni-
ques. This is particularly because DESI requires minimum sample
preparation and does not require a vacuum chamber or an enclo-
sure for ionization, rendering this technique very fast into the
operational workflow.

Desorption electrospray ionization mass spectrometric imaging
(DESI-MSI), developed in the laboratory of Prof. Graham Cooks
[20, 21], has been used to rapidly evaluate the tissue metabolome at
ambient conditions by simultaneously characterizing hundreds of
lipids and metabolites [22–25]. Since DESI-MSI offers open-air
sampling, it can be applied to a fresh tissue or even a live organ/skin
without any pretreatment. DESI-MSI (Fig. 1) is typically
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performed on a tissue section (~15 μm thickness), which is bom-
barded with a stream of charged microdroplets generated by elec-
trospraying [26, 27] a solvent at high voltage and using nitrogen as
nebulizing gas. These droplets dissolve hundreds of lipids and
metabolites present in the tissue by wetting the tissue surface with
the droplet solvent. Splashing of this liquid film, upon the arrival of
subsequent primary droplets, results in the formation of secondary
microdroplets containing the analyte ions (extraction of lipids/
metabolites), which are afterward converted into gaseous ions for
mass spectrometric analysis. The production of gas-phase analyte
ions (desolvation process) from secondary microdroplets occurs
through repeated solvent evaporation and Coulomb fission, akin
to that of normal electrospray ionization mechanism [26, 28]. The
imaging experiment is performed by scanning the tissue surface in
x and y directions through an impinging spray of charged micro-
droplets and the corresponding analyte ion signals in pixel-to-pixel
mass spectra, which can then be plotted as two-dimensional images,
allowing a detailed biochemical (lipids/metabolites) mapping of
the sample (tissue). The spatial resolution is approximately
150–200 μm, which compares well with the thickness of a surgical
knife. Each pixel, containing the mass spectral fingerprints of
hundreds of metabolite, is analyzed using unsupervised or super-
vised statistical methods such as principal component analysis or
lasso multiscale-logistic regression model. The histopathological
H&E image of the specimen section is overlaid with the metabolite
ion map to teach the DESI-MSI the metabolic signature of normal
tissue, indolent cancer, and aggressive cancer.

As mentioned above, DESI-MSI is a label-free and rapid
method that allows multiplex analyses of hundreds to thousands

Fig. 1 Schematic diagram of the DESI-MSI setup for intercepting molecular
species from the tissue
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of molecules in a histological section, which can bring a new class of
complex molecular information to link the expert discipline of
pathology and cell metabolism. In the last decade, some reports
from Zare laboratory [23, 24, 29–32] and others [22, 33–43] have
demonstrated the usefulness of DESI-MSI in viewing the metabo-
lite/lipid distribution on tissues in the context of cancer and other
disease pathologies. Therefore, DESI-MSI has opened a vast possi-
bility to be of utility in the area of cancer diagnosis and biochemis-
try, considering that the variability in clinical manifestation is largely
driven by the underlying biochemical heterogeneity of cancer.
There are more than a hundred different known cancers that affect
humans. The biochemical profiles of different cancers are expected
to be different. Further, unlike genome, cancer metabolome is
dynamic and also dependent on diet, lifestyle, medication, race,
and heredity. DESI-MSI utility in each cancer model could provide
discrete results, inviting an exhaustive exploration of this nascent
field.

In view of the aforementioned perspectives, this chapter pro-
vides a step-by-step protocol to use DESI-MSI as a diagnostic tool
for classifying cancer and normal specimens. Details of this protocol
are based on the recent work of Banerjee et al. in prostate cancer
diagnosis by DESI-MSI [32]. This protocol, previously used in
prostate cancer, is representative of the type of work that can be
done in any tumor type.

2 Materials

2.1 Solvents

and Chemicals/

Reagents

1. DESI spray solvents: HPLC grade dimethylformamide (DMF;
�99.9% purity) and acetonitrile (ACN, �99.9% purity).

2. Mass spectrometer inlet cleaning solvents: Deionized ultra-
filtered water (specific conductance �2.0 μmho/cm) and
LC-MS grade methanol (�99.9% purity).

3. H&E staining reagents/solvents: hematoxylin solution (Harris
modified), eosin Y solution (intensified), bluing reagent,
ammonia, absolute ethanol, methanol, xylene, distilled/Milli-
Q water, histological mounting medium.

4. High purity (�99.995%) compressed nitrogen.

5. Optimal cutting temperature (OCT compound).

6. Metabolite and lipid standards (as required).

2.2 Tissue

Sectioning

and Scanning

1. Cryostat for high-quality tissue sectioning.

2. Microtome blades.

3. Paint brushes.

4. High-resolution tissue slide scanner.
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2.3 Mass

Spectrometry

1. LTQ Orbitrap XL mass spectrometer (ThermoFisher Scien-
tific; see Note 1).

2. Custom-built [44, 45] or commercially available DESI 2D
source (Prosolia Inc.; see Note 2).

3. Extended ion transfer tube-Thermo Exactive 2D (Prosolia
Inc.; see Note 2).

4. Ion transfer tube.

5. 500 μL Hamilton syringe (1750 RN series).

2.4 Other Equipment 1. �80 �C freezer.

2. Ultrasonic baths (5.5 L).

3. 0.22 micron syringe filter.

4. Vacuum desiccator with 1/8–1/6 HP diaphragm pump.

5. Microscope slides (dimension 25 � 75 � 1 mm, suitable for
tissue adhesion).

6. Coverslips (dimension 24 � 50 � 0.15 mm).

7. Microscope slide box.

8. Calipers.

9. Scotch magic tape.

10. Magnifying glass or a laboratory microscope.

11. King-size black sharpie.

12. 2 mL microcentrifuge tube.

13. Single-edge lab razor blade.

14. Shandon slide holder.

2.5 Software 1. Xcalibur 2.2 software (Thermo Fisher Scientific, San Jose, CA;
see Note 1).

2. Omni spray 2D software (Prosolia, Indianapolis, IN; see
Note 2).

3. BioMap (freeware, https://ms-imaging.org/wp/biomap/).

4. MSConvert (ProteoWizard freeware, http://proteowizard.
sourceforge.net/index.shtml).

5. imzMLConverter (freeware, http://www.cs.bham.ac.uk/
~ibs/imzMLConverter/).

6. MSiReader (freeware, http://www4.ncsu.edu/~dcmuddim/
msireader.html).

7. MATLAB Complier Runtime R2017b (9.2) (freeware,
https://in.mathworks.com/products/compiler/matlab-
runtime.html).

8. NDP.view2 software (https://www.hamamatsu.com/jp/en/
U12388-01.html).
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3 Methods

3.1 Tissue

Preparation

1. Embed the frozen prostate tissue (or a biopsy specimen) in
minimal amount of OCT compound (few drops) to fix it to
the cryostat adapter (see Note 3).

2. Cut tissue sections of 5–15 μm thickness using the cryomicro-
tome at �20 �C (see Note 4).

3. Collect two successive tissue sections of thickness 5 and 15 μm
using a paintbrush, and place them on two different micro-
scopic glass slides by thaw mounting. Label these slides prop-
erly with the patient code (sample code), section number,
and/or section thickness (see Note 5).

4. Collect the tissue slides immediately in a slide box, and store
them at �80 �C to prevent degradation by ice. Keep these
samples in the ultra-freezer (�80 �C) until the time of experi-
ment (see Note 6).

3.2 Histopathology Hematoxylin and eosin (H&E) staining is one of the most fre-
quently used staining methods in histology and often accepted as
gold standard in clinical diagnosis and cancer margin evaluation (see
Note 7). Hematoxylin stains the nucleus in blue, and eosin stains
the cytoplasm in pink [46]. Classification of cancer and benign
specimens can be done by microscopic investigation of tissue mor-
phology after this staining [46]. A brief method for H&E staining
is as follows:

1. Take out the slide containing the tissue of thickness 5 μm from
the refrigerator (see above), and dry it for 5–10 min in the
vacuum desiccator.

2. Carefully remove the OCT film surrounding the tissue using
Scotch tape, and clean the Sharpie marks (if any) from the back
side of the slide by ethanol wipe.

3. Place the slides (e.g., ten slides from different patients) in the
Shandon slide holder.

4. Fix the tissue slides in methanol for 2 min.

5. Rinse the slides in water by ten dips (one dip ~1 s).

6. Fix the slides in hematoxylin solution for 1.5 min.

7. Rinse the slides in water by ten dips.

8. Submerge the slides with one quick dip in the bluing solution
containing 0.1% ammonia.

9. Rinse the slides in water by ten dips.

10. Fix the slides in eosin Y solution for 8 s.

11. Rinse and dehydrate the slides in absolute ethanol by ten dips.
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12. Rinse the slides again and dehydrate them in absolute ethanol
by ten dips.

13. Rinse the slides in xylene by six dips.

14. Rinse the slides again in xylene by six dips.

15. Next, place the slides on a plain white paper, and let them dry at
room temperature for 5 h.

16. After drying, deposit a drop of mounting medium onto the
stained tissue section followed by quickly covering it with a
transparent glass coverslip and let dry for another 5 h.

17. Collect the H&E slides in a slide box, and take them for
recording high-resolution optical images, which can be evalu-
ated by a histopathologist. A microscope can also be used
alternatively to investigate the tissue morphology for cancer
diagnosis.

3.3 Optical Scanning

of Tissues

The H&E-stained specimen slides can be converted into digital
slides (optical image) by scanning them at high resolution (e.g.,
~0.43 μm/pixel) using a digital slide scanner.

1. Scan multiple-stained slides at a specific resolution, scan mode
(20� or 40�), and scan speed using the high-resolution tissue
scanner (Hamamatsu NanoZoomer 2.0-RS slide scanner; see
Note 8).

2. Save and store these digital slides in the computer as high-
definition, high-quality digital images.

3. Use NDP.view2 software to open these image files, which can
be zoomed in or out on any portion of the entire tissue image
with mouse operation.

4. Demark the images with the help of expert pathologist to show
the area of cancer, normal, inflammation, or any other type of
pathological features (stroma, BPH, grade of cancer or aggres-
siveness of cancer, etc.). This pathological examination is done
without the knowledge of DESI-MSI evaluation. However,
results from this study (gold standard) will be used to guide
the DESI-MSI analysis (see Subheadings 3.5 and 3.7). Figure 2
Shows an example of the histopathological analysis of a digital
slide of prostate specimen that was considered in the earlier
study by Banerjee et al. [32].

3.4 DESI-MSI 1. Before starting the DESI-MS imaging experiments, ensure that
the instrument is properly calibrated and the MS inlet
(extended ion transfer tube) is cleaned (see Note 9).

2. Attach the DESI source (either homebuilt or from Prosolia
Inc.) to the MS instrument with a proper connection to the
moving stage controller.
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3. Select the proper DESI solvent for imaging [34]. In the afore-
mentioned reference, we had taken 1:1 mixture (v/v) of ACN
and DMF (see Note 10).

4. In order to obtain a high-quality image, optimize the DESI-
MS system by properly choosing different instrumental and
imaging parameters. Table 1 Lists a number of such para-
meters, which were optimized in imaging a typical prostate
tissue sample using a homebuilt DESI source coupled to a
high-resolution Orbitrap-MS (see Note 11).

5. During an optimization of the DESI source, ensure that the
diameter of the spray spot on a microscopic glass slide is around
200 μm or less, which can be seen with a naked eye (a normal
human eye can see objects as small as 100 μm) (see Note 12).

6. Use a spare tissue section to optimize the signal intensity
mostly by tuning different geometric parameters (see Table 1)
and the solvent flow rate. Ion optics can also be tuned by
selecting a specific peak from the m/z region of your interest.
It has been observed that ion signal intensity ranging from 104

to 105 can be achieved in the negative ion mode imaging using
the Orbitrap-MS.

7. Take out the slide containing the tissue of thickness 15 μm
from the refrigerator, and dry it for approximately 10–15 min
in the vacuum desiccator (see Note 13).

8. Measure the desired imaging area (rectangular) in the slide by a
caliper, and note down the x and y lengths followed by a
calculation of acquisition time, scan speed, and number of

Fig. 2 High-resolution optical image of a typical prostate tissue specimen showing the area of cancer (red
outline), normal (black outline), and stroma (green outline). Insert images represent 24� magnification of two
typical regions of cancer and normal
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line scans (number of pixels in the y dimension) as shown in
Table 1 as a typical example (seeNote 14). Some of these values
are automatically calculated in the imaging software if the
commercial DESI imaging source is used (Prosolia Inc.; see
Note 2).

9. Adjust the DESI spray spot to the starting point [(0,0) position
of the image] of the first-line scan of the image (see Note 15).

10. Create a sample list in the acquisition software (Xcalibur 2.2).
The total number of samples in the list corresponds to the
number of pixels in the y dimension (number of line scans; see
Table 1). Set the acquisition time for each line scan in
x dimension, e.g., 1.26 min in Table 1.

11. Set up the moving stage velocity (e.g., 185.19 μm/s in
Table 1) along with sample dimensions (x and y values) and

Table 1
DESI-MS instrument and imaging parameters optimized for imaging a typical prostate tissue
specimen using a homebuilt DESI source

Instrument parameters Imaging parameters

Solvent: ACN/DMF (1:1,
v/v)

Automatic gain control (AGC): Off

Flow rate: 0.7 μL/min Spatial resolution/pixel size: 200 μm by 200 μm

Sheath gas (nitrogen)
pressure: 170 psi

Scan time (ST) per pixel: 1.08 sa

Spray incident angle: 55� x dimension of the image (slightly higher than tissue length): 14,000 μm

Droplet collection angle:
10�

y dimension of the image (slightly higher than the tissue width): 8000 μm

Spray tip-to-MS inlet
distance: 5 mm

Number of pixels in the x dimension (one line scan): (14,000/200) ¼ 70

Spray tip-to-surface
distance: 2 mm

Number of pixels in the y dimension (number of line scans or rows):
(8000/200) ¼ 40

m/z range: 50–1000 Acquisition time (for one line scan in x dimension):
70 � 1.08 s ¼ 75.6 s ¼ 1.26 min

Ionization mode: Negative
(�5 kV)

Scan speed (moving stage speed) in x dimension: (14,000/
75.6) ¼ 185.19 μm/s

MS resolution: 60,000 Total scan time for the whole image: ~1.26 � 40 min ~50.4 min
(approximately 1 h as few seconds time lags are there between successive
line scans)

Inlet capillary temperature:
275 �C

aThe Orbitrap-MS showed a scan time of 1.08 s per spectrum in the negative ion mode at the mass resolution 60,000.
This scan time can be reduced by decreasing the mass resolution
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pixel size on the moving stage controller software (see
Note 16).

12. Ensure that the syringe contains enough solvent to acquire the
whole image in the calculated scan time (Table 1).

13. Start the data acquisition.

14. After completion of the imaging experiment (data acquisition),
store the glass slide in a closed slide box at room temperature
until the H&E staining is performed on it (see Note 17).

3.5 Data Processing

and Analysis

1. In order to construct the ion image, combine all Xcalibur raw
data of line scans (e.g., 40 line scans in Table 1) into Analyze
7.5 format files (.img, .hdr, and .t2 m, which can be opened
and read by BioMap) with a bin size of m/z 0.05 or less for
preserving the peak resolution. Image generator software [47]
was used in our study for this data conversion. Commercial
DESI source (Prosolia Inc.) comes with their firefly imaging
software for performing this data conversion and visualization.

2. Viewing the ion image: Load the .img file, as generated above,
in the BioMap software (see Note 18), and then follow these
instructions: (a) click on the window 1 (black), and then go to
analysis in the menu bar > Plot > Point to open the mass
spectrum window; (b) right click on the window 1, and then
choose an average pixel (say 1)> click on Done; (c) expand the
mass spectrum window in the desiredm/z range, and then click
the right button on a peak (e.g., m/z 709.4778); (d) select the
desired color scale (e.g., rainbow color) from “Set the color
table” tool bar in the left; and (e) change the minimum and
maximum values on the slide bars to adjust the contrast of the
image (e.g., Fig. 3a for m/z 709.4778). At this point, distribu-
tion of the metabolite/lipid can be visualized and correlated to
the diagnostic feature of the tissue. For example, two species of
m/z 709.4778 (Fig. 3a) and m/z 788.5409 (Fig. 3b) were
differentially distributed in a typical prostate tissue specimen,
which was later evaluated by histopathology (H&E). Results
show that m/z 709.4778 is upregulated and m/z 788.5409 is
downregulated in cancer as the left portion of the tissue is
normal and the right portion of the tissue is cancer, as evaluated
by histopathology (H&E not shown here). A number of ions
with differential abundances in cancer and normal tissue can be
identified by employing this tissue visualization technique on a
large set of samples (see Note 19). One full scan (.img file),
thus, provides hundreds of ion images, and the corresponding
molecular species are generally found to be metabolites, lipids,
sugar, etc. (see Note 20) when analyzed by tandem mass spec-
trometric technique (see Subheading 3.6).
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3. Overlay of two ion images: Fig. 3c shows the overlay of the
distribution of two species (m/z 709.4778 and 788.5409) on
the same tissue. Instructions below will help to generate such
an overlaid image in the BioMap:

(a) Follow the above instructions to generate an ion image of
m/z 709.4778 in the window 1.

(b) Copy window 1 (Edit> Copy) and paste it in the window
2 (Edit > Paste > Scan).

(c) Select m/z 788.5409 as described above to construct the
ion image in the window 2.

(d) Note down the “N” value corresponding to the peak of
m/z 788.5409. ThisN value can be found underneath the
mass spectrum when the cursor is kept on the desired peak
(m/z 788.5409). In the example we give, theN value was
found to be 26927 from the position: [788.541 (m/z),
973.702 (intensity)], #26927.

(e) Copy window 2 (m/z 788.5409), and paste it in window
1 (m/z 709.4778) by clicking Edit > Paste > As Ovl;

(f) Change the Overlay display mode to bicolor by right
clicking the window 1 and then going to the Properties;

Fig. 3 Negative ion mode DESI-MS images of a typical prostate tissue specimen showing the distribution of (a)
m/z 709.4778 [PA(20:4/17:0)], (b) m/z 788.5409 [PS(18:0/18:1)], (c) both m/z 709.4778 and m/z 788.5409
(overlaid image in bicolor), and (d) m/z 788.5409 to m/z 709.4778 ratio. Left portion is benign, and right
portion is cancer in the tissue as evaluated by histochemistry. The abundance of the given ion in the
corresponding ion image is normalized to 100%. Rainbow color order, wherever used, presents highest
concentration by red and the lowest concentration by violet
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(g) Click on Windows>Ovl Control, and then change the
N value accordingly (N ¼ 26,927 in the present example)
by moving the corresponding slide bar.

Contrast of the image can also be optimized by adjusting
the minimum and maximum value in this window. At this
point, the plot as shown in Fig. 3c is generated, showing
different distributions of these two species in the cancer and
normal region of the tissue.

4. Ratio of two ion images: Fig. 3d shows the distribution of the
abundance ratio of two species (m/z 788.5409 to m/z
709.4778). Follow these instructions to generate such images:

(a) Plot the ion image of m/z 788.5409 in window 1 as
described in Subheading 3.5, step 2.

(b) Expand the corresponding mass spectrum to view the
peak of m/z 788.5409.

(c) (c) Select this peak from left to right (a green bar will
appear on the peak) by pressing the middle button of the
mouse, and then change the output window to window
2 in the pop-up window box. This will create the extracted
ion image of m/z 788.5409 in the window 2.

(d) Similarly create another extracted ion image in the win-
dow 3.

(e) Now click on the window 2 and then go to
Tools > Calculation > Divide.

(f) In the pop-up box, change the Output Device to Window
4, and select Windows 3 as the Reference.

At this point, the plot as shown in Fig. 3d appears, showing
the distribution of this ratio (see Note 21). Contrast of this
image can further be tuned as described before (Subheading 3.5,
step 2).

3.6 Identification

of Species

The marker ion signals for classifying cancer and normal tissue, as
determined by BioMap analysis, need to be characterized and iden-
tified to understand their biological significance. Often, this identi-
fication is done based on high mass accuracy, isotopic distribution,
and tandem mass analysis (MS/MS study). The following methods
describe how to extract and identify the chemical species from an
ion signal:

1. After DESI-MSI, scrape off the tissue from the microscopic
glass plate using a single-edge lab razor blade, and collect the
debris to a 2 mL microcentrifuge tube. Add 500 μL LC-MS
grade methanol or any other desired solvent to this, and vortex
for 10 min followed by sonication in an ultrasonic bath for
another 5 min (see Note 22). Centrifuge this solution at
18000 � g in a microcentrifuge, and decant the supernatant
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liquid, which should be further filtered through a 0.22 μm
syringe filter. This filtered solution can be further diluted
using methanol before injecting to the electrospray ionization
mass spectrometer (high-resolution ESI-MS).

2. During electrospraying the above filtered solution in direct
injection mode, maintain proper analyte concentration, low
solution flow rate (1–5 μL/min), and optimum geometric
and instrumental parameters (ion optics), and spray voltage
(e.g., �5 kV in the negative ion mode) to get intense ion
signals in the mass spectrum. Hundreds of peaks can be
found in this MS1 spectrum, with very high mass accuracy,
ranging from very low intensity to very high intensity. Record
and save this MS1 data.

3. Mass select the desired peak with an isolation width of Δm/z
0.8, and perform collision-induced dissociation (CID) on this
species by applying the appropriate collision energy (normal-
ized collision energy ~0–100%) so that the relative abundance
of the parent ion becomes 10% in the MS2 spectrum. Record
and save this spectrum. Thus, all targeted peaks are mass
selected sequentially (manually) for CID study. Likewise, if
required, further CID (MS3) can also be performed on a
desired species mass selected from the MS2 spectrum.

4. In order to identify the species, first monitor the highly
resolved m/z value up to four decimal places. The list of lipids
or metabolites corresponding to this mass (mostly deproto-
nated in the negative ion mode; see Note 23) can be searched
from LIPID MAPS (http://www.lipidmaps.org/), the human
Metabolome database (http://www.hmdb.ca/), or MassBank
(http://www.massbank.jp/index.html?lang¼en). Sort out few
species from this list based on high mass accuracy (e.g., below
5 ppm) and isotopic distribution pattern (https://sites.google.
com/site/isoproms/). Then look for the MS2 fragments of
those species, if available in the above databases, and compare
those fragmentation patterns with that from the experimental
MS2 (from the tissue). In most cases, MS/MS fragments can be
found from the aforementioned databases for the identification
of the species (see Note 24). However, if the MS/MS frag-
ments are not available in the database, a good knowledge of
gas-phase ion chemistry is required to identify the structure of
the ion based on its tandem mass analysis (MSn) (seeNote 25).
Moreover, high-performance liquid chromatography (HPLC)
and CID data of the suspected species can be compared with
that of its synthetic (if possible) or commercial (if available)
standard for the molecular identification (see Note 26).

5. Generally, DESI-MSI records the ion images (signals) of small
metabolites (mainly observed in m/z 50–200), lipids (mainly
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observed in m/z 200–1000), and sugars (glucose, erythrose,
etc.). Lipids include fatty acid (FA), phosphatidic acid (PA),
glycerophosphoglycerols (PG), glycerophosphoserines (PS),
and glycerophosphoinositols (PI). For prostate cancer, a list
of such molecular species can be found in the recent report by
Banerjee et al. [32].

6. After finding the metabolite/lipid signatures and their up- or
downregulation in cancer, try to interpret the observed meta-
bolic profile and its biological significance to link that to the
discipline of pathology (see Note 27). Understanding this
biological significance can also help to investigate the potential
therapeutic targets for pharmacological intervention in preclin-
ical and clinical settings [48].

3.7 Data Extraction

for Statistical Analysis

Although few species can be identified as potential markers for
detecting cancer in the tissue using BioMap software, often an
unbiased statistical approach (considering all detected ion signals)
is adopted to identify biomarker candidates from large data set.
Such approach has been shown to be very useful in determining the
cancer margin [23, 30]. A training set is first constructed compris-
ing samples with known pathology (H&E), and then a statistical
classifier is developed, which is further tested with a cross validation
process. To test the performance of this classifier, independent
validation specimens are taken for analysis. Below are the details
of data extraction method from the Xcalibur files (raw data) for
statistical analysis.

1. Collect all Xcalibur line scan files (.raw) for an image in the
designated folder with the patient code (say PC351 is the
patient code).

2. Use MSConvert software to convert these .raw files (Xcalibur
line scans) to .mzML files, and save them to a new folder (e.g.,
PC351_1) (see Note 28).

3. Use imzMLConverter to combine the above .mzML files into
the .imzML file, and save this to a new folder (e.g., PC351_2)
(see Note 29), which can be read by MSiReader software.

4. Open MSiReader (see Note 30) > click on load data > go to
the specific folder (e.g., PC351_2) > open the .imzML file
(e.g., PC351.imzML) > change m/z value to 281.2486 in the
MS Navigation box (see Fig. 4; see Note 31) > change the m/z
tolerance to 5 ppm > adjust the contrast of the image by
changing the maximum value (e.g., 10,000 in Fig. 4) on the
slide bar > enable polygon tool for region of interest (ROI)
selection in the tool bar > choose a region (e.g., cancer or
normal guided by histopathology; see Fig. 4) in the ion image
by selecting multiple points > connect first and last point by
double clicking to close the polygon > click on Export and/or
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view mass spectrum data from selected pixels (see Note
32) > choose options like negative scans, parabolic centroid,
export peaks to .txt file, export raw data for each pixels> browse
the new folder (e.g., PC351_3) where the exported raw data
will be saved > click OK. The raw data of each pixel from the
ROI will be exported as .txt file.

5. For the convenience of statistical analysis, the above .txt file can
be converted to excel or .csv file as below.

Open Microsoft excel > click on File > go to the specific
folder (PC351_3) > open the .txt file > select delimited and
click on Next > click on Treat consecutive delimiters as
one > click on Next > click on Finish. Data will be opened in
the excel page > review the data (m/z vs abundance values
extracted properly for all pixels in the ROI; Fig. 4) and save it
as .csv file (see Note 33).

6. Although hundreds of metabolites and lipids are detected by
DESI-MS, certain number of peaks, whose abundances are
significant and characterized, can be selected for statistical
analysis. Statistical calculation can be performed, both by

Fig. 4 Screenshot showing the selection of ROI in an ion image opened in MSiReader software. This ROI covers
the pixels corresponding to the area of cancer in the prostate tissue (PC351) as analyzed by the pathologist
(Fig. 2)
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using the individual peaks and by using all possible ratios of two
peaks in this list [32].

7. All mass spectral data (pixel-to-pixel) can be normalized to
100 during the statistical analysis (see Note 34).

4 Notes

1. It is not mandatary to use high-resolution mass spectrometer
for DESI-MSI study. However, imaging experiment performed
using a high-resolution mass spectrometer provides robust
results. The present protocol uses LTQ Orbitrap XL mass
spectrometer (a high-resolution mass spectrometer from
Thermo Fisher Scientific), and therefore data acquisition,
extraction, and processing are guided by the concerned soft-
ware (Xcalibur). Nevertheless, a suitable mass spectrometer
from any manufacturer (vendor) can be used in DESI-MS
imaging.

2. Prosolia Inc. is the only commercial manufacturer for the DESI
source (https://prosolia.com).

3. Precaution should be taken during embedding the tissues in
OCT and then sectioning it. The blade should be cleaned
properly with ethanol before its use for sectioning the tissue.
The use of minimum amount of OCT is suggested to avoid the
contamination of the tissue surface with OCT in the resected
specimen. Unlike conventional H&E histopathology, DESI-
MSI recognizes molecules on the tissue surface. This has been
found that the DESI-MS data quality is greatly affected by a
series of intense ion signals (peaks) from the polymeric compo-
nents of OCT in the positive ion mode if the resected tissue
surface is contaminated with traces of OCT. However, these
ion signals from traces of OCT in negative ion mode are less
intense, and those can be ignored. Because of the OCT inter-
ference, it is easier to pinpoint the tissue metabolites/lipids or
small molecules in the negative ion mode as compared to
positive ion mode of DESI-MSI analysis.

4. Temperature setting can be changed depending on the tissue
type. Avoid folding and cracking of the tissue section. DESI-
MSI offers good results from sections, which have smooth and
flat surface.

5. The 5 μm section is sent to a histopathologist for evaluation
(H&E), and the 15 μm section, taken immediately adjacent to
the above 5 μm section, is used for DESI-MSI. Tissue
morphologies for both of the aforementioned sections are
likely to be similar, suggesting that pathological features are
similar in both sections.
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6. Depending on the type of samples, frozen sections can be
preserved for several months in the ultra-freezer before taking
them for DESI-MSI analysis. We found no significant change
in metabolic/lipidomic profiles in the DESI-MSI data even if
the sections were preserved for a year at �80 �C (tested on two
adjacent sections from a prostate tissue specimen) [32].

7. Apart from H&E-based histopathology, immunohistochemis-
try is another process of staining the tissue and locating the
cancer cells. This is based on the interaction of antigen
(a specific protein in the tissue) and an antibody tagged to a
fluorophore.

8. A large space in the hard disc is required to store these images as
each image file (.ndpi) can be of several hundreds of megabytes
depending on the image resolution and actual size of the tissue.
Details of the operation of the instrument can be found in the
instrument manual.

9. Cleaning of the inlet capillary can be done by sonicating in a
mixture of (1:1 v/v) methanol/water for 15 min.

10. Polarity of the spray solvent plays an important role in extract-
ing the molecular species from the tissue. Different solvent
systems can extract and ionize various molecular species to
different extents [34]. In the present study, we have used a
mixture of ACN/DMF (1:1, v/v), as we have found that this
solvent system can cover many metabolites/lipids in the mass
range of m/z ¼ 50–1000. Further, this solvent system was
reported to be histologically compatible [49], which means
that it does not destroy the native tissue morphology even
after the spot-by-spot extraction of molecular species by
DESI-MSI. Therefore, the same slide can be taken for H&E
study in histopathology after the DESI-MSI experiment [32].

11. A detailed method of construction of a DESI source and
setting these parameters was reported earlier in the literature
[25, 34, 44, 45]. However, a commercial DESI source (Omni
Spray, Prosolia, Indianapolis, IN), with a friendly user inter-
face, can automatically calculate many of these parameters in
the software (Omni spray 2D software).

12. This spray spot on the glass slide can be viewed by a naked eye if
the back side of the slide is marked black by a king-size sharpie.
The spray spot can be optimized to nearly a stable circular
shape (minimal side splashing) of diameter ~200 μm by slightly
adjusting different geometric parameters and the solvent flow
rate (Table 1). High solvent flow rate can result in excessive
wetting of the surface and cross contamination. The spray tip
should also be blunt for providing a stable spray.
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13. Dry the tissue until all visible water is gone. Typically, it takes
10–15 min when 1/8–1/6 HP vacuum pump is used. Avoid
overdrying the tissue in high vacuum for a prolonged period,
which might cause rupturing/cracking of the tissue.

14. We considered the resolution of the image (pixel size) 200 μm
here. However, one can choose to work with 150 μm resolu-
tion if the spray spot size can be made like that. Please note that
decreasing the resolution will increase the total scan time of the
tissue.

15. One image is comprised of many line scans (in rows). The pixel
size defines how many line scans (rows) are required for imag-
ing a given area (Table 1). Please note that whole ion image of
the tissue is not strictly required for the diagnosis. Sometimes,
simple line scan or rapid scribble scanning can offer valuable
diagnostic information from the tissue [3, 32], which also saves
time of analysis.

16. The moving stage velocity is automatically calculated and taken
by the commercial software (Omni Spray 2D) once the sample
dimension and the pixel size are defined.

17. As mentioned above (see Note 10), H&E staining can be
performed on this slide after DESI-MSI as the tissue morphol-
ogy remains preserved. This can also be judged by comparing
its high-resolution optical image (H&E) with the same of its
adjacent section (5 μm) preserved for histochemistry.

18. BioMap is written in IDL. Therefore, IDL Virtual Machine
(IDL VM) is necessary to be installed on the computer. Details
of its installation and demo can be found here: https://ms-
imaging.org/wp/biomap/.

19. Being a label-free unbiased method, DESI-MSI method can
generate hundreds of ion images of different molecular species
(of different m/z values as analyzed using BioMap), as mass
spectrum from individual pixel provides hundreds of ion sig-
nals. As cancer cells reprogram their metabolic pathways, some
potential markers (e.g., metabolites, lipids) can be identified in
this way, being differentially distributed in cancer and normal
specimens.

20. Imaging protein by DESI-MSI is very challenging, and we are
still struggling to map proteins in tissues using this imaging
technique. It appears that proteins, being large macromole-
cules, strongly adhere to the tissue by several interactions
(hydrophilic and hydrophobic). Special type of sample treat-
ment is required to image protein by DESI-MSI. Recently, use
of nanoDESI-MSI has allowed imaging of some proteins in
mouse brain sections [50].
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21. Sometimes this ratio distribution offers a valuable diagnostic
feature. In the study with prostate patients, it was found that
distribution of glucose/citrate ratio in the tissue can identify
cancer with high accuracy [32].

22. A mini tissue homogenizer can also be employed for this
purpose, instead of sonication.

23. Species are mostly deprotonated in the negative ion mode and
protonated in the positive ion mode [26]. However, some-
times adducts with cations or anions are also observed in
positive and negative ion modes, respectively. If the species
are inherently charged (e.g., cholines), they can also directly
appear in the mass spectrum depending on polarity.

24. The CID spectra of the mass-selected ions from the tissue
specimens are sometimes complex, although the majority of
the ion fragments match with that of standards in the database.
This complexity can be interpreted by the interference of iso-
meric/isobaric ions obtained from the biological matrix (tis-
sue). As the position and stereochemistry of the double bond
in the fatty acid (FA) complicate the structural elucidation of
lipids, they are often tentatively assigned in the structures of
FAs and glycerophospholipids [32]. CID also enables identifi-
cation of isomeric species (same m/z values) although they
produce single-ion signal in the MS1 spectrum [32].

25. The task is like a jigsaw puzzle, where the players have been
given a broken plate and asked to join them together in a
sensible way to find the actual shape of the plate [26].

26. It takes a great effort to identify the molecular species by
tandem mass spectrometry, particularly when the MS/MS
data is not available in the database.

27. Metabolic profile of cancer cells is strikingly different from
normal cells. For example, metabolism in the prostate gland
presents distinctly different kinetics (metabolic flux) of the
Krebs cycle compared with other organs [51]. DESI-MSI is
an ideal method to exploit these differences in cancer biochem-
istry in vivo because it is tissue based, does not require tissue
fixation, and provides reasonably good spatial resolution
(�200 μm) [32]. Two important strengths of DESI-MSI are
its speed and the need for little sample preparation. These
characteristics could make DESI-MS a particularly promising
and rapid point-of-care clinical test.

28. MSConvert can be found in the program list of your computer
once you have installed the ProteoWizard freeware [52].

29. No installation is required for imzMLConverter, but extraction
of all associated files in it is required for the performance of this
freeware. Installation of Java is required in the computer as
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imzMLConverter is written in Java [53]. Click on the
imzMLConverter.jar file in the extracted folder to open the
software directly.

30. No installation is required for MSiReader but extraction of all
the associated files in it. Install MATLAB Complier Runtime
R2017b (9.2) before launching this software, as this is a
MATLAB application. Those who are unfamiliar with
MATLAB language can also use MSiReader as it has a user-
friendly interface [54]. User manual for this software can be
found in the extracted folder. High memory resource (e.g.,
RAM �16 GB) is required to handle high-resolution MS data
(small m/z increment) easily.

31. m/z 281.2486 corresponds to deprotonated oleic acid, which
can be found in almost all biological tissues. Often, construct-
ing the ion image of oleic acid might represent the shape of the
whole tissue. However, one can select m/z value of any other
appropriate lipids/metabolites to present the shape of the
tissue.

32. To reduce the time required for data extraction, open “MSiR-
eaderPrefs.INI” from the MSiReaderRelease folder
(extracted), and change the setting “ExportToExcel” to false
instead of true. This will export the file in a text format, which
is up to 300 times faster than an Excel workbook.

33. These .csv files consist of the information of m/z values of
several species and their abundances collected from each pixel
in the ROI. Statistical analysis is convenient with these .csv files.
Data collected from cancer and normal patients or from cancer
and normal regions of the tissues (Fig. 2) are then fed into the
statistical analysis for the classification of cancer and normal or
determining the cancer margin.

34. Normalization helps to avoid instrumental effects on ion cur-
rents from different specimens studied at different times (days).
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Chapter 16

Compositional Analysis of the Human Microbiome
in Cancer Research

Elisa Morales, Jun Chen, and K. Leigh Greathouse

Abstract

Gut microbial composition has shown to be associated with obesity, diabetes mellitus, inflammatory bowel
disease, colitis, autoimmune disorders, and cancer, among other diseases. Microbiome research has signifi-
cantly evolved through the years and continues to advance as we develop new and better strategies to more
accurately measure its composition and function. Careful selection of study design, inclusion and exclusion
criteria of participants, and methodology are paramount to accurately analyze microbial structure. Here we
present the most up-to-date available information on methods for gut microbial collection and analysis.

Key words Metagenomic sequencing, Gut microbiota, Taxonomic classification, Cancer research

1 Introduction

Health-related microbiome research has increased exponentially as
we discover the influence of the microbiome on diseases not previ-
ously recognized to have a microbial component. Certain cancers,
for example, are known to have a microbial origin, but methods to
comprehensively examine the microbiome in relationship to cancer
have been hindered until recently. Methodologies to analyze the
microbiome are quickly evolving to provide the best techniques in
order to expand our understanding of the relationship between the
microbiome and diseases. The main objective of this chapter is to
provide general guidelines of existing methods as well as important
points to consider when conducting microbiome research (espe-
cially focused on gut microbiota). The first part of this chapter will
focus on microbial ecology and its evolution to provide the reader
with a general background before engaging in metagenomic appli-
cations to cancer biology. The second part of this chapter involves a
comprehensive overview of experimental methods as well as several
step-by-step procedures on sampling, storage, handling, nucleotide
extraction, PCR amplification, and gene sequencing of the human
microbiome.

Majda Haznadar (ed.), Cancer Metabolism: Methods and Protocols, Methods in Molecular Biology, vol. 1928,
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1.1 Microbial

Ecology History

A sequence of key discoveries marked the evolution of microbiol-
ogy, beginning with the creation of microscopes and expanding to
the application of microbiology in personalized medicine. Key
observations demonstrate that trillions of microbes in and on our
bodies play relevant roles in health and disease at multiple body sites
such as the oral cavity, the gut, the skin, the reproductive tract, and
the respiratory tract [1].

The complex and adaptable microbial communities in the
human body interact with each other by exchanging nutrients,
genetic information, and chemical signals [1]. The study of the
interactions of microorganisms with their environment, also
known as microbial ecology, has recently received increased atten-
tion due to the advent of next-generation sequencing technology.
Prior to this advance, species identification required the organism
to grow in a pure culture (culture-dependent); however, early
bacterial cultures were monogenic, preventing any conclusion
being drawn at the ecosystem level [2]. Furthermore, in 1987,
Brock discovered that the activity of organisms cultivated in labora-
toriesmay not necessarily reflect their activity in situ [3]. Supporting
Brock’s theory, Amann et al. demonstrated that a good portion of
the microorganisms in the environment do not survive cultivation
[4]. These observations highlighted the inability of culture-
dependent approaches to describe microbial diversity and activity.
Thus, the need for culture-independent approaches to determine
microbial composition surpassed the capabilities of microbial culti-
vation. To capture the full biological and environmental influence
on host-associated microbial communities, it is crucial to further
our knowledge by studying microbial communities in their natural
habitats, constrained to their host’s biochemical and physiological
context.

When Carl Woese and George Fox proposed a new domain,
Archaea, they ushered forth a new strategy for microbial evolution
using phylogenetic taxonomy of the 16S rRNA gene [5]. Research-
ers have since taken advantage of the presence of both conserved
and variable regions in the 16S rRNA gene. By amplifying variable
regions, researchers can easily classify bacteria within their clades
(discussed in detail in a later section). The first culture-independent
approach utilizing phylogenetic taxonomy of the 16S rRNA gene
was introduced in the 1980s allowing the extraction, amplification,
cloning, and characterization of 16S rRNA genes obtained directly
from the natural environment [6]. Analysis of 16S rRNA set the
stage for high-throughput sequencing, which allows identification
of entire bacterial communities within hours.
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1.2 The Evolution of

Microbial Ecology

Composition and

Function Assessment

with Metagenomic

Sequencing

Metagenomics involves the culture-independent, genome-level
characterization of microbial communities by using high-
throughput sequencing analyses. Metagenomics overcomes the
biggest obstacle in microbiology by being able to assess the high
diversity of uncultivated viable and nonviable microbes. “Metage-
nomics” and “functional metagenomics” are derived from “tradi-
tional genomics” and “functional genomics,” respectively. While
traditional genomics focuses on sequencing individual genomes,
metagenomics aims at characterizing the genes at the community
level. Furthermore, functional genomics assesses the function of
the genome at the organism level, while “functional metage-
nomics” evaluates the function of the genes present in a community
[1]. In the following paragraphs, we will describe two common
techniques used to profile polymicrobial communities: 16S rRNA
gene sequencing and whole genome sequencing (WGS). For meth-
odological purposes, however, we will focus mainly on methods
used in analysis of the 16S rRNA gene.

A metagenomic approach that is commonly utilized as the first
step in pilot and larger metagenomic projects is the analysis of the
16S ribosomal RNA gene or 16S rRNA. Sequencing the
non-conserved regions of this gene is used to analyze phylogenetic
taxonomy and monitor changes over time in a particular commu-
nity. Although 16S rRNA gene analysis provides information about
the structure and composition of the microbial community, it only
delivers inferences (based on marker genes) about the functional
capabilities (metabolic potential). To overcome this shortcoming,
shotgun DNA or whole genome sequencing (WGS) and RNA
sequencing (RNA-seq) are used to reveal more detailed informa-
tion about community diversity and function as compared to 16S
rRNA gene analyses [1]. Next-generation sequencing (NGS), also
called massive parallel sequencing, encompasses these technologies
and can determine an entire human genome by sequencing millions
of small DNA fragments at a time. These fragments are joined
together by comparing to a reference human genome using bioin-
formatic techniques to build a complete genome. Similarly, NGS
can be used to sequence entire genomes of polymicrobial commu-
nities or can be constrained to individual species of interest, which
include 16S rRNA gene, WGS, and RNA-seq [2, 7, 8]. Although at
a higher cost, WGS and RNA-seq can provide more in-depth
information regarding the composition and metabolic potential of
the microbial communities in comparison to 16S rRNA gene anal-
ysis. Further, these types of sequencing, as well as full-length 16S
rRNA sequencing, overcome the drawback of using individual 16S
rRNA variable regions to enable species- and strain-level
information.

Microbial functionality can be further analyzed by using “meta-
transcriptomics” (analysis of the RNA transcripts from the micro-
organisms present in an ecosystem (RNA-seq)), “metabolomics”
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(analysis of the metabolites from the microorganisms present in an
ecosystem), and/or “metaproteomics” (analysis of the proteins
produced by the microorganisms present in an ecosystem). None-
theless, the instability, short half-life of RNA, and the low correla-
tion between RNA transcript levels and the synthesis of its
corresponding proteins have lowered the use of metatranscrip-
tomics. Whereas, proteomics has advanced quickly by using mass
spectrometry, which allows rapid and precise protein identification
[1, 7]. Nevertheless, the integration of “omic” disciplines has the
potential to link genetic structure to functional diversity [9, 10].

1.3 Metagenomic

Sequencing

Applications in Cancer

Biology

Research into drug sensitivity, metabolic mutations, sources of
infection outbreaks, and cancer detection, among others, are
some of the medical uses of NGS, and the decrease in cost of
sequencing will continue to increase its use in medicine and cancer
research [8, 11]. With the commercialization of NGS in 2005,
cancer medicine has experienced numerous advances in early detec-
tion and treatment using molecular profiling [12]. More recently,
however, we have started to apply this technology to microbial
associated diseases, including cancer. While we have known for
decades that specific microbial species are causing cancer (e.g.,
H. pylori and gastric cancer), less has been understood about the
contribution of polymicrobial communities or biofilms not only to
cancer initiation but also to cancer promotion, progression, or
metastasis [13–15]. The application of metagenomics to the field
of cancer biology, however, has dramatically expanded the research
questions investigators can now address. Multiple lines of evidence
show alterations in the microbiome are associated with both devel-
opment and progression of several types of cancer including liver,
esophageal, and colon cancer [16–21]. With metagenomics we can
more fully understand how the structure of the bacterial commu-
nity determines the function and health of the epithelium and the
immune system [22, 23]. For example, putative microbial initiators
of colon cancer, specifically B. fragilis (ETBF), E. coli (pks+), and
E. faecalis, are more prevalent in human tumors and/or those with
familial adenomatous polyposis as compared to healthy controls
[24–28]. These findings and those from similar studies were
revealed through a combination of large metagenomic studies of
multiple cohorts and murine models to link associations with
molecular mechanism. Further, several bacteria have been identi-
fied through metagenomic sequencing as promoters of colon can-
cer development, including Fusobacterium nucleatum, which has
been isolated from patients with inflammatory bowel disease, a risk
factor for colon cancer [29, 30]. Building on these findings, recent
attempts to generate a classifier for distinguishing normal colon
from colon adenocarcinoma using the fecal microbiome in combi-
nation with the FOBT or FIT test have shown promise in improv-
ing screening for early detection of colon cancer [31].
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Response to anticancer therapy has also shown to be reliant
upon both the immune system and microbiota composition in
animal and human studies [23]. Using 16S rRNA sequencing,
Iida et al. (2013) observed that destruction of the microbiome in
mice through use of antibiotics resulted in a compromised efficacy
of immunotherapy (anti-IL-10/CpG-OGN) and platinum-based
chemotherapeutics (e.g., oxaliplatin) [32]. Therefore, the com-
mensal microbiota was recognized as necessary for the cytotoxic
effects of oxaliplatin. With the advent of checkpoint inhibitors for
anticancer therapy against PD-1/PD-L1 and CTLA4, studies have
focused on determining the influence of the microbiome in thera-
peutic efficacy [33]. Building on these studies, Gopalakrishnan
et al. [23] used metagenomics to characterize baseline fecal samples
from melanoma patients undergoing immunotherapy (e.g., anti-
PD-1). They used 16S rRNA sequencing to obtain microbial com-
munity composition and predict responders and nonresponders,
demonstrating the power of the microbiome and metagenomics
to uncover clinically pertinent information. Thus, mounting evi-
dence indicates that specific microbial species and community states
play a role in the etiology and treatment outcome of several types of
cancer and that precise methods for analyzing these microbial
populations are required. Hence, the remainder of this chapter
will focus on delineating those methods.

1.4 Study Design,

Sampling, Storage,

and Handling

Protocols for Fecal

Collection

Multiple factors can affect the results of human microbiome stud-
ies. The greatest sources of variability leading to spurious results
come from study design, nucleotide extraction, and statistical anal-
ysis methods [34, 35]. Therefore, this section will focus on these
most salient factors and provide suggestions for additional
resources and readings for factors not addressed. For a comprehen-
sive overview of microbiome study design and analysis, see the
review by Mallick et al. [10].

One of the initial steps in studies involving the human micro-
biota is determining the study design, which includes proper iden-
tification of the inclusion and exclusion criteria, as well as careful
calculation of sample size. Some of the key issues to consider when
selecting the inclusion and exclusion criteria for microbiome stud-
ies are age, current and past medication use (especially antibiotics),
diet, hormonal status, smoking status, recent GI infections, geo-
graphical location, and even physical activity levels. Since all of these
factors can have an impact on the gut microbiota, they should be
either considered in the inclusion/exclusion criteria or statistically
controlled [36–39]. Determining the effect of age is fundamental
as children under 3 years old have a relatively unstable gut micro-
biota that diversifies and stabilizes as the child gets older, with a
slight decrease in older stages of life [40]. One of the strongest
factors that contributes to confounding results is antibiotic use;
having consumed antibiotics alters the gut microbiota from
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6 months up to 4 years before it recovers its initial composition
[41]. In addition to antibiotics, proton pump inhibitors and the
diabetic drug metformin are able to significantly modify the com-
position of the gut bacteria [42, 43].

When evaluating the longitudinal effects of specific factors that
influence microbial community, careful selection of appropriate
controls should be put in place in order to differentiate between
normal variation from baseline and actual change [1, 44]. For
example, stronger conclusions can be made when participants act
as their own control, such as when comparing participants diag-
nosed with a relapsing disease in longitudinal studies. Nonetheless,
when this design is not possible, between group comparisons are
also informative, given enough participants are sampled and appro-
priate controls are selected [45]. Between group comparisons
require the careful selection of the interest and control groups
with as many similar characteristics as possible (age, gender, physi-
cal activity level, energy intake, body composition, etc.) with
exemption of the variable(s) of interest. Controlling for extraneous
variables preferentially with study design or at least statically
decreases their potential confounding effect on target variables. If
the species of interest are already known, selection of the appropri-
ate study design, nucleotide extraction, and statistical analysis will
be simplified.

It is also essential to achieve enough power to detect real
changes in the variables of interest, which can be accomplished by
determining the appropriate sample size. Underpowered studies
can cause spurious associations that cannot be replicated by studies
with enough power. This has been observed, for example, in studies
attempting to demonstrate the ability of the microbiome to distin-
guish between obese and nonobese individuals [46]. Factors, such
as the complexity of the community, the heterogeneity of the
habitat over time and space, and the specificity of the results that
need to be inferred, determine the correct selection of the sample
size. Software to help estimate sample size is available with the
following R packages [47–49].

Although logical, it is also important to highlight that, if con-
clusions are to be drawn for a specific microbial community, the
sample must be representative of that community’s particular habi-
tat. Community representativeness can be achieved by knowing the
amplitude of microbial variation; the more variation in an environ-
ment and the lower microbial biomass (e.g., total microbial load),
the higher the sample size needed. Performing pilot studies (e.g.,
16S rRNA sequencing) is useful in order to assess diversity and
variability, which in turn aids in determining sample size [1].

Microbial communities readily share genetic information and
have rapid communication systems; consequently, dramatic shifts in
community structure can occur within hours to days [50]. Thus,
timing can affect the interpretation of microbial analyses. This
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recommendation is critical in studies involving individuals with
cancer undergoing treatment as bowel preparation for surgery,
prophylactic antibiotics, and chemo- and radiotherapy significantly
affect the microbiome. To overcome this issue, it is crucial to
sample at multiple times.

Lastly, location can also be a confounder; in gut microbiota
analysis, for example, repeated sampling from different sites of the
same stool or from different spatial locations in the colon or lung
can lead to variation inmicrobiota composition [1, 44].Homogeni-
zation of the stool sample can overcome this bias. Thus, it is crucial
to control for or keep location/site constant within and between
samples.

When evaluating different sampling methods, it is paramount
to consider the reproducibility, stability, and accuracy of each of the
methods to compare, especially if conducting studies at multiple
geographical locations. Accuracy in this context means that the
sampling method must conserve the microbial signature of the
sample. Ideally, one would also want the method to be stable
under suboptimal field conditions and to be useful for multiple
different analyses (transcriptomics, proteomics, metabolomics,
etc.) [51]. Several recent studies comparing microbial sampling
methods have highlighted the importance of understanding the
potential limitations of each method depending on the outcome
of interest. Among the different methodological steps in micro-
biota analysis, nucleotide extraction has the most impact on results
and will be further discussed later in this section [34, 35].

Also crucial is to avoid spurious or incorrect conclusions by
carefully evaluating microbial sampling methodology in order to
increase the researchers’ ability to obtain valid and reliable data that
can be compared against other studies [34, 51, 52]. For large
population studies, three collection and storage methods appear
most prudent: FOBT/FTA cards, 95% ethanol, and premade
homogenization collection tubes. Comparison of seven fecal sam-
pling methods, (1) no additive, (2) RNAlater, (3) 70% ethanol,
(4) EDTA, (5) dry swab, (6) predevelopment FOBT (fecal occult
blood test), and (7) post-development FOBT, showed that the use
of swabs, FOBT cards (both pre and post), and 70% ethanol pro-
duced the most accurate microbial diversity measures. However,
70% ethanol resulted in low microbiome stability, rendering an
unstable sample across time. Likewise, although RNAlater seemed
to stabilize the microbiome over time, it caused considerable mod-
ifications to the microbiota diversity, causing a change in the micro-
bial signature. Thus, according to this study, FOBTcards and swabs
appear to be the best of these seven storing options [51].

FOBT consist of cards with fecal samples smeared on them,
collected by using a stick and flushable tissue paper. The smeared
sample in the card dries after a couple of minutes making it easy to
transport and store at lower cost. Alternatively, rectal swabs consist
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of sterile moistened swabs that are inserted 1–2 cm passing the anal
sphincter (rotating the swab 360�). Swabs are then stored in their
original container with liquid medium and stored at�80 �C. Rectal
swabs can be collected at any time, require no patient preparation,
and can be easily transported within the hospital; however, amount
of sample obtained is usually a potential limitation for this
method [52].

Commercial storage vials, such as OMNIgene Gut kit and
ZYMO DNA/RNA Shield—fecal collection tubes—are now avail-
able. OMNIgene Gut kits have been used extensively in large
population studies and have shown to effectively maintain micro-
biota composition by stabilizing nucleotides without the need of
freezing. An advantage of this device is its stabilization buffer and
the presence of a metal ball for complete homogenization. This
method can potentially remove the inconvenient need to store stool
samples in donors’ freezers which is advantageous in several ways: it
(1) eliminates the hazard of placing tubes with stool samples in
house freezers, (2) reduces temperature fluctuations caused by the
automatic defrost cycles that home freezers undergo, and
(3) decreases the cost of transportation as there is no need for dry
ice [44, 53].

A recent study evaluated the efficiency of OMNIgene Gut kit
(DNA Genotek), RNAlater, FTA cards (Flinders Technology
Associates cards from Whatman, similar product to FOBT cards),
and 70% as well as 95% ethanol [54]. The authors demonstrated
that 95% ethanol, FTA cards, and the OMNIgene Gut kit are able
to efficiently preserve stool samples at ambient temperature for up
to 8 weeks. The similarity between the preservation in the micro-
biota signature caused by 95% ethanol in comparison to OMNI-
gene Gut kit and FTA cards and the low cost and global accessibility
of ethanol makes it a suitable choice for microbiome research.
However, despite the fact that ethanol preserved DNA with high
reliability, its use yielded lower concentrations of DNA in compari-
son to OMNIgene Gut kit and FTA cards. FTA cards and OMNI-
gene kit resulted in microbial community changes that are similar
to those observed between technical replicates, thus suggesting
that any changes over time produced by these two methods are
within the limits of variation produced by 16S rRNA gene analysis.
Caution against the use of 70% ethanol is given as it produces
changes in the microbial community comparable in proportion to
the ones observed between species. Additionally, although RNAla-
ter was found to perform similarly to the other methods, it began
losing stability after 2 weeks when maintained above freezing tem-
peratures [54]. Nonetheless, it is important to highlight that all of
these methods were compared based on the efficiency and stability
analyzed through 16S rRNA gene sequencing; whether this inter-
pretation applies for whole genome sequencing, RNA sequencing,
or any other analysis is the focus of ongoing studies.
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Nucleic acid extraction on fresh samples is the best way to
ensure conservation of the microbial signature from the sample;
however this is highly impractical and sometimes impossible in
large population studies. Freezing the samples at �80 �C immedi-
ately after collection is still considered the reference method to
compare new alternatives for sample collection. When freezing
the samples directly at �80 �C is not possible, methods such as
freezing the sample at �20 �C or storing them at 4 �C for up to
48–72 h have shown to prevent from significant alterations in the
microbiota. However, if the study design does not allow immediate
storage at�80 �C,�20 �C, or 4 �C due to geographical distance or
other issues, the use of FOBT cards, OMNIgene kits, and rectal
swabs is the next, best option [51, 52, 55, 56]. Several authors,
however, suggest that even in cases where immediate freezing is
available, other options such as OMNIgene kits, FTA cards, and
95% ethanol should be considered as they provide good stability
and increased protection from freeze-thaw cycles, which normally
occur during shipment and sample processing [54]. This recom-
mendation is also supported by changes in the Firmicutes/Bacter-
oidetes ratio observed in frozen, unfixed stool samples in
comparison to fresh samples. This change in bacterial composition
under freezing temperatures seems to be caused by the greater
ability of gram-positive bacteria (Firmicutes) to preserve DNA
stability in comparison to gram-negative bacteria [57]. This error
can be fully or partially addressed by (1) directly analyzing the fresh
samples, (2) freezing all the samples the same amount of time, or
(3) using another reliable storing method that can keep the micro-
bial signature stable for a short period of time at ambient
temperature.

1.5 Sample

Preparation and

Nucleotide Extraction

Cultivation-dependent methods have provided a valuable but
incomplete picture of the human microbiome. Cultivation-
independent approaches that involve the extraction of genomic
DNA represent a more accurate depiction of the microbial commu-
nity [58]. One of the key steps in analyzing microbial DNA is
nucleotide extraction, as it has shown to have the second largest
effect on metagenomic analysis after biological differences
[35]. When choosing a DNA extraction protocol, it is important
to select a method that is able to extract as much genetic material as
possible without causing DNA damage [44]. Extraction of high-
quality, high-molecular-weight DNA is necessary for techniques
such as shotgun metagenomics; however, proper lysis of heteroge-
neous microbial communities without damaging their genomes is a
major challenge. Human samples contain large numbers of micro-
bial cells that belong to different phyla, heterogeneous in their
morphology and cellular architecture. This heterogeneity narrows
the potential options for ideal extraction methods; protocols can-
not be too harsh that can damage DNA quality or too weak that

Compositional Analysis of the Human Microbiome in Cancer Research 307



cause only partial cellular lysis [58]. Maximizing DNA concentra-
tion while minimizing its fragmentation is a key factor to consider
when choosing an extraction protocol. Extraction of high-quality
DNA is needed to prevent misrepresentation of community com-
position and to perform posterior analyses with more in-depth
techniques such as shotgun sequencing [35]. Studies analyzing
the efficiency of different DNA extraction protocols have mainly
focused on measuring DNA yield as an outcome; however, research
has shown a lack of correlation between DNA yield and accurate
representation of the microbial diversity [58]. Thus, we cannot
guarantee that methods that ensure high DNA yield will necessarily
produce good representation of the microbial community
[58]. Therefore, a key challenge in sequencing metagenomics is
to isolate DNA that are both high quality and representative of the
sampled community, which is the focus of this section.

It has been shown that separate locations within the same fecal
sample can produce different microbial readings; thus, the first step
in fecal sample analysis involves the homogenization of samples.
Homogenization before storage reduces within-sample and intrain-
dividual variability, which becomes crucial when performing longi-
tudinal studies [59, 60]. Homogenization by either a blender or a
pneumatic mixer has shown to increase the proportion of gram-
positive bacteria, with the former method requiring only 2 min in
comparison to 10–30 min of the latter one [60].

Analyzing human fecal samples is complex due to the presence
of fibers, microbes, undigested particles, nucleases, and human
cells; these factors can affect the overall quality and quantity of
the metagenomic DNA obtained [61]. Removal of large size insol-
uble impurities takes place after homogenization, producing clean
microbial pellets.

Once the fecal sample has been homogenized and cleaned from
impurities, a lysis buffer and proteinases are then added to the
sample [61]. Lysis of microbial cells exposes their genomic DNA
to intra- and extracellular nucleases making DNA susceptible to
exo- and endonucleases. Therefore, it is crucial to inactivate
nucleases and other enzymes by adding strong denaturing agents
[62]. A couple of thermal incubations, washes, and centrifugation
cycles follow the procedure in order to obtain DNA with good
integrity (>1.8 kb) and purity (A260/A280 >1.85; A260/A230
~2.0–2.2) [63].

Methods that combine physical (thermal), mechanical (bead
beating), and chemical lysis to isolate community bacterial DNA
from human samples appear to be more efficient in obtaining good-
quality DNA thanmethods utilizing only one of them [62]. Specifi-
cally, protocols that include bead beating and/or mutanolysin pro-
duce the closest representation of the bacterial community. Bead
beating produces a mechanical disruption of the microbial cells that
increases DNA recovery, specifically from gram-positive bacteria
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which are difficult to lyse by enzymatic methods due to the strength
of their cell walls, while mutanolysin creates cellular lysis through
enzymatic reactions [35, 58, 60]. Protocols assessing the lysis
efficiency of different lytic methods demonstrate that combining
enzymes is superior than using individual enzymes to achieve more
effective lyses of cell membranes. This might be due to the different
structures of membrane peptidoglycans among bacterial species.
C-type lysozyme, for example, cleaves the glycosidic bond between
the C-1 of N-acetylmuramic acid and the C-4 of N-acetylglucosa-
mine in bacterial peptidoglycans [62]. However, not all bacteria are
sensitive to C-type lysozymes. Bacteria that have O-acetylated pep-
tidoglycan (such as S. aureus and Proteus mirabilis) are sensitive to
mutanolysin instead [64]. Lysostaphin is a glycylglycine endopep-
tidase that is able to cleave pentaglycine bridges in the cell wall of
staphylococci. Therefore, using a cocktail of lytic enzymes can likely
improve the cell lysis of different bacterial species, thus allowing for
a better representation of bacterial communities [58, 65, 66].

Slight variations in DNA extraction protocols can impact DNA
isolation and thus DNA sequencing. The European MetaHIT and
the American Human Microbiome Project (HMP) are two major
consortiums on microbiota studies. A recent study comparing the
DNA extraction methods used by these two consortiums demon-
strated that, although both DNA extraction methods resulted in
sufficient yields and purity, a more efficient eukaryotic DNA extrac-
tion was achieved with the MetaHIT protocol; however, a more
efficient bacterial DNA extraction was obtained with the HMP
protocol. Both protocols involve comparable procedures for bead
beating (same size); however, one of the main variations between
the protocols is the different heat treatments (70 �C for 1–2 h in the
MetaHITmethod compared to 65 �C for 10 min followed by other
10 min at 95 �C in the HMP method). Interestingly, the study
shows that although there was a high correlation between the two
methods, samples that were extracted with the same DNA extrac-
tion method tended to cluster together in analysis, highlighting the
impact of the method used on the detected composition of the
sample. Last but not the least, when analyzing a large number of
samples, it is important to consider the extra amount of labor
involved in the protocol. In this case the MetaHIT protocol is
more time-consuming than the HMP protocol [59].

After cellular lysis takes place, metagenomic DNA is then
isolated to be later visualized by agarose gel and quantified by
spectrophotometry. Metagenomic DNA refers to the DNA
extracted from all microbes existent in a particular environment
[1]. The majority of studies use one or multiple regions of the 16S
rRNA to perform sequencing; however, this technique can be
affected by the choice of primer used, PCR biases, and even the
selected polymerase. Comparing methods by using shotgun
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metagenomics sequencing as a readout can overcome these poten-
tial sources of bias [35].

All of the steps involved in sample preparation and nucleotide
extraction are potential sources of bias, creating major challenges
when trying to compare microbiota studies [44]. Adoption of a
DNA extraction protocol that is universally considered as the “gold
standard” is fundamental to improve the comparability of human
studies analyzing the microbiome. Collaboration of 21 laboratories
in 11 countries on 3 continents made possible the comparison of
21 commercial and noncommercial DNA extraction methods
[35]. In the first phase of the study, 5 methods were selected out
of the 21 considering the quantity and integrity of extracted DNA,
recovered diversity, and observed ratio of gram-positive bacteria
obtained through shotgun metagenomic sequencing. Gram-
positive bacteria were used as an outcome criterion for comparison
between protocols, as they are more likely to be affected by the
extraction method. Their results demonstrate that protocol Q is the
preferred option for DNA extraction considering its ease of use,
higher extraction quality, accuracy, and transferability in compari-
son to the rest of the selected protocols [35]. Protocol Q is further
explained in “Steps for DNA Extraction.”

Important considerations when performing DNA extraction
involve the inclusion of positive and negative controls to evaluate
the overall performance of extraction protocols. Positive controls
should include known artificial communities (known as mock com-
munities) to measure the overall accuracy (error rates of sequencing
and composition) of the protocol. Negative controls should be
included throughout extraction (e.g., PCR clean water and Tris-
HCl buffer) in order to evaluate potential contamination
[34]. Contamination sources include molecular grade water, PCR
reagents, and DNA extraction kit reagents. Furthermore, pathogen
contamination has been identified in sequencing reagents. All PCR
amplicons should therefore be run on an agarose gel prior to
sequencing. The presence of contaminating DNA represents a
particular challenge for researchers working with samples contain-
ing a low microbial biomass such as those from the blood or lungs.
Contamination not only affects 16S rRNA gene sequencing but
also affects whole genome sequencing (shotgun metagenomics),
and it seems to be mainly caused by soil- or water-dwelling bacteria.
Some recommendations to decrease the impact of contaminants are
(1) maximizing the starting sample biomass as microbial loads
lower than 103 to 104 may not provide robust results; (2) minimiz-
ing risk of contamination at the time of sample collection;
(3) recording the batches of kits used for each particular sample;
(4) processing samples at random order and in replicates or tripli-
cates; and (5) checking for taxa that are biologically unexpected for
the sample of hand [67].
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DNA extraction is considered as a bottleneck of an otherwise
high-throughput microbiota NGS as it is manual and time-
consuming. Several semiautomated fecal DNA extraction protocols
have been recently created promising to expedite the process,
reduce variability, and eliminate potential human errors. More
research, however, is needed to evaluate their validity and reliability
in comparison to already existent manual protocols [68].

1.6 PCR

Amplification

Correct selection of 16S rRNA variable region gene primers is
critical for downstream analysis and identification of key taxa that
are biologically important for each particular study population.
Further information regarding primer selection is provided in the
following section.

PCR amplification is an important stopping point to assess
purity of samples. The presence of 16S rRNA amplicons in the
negative controls suggests reagent or user contamination of the
sample extraction procedure and should be used to optimize
extraction procedures (for details see Salter et al. 2014).

After confirming amplification of the 16S rRNA gene in sam-
ples and absence of amplification in background and/or H2O
control samples, then variable region PCR amplification can pro-
ceed. The following 16S rRNA PCR protocol from the Langille
Lab is recommended prior to sequencing [69] and contains step-
by-step wet lab and bioinformatic protocols for 16S rRNA gene
and metagenomic sequencing.

1.7 Next-Generation

Sequencing

The two main approaches for inferring microbial community com-
position are 16S rRNA and whole genome shotgun sequencing.
Choosing between each of these methods will largely depend on
the experimental setting and cost; therefore, it is important to
highlight the advantages and disadvantages of each method.
Despite being cheaper and less time-consuming, performing 16S
rRNA gene sequencing has several other advantages over shotgun
metagenomics. For example, 16S rRNA gene sequencing is able to
identify a higher number of bacteria in comparison to whole
genome sequencing. This is because, to this day, genomic databases
contain about an order of magnitude less sequences stored than
16S rRNA databases (as amplicon analyses were the first molecular
tool to be applied to the human microbiota) [70, 71]. Analysis of
the 16S rRNA gene gives a qualitative and semiquantitative descrip-
tion of the bacteria present in a complex biological system by
amplifying only a section of the DNA used to identify target
genes [71]. One critical drawback to using this method for quanti-
fication is the presence of multiple 16S rRNA copies in multiple
species. Thus, while it might appear as one taxon that is relatively
higher in abundance, it also may be an artifact of that taxa carrying
multiple 16S rRNA gene copies [72–74]. This issue can be over-
come in later analysis by conducting absolute quantitative PCR
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(e.g., droplet digital PCR) for the specific species identified. 16S
rRNA gene analysis clusters similar sequences at a particular level of
identity and counts the number of representatives of each cluster.
These clusters of similar sequences are referred to as operational
taxonomic units (OTU), which are generated by binning organisms
together that possess either 97% or 100% of similarity for identifi-
cation at the genus level. Currently, it is not recommended to
generate species-level assignments using individual variable regions
of the 16S rRNA gene. Newer methods now exist, however, to infer
species-level identification based on sequence variance analysis
(SVA), which is described by Mallick et al. (2017) [10].

Another key consideration prior to amplification of the 16S
rRNA gene is the choice of variable region. Prokaryotic 16S rRNA
is a 1.5 kb long gene that contains conserved and variable regions
[45]. There are nine “hypervariable regions” labeled V1 to V9.
Hypervariable regions are flanked by highly conserved DNA
sequences that are similar among most bacteria. These conserved
regions serve as anchors for universal PCR primers. On the con-
trary, hypervariable regions have different gene sequence among
bacterial taxa allowing their identification. The nucleotide spans of
the nine hypervariable regions are 69–99 (V1), 137–242 (V2),
433–497 (V3), 576–682 (V4), 822–879 (V5), 986–1043 (V6),
1117–1173 (V7), 1243–1294 (V8), and 1435–1465 (V9).

Unfortunately, no single hypervariable region is capable of
differentiating among all bacteria; thus, careful selection of target
sequences is highly dependent on the microbes of interest. In
bacterial cultures, V1 (30 bp in length), for example, has shown
to best differentiate among Staphylococcus sp., as well as Streptococ-
cus sp. Whereas, V2 and V3 were able to distinguish all bacterial
species to the genus level except for those closely related to Enter-
obacteriaceae. Additionally, V2 (106 bp in length) distinguished
better among Mycobacterium, Staphylococcus, Streptococcus, and
Clostridium sp., while V3 (65 bp in length) proved better resolu-
tion among Haemophilus sp., Enterobacteriaceae, K. pneumoniae,
and E. aerogenes. V6 (58 bp in length) was also able to distinguish
among most bacterial species except those of Enterobacteriaceae
and proved to be the best to distinguish B. anthracis and
B. cereus. On the other hand, V7, V8, and especially V5 were less
useful targets for genus- or species-specific probes due to their
higher degree of sequence conservation in comparison with the
rest of the hypervariable regions. Combining the hypervariable
regions V2, V3, and V6 increases the resolution to the genus level
for all the 110 bacterial species and down to the species level for
most of them (but not all). While these three hypervariable regions
have the highest nucleotide heterogeneity and discriminatory
power from the nine, V4 has been used extensively in the majority
of fecal-based studies and thus has the strongest ability to compare
across studies [75]. Once 16S rRNA gene segments have been
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amplified, their sequences are aligned with existing reference
genome databases (NRC 2007). This technique allows the most
taxonomic information in the smallest span of nucleotides at a more
affordable price [75].

The use of melting curves to evaluate for primer dimers or
unwanted amplifications is also recommended [66]. After sequenc-
ing is complete, the use of software such as FastQC (Babraham
Bioinformatics) can be useful to quickly perform basic quality
control checks on raw sequences of data coming from high-
throughput sequencing pipelines.

Several common bioinformatics processing tools are available
for taking 16S rRNA reads from sequencing run output to taxo-
nomic identification. The two most commonly applied tools are
MOTHUR (https://www.mothur.org) and QIIME (https://www.
qiime.org), which are publically available, regularly updated, and
well cited. It is beyond the scope of this chapter to enumerate the
procedures in these complementary methods. Extremely detailed
tutorials are available for each tool at their websites.

Shotgun metagenomic sequencing represents a more precise
and informative alternative to 16S rRNA that bypasses gene-specific
amplification, thus sequencing all DNA located in the sample
including that from viruses, fungi, and archaea [70]. It also pro-
vides a more accurate representation of the bacterial composition
and functionality in comparison to 16S rRNA. Techniques utilizing
PCR amplification, such as 16S rRNA, can be easily contaminated
and require many controls at all levels of the process [71], while
metagenomic shotgun sequencing provides more information with
reduced biases [76]. Unlike 16S rRNA, shotgun metagenomic
sequencing provides higher resolution that allows the identification
of specific species and strains of bacteria as well as mutations that
allow the identification of sources of outbreaks and antibiotic resis-
tance [11, 45, 70]. Several methods for 16S rRNA sequencing and
shotgun metagenomics or metatranscriptomic sequencing are
available, which have been most recently reviewed [10]. One final
important consideration when designing large sample studies that
require multiple sequencing runs, 16S rRNA or whole genome
sequencing, is to consider the impact of batch effect. Therefore,
careful setup of each plate including randomly distributed sample
types (e.g., cases and controls), as well as duplicates and negative
and positive controls (identical), will allow for batch effect adjust-
ment across multiple plates or sequencing runs.

This chapter, while not exhaustive in covering all methods
necessary for human microbiome research, provides the necessary
background and methodological details in order to initiate inde-
pendent research in microbial ecology for the purpose of determin-
ing associations with cancer biology. Future research methodology
will likely advance most with regard to sequencing and will hope-
fully converge on standardized methods for collection, extraction,
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sequencing, and bioinformatic/statistical analysis. In summary, this
information goes toward ensuring that high standards for micro-
biome research are maintained in order to produce quality repro-
ducible data for comparison across studies in future investigations
for cancer research.

2 Materials

2.1 Stool Sample

Collection

1. Spatula, stick, or spoon.

2. Stool collection tube.

3. Stool collection hat.

4. Pair of gloves.

5. Biohazard bag.

6. Easy-fold mailbox.

7. Plastic clinical mailing bag.

2.2 DNA Extraction

2.2.1 Homogenization

with Lysis Buffer

For fecal samples:

1. 2 mL screw top.

2. Sterile zirconia beads.

3. ASL lysis buffer.

4. Vortex.

For sputum and other liquid samples:

1. 200 mM of monobasic sodium phosphate.

2. GES buffer (guanidine thiocyanate, EDTA disodium, pH 8.0,
N-lauroylsarcosine sodium salt).

3. 2 mL screw top tube containing 0.2 g of 0.1 mm glass beads.

4. Homogenizer.

For skin samples:

1. Lysozyme solution.

2. Heat block.

3. Swabs.

4. Spin baskets and microtubes for preprocessing samples on
swabs.

For tissue samples:

1. Lysozyme solution.

2. Heat block.

3. Proteinase K.
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Enzymatic/mechanical lysis:
For fecal samples:

1. Incubator.

2. Homogenizer.

3. Centrifuge.

4. 2 mL tubes.

5. ASL lysis buffer.

For sputum and other liquid samples:

1. Lysozyme (100 mg/mL).

2. RNAse A (10 mg/mL of H2O).

3. Vortex.

4. Incubator.

5. 25% SDS.

6. Proteinase K.

7. 62.5 μL of 5 M NaCl.

For skin samples:

1. Stainless steel beads, size 5.0 mm.

2. Homogenizer.

3. Shaking heat block.

4. Ice.

For tissue samples:

1. Tubes containing 2.0–2.8 mm ceramic beads.

2. Homogenizer.

2.2.2 DNA Extraction/

Precipitation

For fecal samples:

1. 10 M ammonium acetate.

2. Incubator.

3. Centrifuge.

4. 1.5 mL tubes.

5. Isopropanol.

6. Ice.

7. 70% EtOH.

For sputum and other liquid samples:

1. Screw cap tubes.

2. 25:24:1 phenol-chloroform-isoamyl alcohol.

3. 2 mL tubes.
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4. Vortex.

5. Centrifuge.

For skin samples:

1. Protein precipitation reagent.

2. Vortex.

3. Centrifuge.

4. 2 mL tubes.

5. 100% EtOH.

For tissue samples:

1. 1.5 μL tube.

2. RNAse A (5 μg/μL).
3. Heat block with shaking.

4. Ice.

5. Centrifuge.

6. Protein precipitation reagent.

7. Vortex.

8. 2 mL tubes.

9. 100% EtOH.

2.2.3 DNA Purification For fecal samples:

1. Tris-EDTA.

2. DNase-free RNase (10 mg/mL).

3. Incubator.

4. Proteinase K.

5. AL buffer.

6. Vortex.

7. Ethanol (96–100%).

8. Spin column.

9. Wash buffer.

10. Centrifuge.

For sputum and other liquid samples:

1. DNA binding buffer.

2. 1.5 mL tubes.

3. Vortex.

4. DNA column.

5. Centrifuge.
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6. Wash buffer.

7. Sterile DNase/RNase-free dH2O.

For skin samples:

1. gDNA column.

2. Centrifuge.

3. Wash buffer.

4. Safe-Lock PCR tubes.

5. PCR water.

For tissue samples:

1. gDNA column.

2. Centrifuge.

3. Wash buffer.

4. Safe-Lock PCR tubes.

5. PCR water.

2.2.4 DNA Quantification 1. 1% agarose gel or automated electrophoresis.

2. Fluorometer.

2.3 PCR

Amplification

1. 75% ETOH.

2. 10% bleach.

3. Pre-PCR-labeled pipettes.

4. Filter tips.

5. Primers: 8F (50-AGA GTT TGA TCC TGG CTC AG-30) and
1391R (50-GAC GGG CGG TGW GTR CA-30).

6. PCR water.

7. 1.5 mL tubes.

8. Takara HS LA Taq (Taq DNA polymerase and DNA proof-
reading polymerase optimized for long-range PCR).

9. 10� buffer.

10. dNTP mix.

11. HS LA Taq (Taq polymerase plus a monoclonal antibody spe-
cific to Taq polymerase).

12. DMSO *optional for tissue.

13. Thermocycler.

14. 1% gel.
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3 Methods

3.1 Steps for Stool

Collection (see Note 1)

1. Urinate first.

2. Put gloves on.

3. Place the stool collection hat into the back of the toilet.

4. Have a bowel movement into the collection device.

5. Use the spatula, the stick, or the spoon to collect sample.

6. If using collection tubes, immediately screw back the cap with-
out spilling the liquids.

Some tubes recommend shaking the sample for a minimum
of 30 s (or until all large particles have been dissolved).

Discard the rest of the stool into the toilet, and place the
collection hat and spatula in the garbage.

7. Follow instructions for storage of the tubes/cards. Commer-
cial stool sample collection tubes are to be kept at environmen-
tal temperature (15–25 �C), while cards can be either
maintained temporarily at environmental temperature or
immediately frozen at �20 or �80 �C.

8. Place the sample inside a sealed bag, and put the bag inside an
easy-fold mailer (optional).

9. Place easy-fold mailer inside a plastic clinical shipping bag.

10. Ship in accordance to biological specimen regulations.

*Stool collection protocol was adapted from the Human
Microbiome Project,

Stool Collection and Shipping Instructions, and the OMNI-
gene User instructions.

3.2 Steps for DNA

Extraction from

Different Sources (see

Notes 2–4)

1. Select a number of samples that is manageable (~12–24).

2. Remove samples from �80 �C and thaw them on ice.

3. Homogenization with lysis buffer (this will be different for
each sample type).

For fecal samples:

1. Add 100–200 mg of feces to a 2 mL screw top tube containing
0.3 g of sterile zirconia beads.

2. Add 1.0 mL lysis buffer.

3. Vortex for 2 min.

3.2.1 For Sputum

and Other Liquid Samples

1. Add 300 μL of sample, 800 μL of 200 mM of monobasic
sodium phosphate, and 100 μL of GES buffer into a 2 mL
screw top tube containing 0.2 g of 0.1 mm glass beads.

2. Bead beat with homogenizer for 3 min at 3000 rpm.
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For skin samples:

1. Add lysozyme solution.

2. Incubate in shaking heat block at 37 �C for 1 h.

3. Swabs are placed in UV-treated basket and placed back in tube
for a short spin to collect excess buffer. Swabs are discarded
in MPW.

For tissue samples:

1. Add lysozyme solution.

2. Incubate in shaking heat block at 37 �C for 1 h.

3. Add 40 μL of proteinase K to each tube.

Enzymatic/mechanical lysis:
For fecal samples:

1. Incubate for 15 min at 95 �C.

2. Cells are mechanically lysed by running the homogenizer
instrument 1 min, resting 5 min for eight times.

3. Samples are allowed to cool down on ice for 2 min.

4. Tubes are then centrifuged at 16,000 � g and 4 �C for 5 min.

5. Supernatant is transferred to a new 2 mL tube.

6. The pellet is mixed with 300 μL of ASL lysis buffer, and steps
2–5 are repeated.

7. Supernatants are pooled in new 2 mL tubes.

For sputum and other liquid samples:

1. Add 50 μL of lysozyme and 10 μL of RNAse A.

2. Mix with vortex.

3. Incubate samples in a 37 �C water bath for 1–1.5 h.

4. Add 25 μL of 25% SDS, 25 μL of proteinase K, and 62.5 μL of
5 M NaCl.

5. Mix with vortex.

6. Incubate samples in a 65 �C water bath for 0.5–1.5 h.

For skin samples:

1. Add two sterile stainless steel beads to sample with bead
dispenser.

2. Bead beat using homogenizer for 2 min at 3500 rpm.

3. Incubate tubes for 30 min at 65 �C in shaking heat block.

4. Ice for 5 min.
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For tissue samples:

1. Transfer contents into tube containing 2.0–2.8 mm ceramic
beads.

2. Bead beat using homogenizer for 2 min at 3500 rpm.

3.2.2 DNA Extraction/

Precipitation

For fecal samples:

1. Add 260 μL of 10 M ammonium acetate to each lysate tube.

2. Mix well.

3. Incubate on ice for 5 min.

4. Centrifuge tubes at 16,000 � g and 4 �C for 10 min.

5. Transfer the supernatant to two 1.5 mL tubes; add one volume
of isopropanol (measure the supernatant transferred into each
tube to add the same volume of isopropanol).

6. Mix well.

7. Incubate on ice for 30 min.

8. Centrifuge tubes at 16,000 � g and 4 �C for 15 min.

9. Remove supernatant using careful aspiration without touching
the solid pellet.

10. Wash nucleic acid pellet with 70% EtOH (0.5 mL), and dry the
pellet under vacuum for 3 min.

For sputum and other liquid samples:

1. Centrifuge screw cap tubes at 13,500 � g for 5 min.

2. Add 900 μL of phenol-chloroform-isoamyl alcohol to another
set of 2 mL tubes.

3. Take 900 μL of supernatant from the screw cap tubes, and add
it into the 2 mL tubes, thus creating a 1:1 volume solution of
sample and phenol-chloroform.

4. Mix with vortex.

5. Centrifuge at <13,000 � g for 10 min.

For skin samples:

1. Add 250 μL of protein precipitation solution.

2. Vortex tube 10s.

3. Spin max 10 min.

4. Transfer to new 2 mL tubes and add equal volume
100% EtOH.

For tissue samples:

1. Remove liquid from tubes and add to new 1.5 μL tube.

2. Add 1 μL of RNAse A to each tube.
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3. Incubate 30 min at 65 �C in heat block with shaking.

4. Ice 5 min.

5. Max spin tubes (18,078� g) for 5 min and transfer supernatant
to new tube.

6. Add 250 μL of protein precipitation solution.

7. Vortex tube10s.

8. Spin max 10 min.

9. Transfer to new 2 mL tubes and add equal volume COLD
100% EtOH (~600 μL).

3.2.3 DNA Purification For fecal samples:

1. Dissolve the nucleic acid pellet in 100 μL of Tris-EDTA.

2. Add 2 μL of DNase-free RNase.

3. Incubate at 37 �C for 15 min.

4. Add 15 μL of proteinase K and 200 μL of AL buffer to the
supernatant.

5. Mix with vortex.

6. Incubate at 70 �C for 10 min.

7. Add 200 μL of ethanol (96–100%) to the lysate.

8. Mix with vortex.

9. Transfer to a spin column and centrifuge at 16,000 � g for
1 min at room temperature.

10. Discard flow-through.

11. Add 500 μLwash buffer and centrifuge at 16,000� g for 1 min
at room temperature.

12. Discard flow-through.

13. Add 500 μLwash buffer and centrifuge at 16,000� g for 1 min
at room temperature.

14. Dry the column by centrifugation at room temperature for
1 min.

15. Add 200 μL buffer Tris-EDTA; incubate for 1 min at room
temperature.

16. Centrifuge for 1 min at 16,000 � g to elute DNA.

For sputum and other liquid samples:

1. Add 200 μL of DNA binding buffer to 1.75 mL tubes.

2. Carefully transfer the top layer (avoiding taking up any of the
interface) of the centrifuged sample to the DNA binding buffer
in the 1.5 mL tubes.

3. Mix with vortex.
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4. Transfer this solution to a DNA column 600 μL at a time.

5. Spin columns at <12,000 � g.

6. Discard flow-through.

7. Once sample has moved through the column, add 200 μL of
wash buffer to the column.

8. Spin columns at <12,000 � g.

9. Discard flow-through.

10. Repeat wash step once more (steps 7–9).

11. Place the columns into a new, sterile 1.5 mL tubes.

12. Add 50 μL of sterile DNase/RNase-free ddH2O preheated at
65 �C to the center of each column.

13. Incubate the columns at room temperature for 5 min.

14. Elute the DNA into the 1.75 mL tubes by centrifuging the
columns in the tubes at a maximum speed of 12,000 � g for
1 min.

For skin samples:

1. Apply sample to gDNA column.

2. Spin at maximum speed for 1 min.

3. Remove flow-through, and apply additional sample; spin until
all sample is used.

4. Place column in fresh collection tube.

5. Wash column with 500 μL Buffer 1.

6. Spin at maximum speed for 1 min.

7. Discard flow-through and place column in fresh
collection tube.

8. Wash column with 500 μL Buffer 2.

9. Spin and discard flow-through spin at maximum speed for
3 min to dry.

10. Discard flow-through and place column in clean Safe-Lock
PCR tubes.

11. Apply 35 μL of PCR water to column.

12. Let sit ~3 min.

13. Spin at maximum speed for 30 s to elute DNA.

For tissue samples:

1. Apply sample to gDNA column.

2. Spin at maximum speed for 1 min.

3. Remove flow-through, and apply additional sample; spin until
all sample is used.
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4. Place column in fresh collection tube.

5. Wash column with 500 μL Buffer 1.

6. Spin at maximum speed for 1 min.

7. Discard flow-through and place column in fresh
collection tube.

8. Wash column with 500 μL Buffer 2.

9. Spin and discard flow-through.

10. Spin at maximum speed for 3 min to dry.

11. Discard flow-through and place column in clean Safe-Lock
PCR tubes.

12. Apply 35 μL of PCR water to column.

13. Let sit ~3 min.

14. Spin at maximum speed for 30 s to elute DNA.

3.2.4 DNA

Quantification (see Note 5)

1. For quality control use 1% agarose gel or automated
electrophoresis.

2. For sample concentration use a fluorometer.

3. Store DNA at �20 �C for short term <1 month (>1 month
store at �80).

Fecal, liquid, and skin/tissue DNA extraction protocols were
adapted from.

Costea et al. (2017), Surette et al. (2014), Segre laboratory at
the National.

Institutes of Health, and our laboratory at Baylor University
[35, 77, 78].

3.3 Steps for 16S

rRNA gene PCR

Amplification Testing

1. Clean bench space with 75% ETOH and 10% bleach.

2. Use pre-PCR-labeled pipettes and filter tips.

3. Fecal sample ¼ 16S rRNA �25 cycles.

4. Background and H2O controls are generally 28 cycles.

5. Use primers: 8F and 1391R. Stock solution is at 100 μM, and
working solution is at 20 μM, all diluted in PCR water (indi-
vidual 1 mL tubes).

6. For each 25 μL reaction: use Takara HS LA Taq (Taq DNA
polymerase and DNA proofreading polymerase optimized for
long-range PCR).

(a) μL 10� buffer,

(b) 4 μL dNTP mix

(c) 0.5 μL each primer (20 μM, ordered from IDT)

(d) 0.25 μL Takara HS LA Taq

(e) 2 μL of DNA depending on the sampling method
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(f) 1 μL DMSO

(g) To volume with PCR water.

7. Thermocycling: initial denaturation at 95 �C for 5 min, fol-
lowed by 25–30 cycles of 30 s at 95 �C for denaturation, 30 s
annealing at 55 �C, and 1.5 min elongation at 72 �C, all
followed by final extension of 10 min at 72 �C.

8. Separate PCR products on a 1% gel.

9. Do not stack lanes. Only run one row of lanes at a time.

10. Run gel long enough for ample separation.

*Adapted from the laboratories of Julie Segre and Elizabeth
Grice.

3.4 Statistical

Considerations for

Performing

Metagenomic Studies

Characteristics of microbiome data. After bioinformatics processing,
microbiome sequencing data are usually summarized into an abun-
dance table, which records the counts of all detected features (taxa/
gene) in each sample. While we focus the discussion on taxa abun-
dance data, similar principles apply to functional abundance data.
There are several important characteristics for microbiome data,
which need to be taken into account in the statistical analysis
[79]. First, the microbiome data are count data, where the variance
depends on the mean, and thus are not appropriate to be analyzed
directly using traditional statistical tools based on normal assump-
tions. Second, the microbiome data are highly dimensional, and the
number of taxa usually exceeds the number of samples.
Microbiome-wide hypothesis testing, which involves hundreds or
even thousands of statistical tests, should be corrected for multiple
testing to control for false positives [80]. Third, the microbiome
data contain excessive zeros. Those zeros are due to either under-
sampling of rare taxa (sampling zeros) or physical absence of the
taxa (structural zeros) [81]. The sampling zeros strongly depend on
the sequencing depth, while the structural zeros do not. The dif-
ferent nature of zeros, as well as the dependence of sampling zeros
on sequencing depth, requires the application of appropriate statis-
tical treatment in both diversity- and taxa-level analysis, especially
when the sequencing depth is a confounding variable that corre-
lates with the phenotype of interest. Finally, the taxa are phylogen-
etically related. Closely related taxa usually share biological
functions and tend to react to the environmental perturbation
similarly. Thus, the phylogenetic tree is essential prior to knowl-
edge, which can be used to increase the efficiency and power of
statistical analysis [82, 83].

Before moving to more advanced analysis, exploratory data
analysis for each variable (heat maps, ordination, stacked bar
plots, etc.) should be performed to assess the sequencing quality,
detect outliers, and determine sources of variability. The EMPeror
[84] in QIIME is an excellent software to perform exploratory data
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analysis. Potential confounders can also be identified at this stage,
and they should be adjusted properly in both diversity and taxa-
level analysis. Critically, for large studies it is often necessary to
conduct multiple sequencing runs. Thus, as mentioned earlier,
keeping track of the run or batch number is paramount when
conducting exploratory analysis. It has been our experience that
batch effects can significantly affect total number of reads per
sample, which need to be controlled or adjusted for in later statisti-
cal analyses. As part of this exploratory analysis, it is absolutely
critical to conduct contamination checking, even if you did not
see any 16S rRNA amplicons during the PCR testing as sequencing
reagents may introduce contaminants. At this point comparing
positive and negative controls should be conducted to assess poten-
tial contaminants, especially so in low-biomass samples (e.g.,
lungs). This can be assessed by (1) checking for consistency across
runs in distribution of positive controls or taxa of interest and (2),
after major analyses or association testing is complete, identifying
taxa of interest that may have a signal that appears artefactual (for a
detailed explanation, see [67, 85]).

Diversity analysis. Diversity analysis, which summarizes the
complex microbiome data into diversity measures, provides a holis-
tic view of the microbiome. Both α-diversity and β-diversity ana-
lyses have been routinely performed for microbiome data.
α-Diversity (within-sample diversity) reflects species richness and
evenness within the microbial community, while β-diversity
(between-sample diversity) reflects the shared diversity between
microbial communities. A plethora of diversity measures have
been proposed, including phylogenetic vs. non-phylogenetic mea-
sures and unweighted vs. weighted measures [86]. Phylogenetic
measures take into account the phylogenetic relationship, while
non-phylogenetic measures ignore such relationship. Phylogenetic
measures are thus more powerful to reveal “clustered” phyloge-
netic signals. Non-phylogenetic measures, on the other hand, are
more efficient to detect “scattered” signals. Unweighted measures
are defined based on the presence and absence data, while weighted
measures are based on the abundance data. Since the majority of
species are rare or less abundant, unweighted measures implicitly
give most weights to those rare and less abundant species [87]. In
contrast, weighted measures give more weights to abundant spe-
cies. Many variants of weighted measures have been proposed,
mainly differing in their weighting schemes. Depending on the
specific condition, each measure could be the most powerful to
reveal the difference. Without much prior knowledge, it may be
helpful to inspect the representative measure in each category to
avoid missing important signals. For α-diversity, representative
non-phylogenetic measures include species richness (e.g., chao1),
Shannon index, and Simpson index with increasing weights on
abundant species [88], and phylogenetic measures include the
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unweighted phylogenetic diversity (PD) and abundance-weighted
PD [89]. For β-diversity, representative non-phylogenetic measures
include the Jaccard (unweighted) and Bray-Curtis (weighted) dis-
tance, and phylogenetic measures include the unweighted,
generalized, and weighted UniFrac distance with increasing
weights on abundant lineages [87].

For diversity analysis, the current practice still recommends
rarefaction-based normalization, which subsamples the counts of
different samples to even sequencing depth [90]. Although rare-
faction discards a significant proportion of reads and is not optimal
from an information perspective, it effectively reduces the variabil-
ity due to differential sequencing depths. It is especially crucial for
unweighted measures since the diversity of a sample strongly
depends on the sequencing depth and rarefaction makes the diver-
sity comparable across samples. Without rarefaction, samples tend
to cluster by sequencing depths, and the biological difference may
bemasked. For confounded scenarios, where the variable of interest
such as case and control status is correlated with the sequencing
depth, rarefaction can efficiently reduce the confounding effects. In
contrast, scaling-based normalization, where the counts are divided
by a normalizing factor that reflects the sequencing depth, could
not address the problem since presence/absence status does not
change after normalization. For weighted measures, especially
those that place most weights on abundant species such as Simpson
index and weighted UniFrac, they are less sensitive to variable
sequencing depths [90]. Nevertheless, rarefaction does not affect
statistical power substantially for weighted measures unless the
rarefaction depth is too low (e.g., <1000).

To test the association between α- or β-diversity and the phe-
notype of interest (POI), a regression approach is preferred due to
its ability to adjust for covariates. Since α-diversity measures are
usually approximately normally distributed, a multiple linear
regression can be used to test the association between α-diversity
and POI. PERMANOVA (permutational multivariate analysis of
variance based on a distance matrix) can be used to test the associa-
tion between β-diversity and POI [91]. However, PERMANOVA
results may have inflated type I error in the presence of differential
dispersion and sample size imbalance for two-group comparison. In
such case, a multivariate Welch t-test on distances could be used
[92]. To combine different β-diversity measures to improve statis-
tical power, an omnibus test that takes multiple β-diversity mea-
sures can be performed [87, 93]. A closely related method,
MiRKAT (microbiome regression-based kernel association test),
which treats the β-diversity as a covariate, can also be used to test
the association between β-diversity and POI [94].

Differential abundance analysis. α- and β-diversity analysis
focuses on the community-level change and is instrumental in
establishing the overall microbiome-phenotype association
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through the aforementioned association tests. The next step is to
perform differential abundance analysis (DAA), which aims to
identify specific taxa associated with POI while controlling for
potential confounders. Although multivariate methods, which
jointly model the taxa and the phenotype, are emerging, univariate
methods (one taxon at a time) are still the dominant approach for
DAA. Over the past a few years, many DAA methods have been
proposed including MetaStats [95], DESeq2 [96], edgeR [97],
LEfSe [98], metagenomeSeq [99], ALDEx2 [100], RAIDA
[101], ANCOM [102], and MicrobiomeDDA [103]. These meth-
ods differ in the way to address the three statistical challenges of
microbiome data, namely, variable sequencing depth, excessive
zeros, and compositionality. Microbiome data are inherently com-
positional—the counts only convey the relative abundance infor-
mation [102, 104]. An increase in the abundance of one prevalent
taxon will necessarily lead to the decrease in the relative abundances
of the other taxa, which makes identifying truly differential taxa
challenging. Although many evaluation studies have been done
[90, 105, 106], no consensus has been reached about the optimal
DAAmethod for microbiome sequencing data. Nevertheless, there
are some recommendations for performing robust and powerful
DAA:

1. Test the correlation between the sequencing depth and POI
first. If they are significantly correlated, sequencing depth
could confound the association between the abundance and
POI for those less abundant taxa especially when nonparamet-
ric methods such as Wilcoxon rank sum test and Fisher’s exact
test are used [90]. In such case, rarefaction may be performed
for nonparametric tests, or consider using count-based regres-
sion model (see step 2).

2. Use regression methods based on over-dispersed and/or zero-
inflated count data such as DESeq2 and MicrobiomeDDA.
These methods directly model the counts without the need
for rarefaction, so they are usually statistically more powerful.
The compositional effect can be addressed through a proper
normalization such as CSS [99] andGMPR [103]. Confounder
adjustment and testing interaction are very natural in the
regression framework. The regression coefficients are biologi-
cally interpretable, and effect size can be readily defined. They
are also amenable to meta-analysis, which combines effect sizes
across studies [107]. However, there are some caveats for
applying these count-based methods. Firstly, since they are
based on parametric assumptions, they are vulnerable to out-
liers. Outlier replacement strategy such as winsorization should
be considered to reduce the impact of outliers [103]. Secondly,
these count-based models require a normalizing factor to
address variable sequencing depth. Their native normalization
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procedures may not be optimal for zero-inflated count data.
Consider replacing their native normalization with CSS [99]
and GMPR [103] normalization; both are developed for
microbiome data. Finally, the P-values from these methods
are usually based on a large sample theory and may not be
accurate for small sample sizes or rare taxa with many zeros.
Filtering out the less prevalent taxa before testing is recom-
mended: generally, those that are represented by <5% abun-
dance and/or are present in less than five samples in total
(depending on sample size).

3. Test the method before using it. It is possible that the best
method depends on the data characteristics [90]. It is thus
advisable that the method is tested on the label-shuffled data
to ensure proper false-positive control and on data with in silico
spiked taxa to evaluate the statistical power [106]. Select meth-
ods with adequate false-positive control and reasonable power.

For additional information regarding data reproducibility in
microbial ecology research, a series of tutorial videos have been
published by the laboratory of Patrick Schloss and can be accessed
using the following weblink: riffomonas.org.

4 Notes

1. If using the spatula (as the one provided by several commercial
kits), fill out about 1/4 of the spatula with sample, and transfer
the fecal sample into the yellow tube top until this one is full
(without pushing the sample into the tube). If using the spoon
provided, fill out one complete spoon. If sticks are used (as the
ones provided by commercial cards), take a small amount of
sample, and smear it into the indicated applicator. If stool
samples are not well formed (e.g., diarrhea), then a spoon is
recommended for collection.

2. Before starting DNA extraction, make sure to clean bench,
pipettes, centrifuge, and racks with 75% EtOH and 10% bleach.
Sterilize all pipettes, racks, forceps, and beads with UV light for
30 min. Also, make sure to obtain a negative control sample
(50–100 μL or similar to your sample volume) of clean water
that will be used for each set of samples to be extracted. This
will identify any background contaminants in your extraction
and sequencing procedures. Lastly, make sure to keep separate
tips and pipettes for pre-PCR and post-PCR. Labeling each
clearly is recommended prior to beginning extraction. Best
practices include further separating the areas (e.g., different
rooms) for pre-PCR and post-PCR or using an enclosed
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cabinet/hood for DNA extraction to reduce introduction of
contaminants.

3. Before performing enzymatic lysis, if specific species of interest
are identified a priori, efforts should be made to choose the
most effective enzyme for lysis.

4. When performing mechanical lysis, remember that different
tissues require different types and size of beads. A set of samples
should be tested first to identify the most prudent methods by
quantifying total DNA and integrity using precision tools such
as automated electrophoresis and fluorometers for accurate
quantification.

5. DNA quality (A280/A260) needs to be >1.85 (A260/A230,
2.0–2.2), with less than 25% of the sample <1.8 kb fragments.
DNA quantity needs to be >500 ng/μL. For more detailed
DNA quality analysis methods and procedures, see Olson and
Morrow [63].
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Chapter 17

Assessing Metabolic Dysregulation in Muscle
During Cachexia

Myriam Y. Hsu, Paolo E. Porporato, and Elisabeth Wyart

Abstract

Cancer cachexia is a metabolic disease characterized by a negative energy balance associated with systemic
weight loss and poor quality of life.
In particular, skeletal muscle, which represents almost 50% of the total body mass, is strongly affected,

and metabolic alterations therein (e.g., insulin resistance and mitochondrial dysfunction) can eventually
support tumor growth by facilitating nutrient scavenging by the growing mass. Interestingly, metabolic
interventions on wasting muscle have been proven to be protective, advocating for the importance of
metabolic regulation in the wasting muscle.
Here, we will briefly define the current knowledge of metabolic regulation in cachexia and provide a

protocol to grow and differentiate in vitro myotubes for the assessment of mitochondrial metabolism
during cachexia.

Key words Cachexia, Muscle wasting, Myotube differentiation, Energy metabolism, Oxygen
consumption

1 Introduction

Cancer can be interpreted as metabolic disease since biochemical
alterations are instrumental to tumor onset and progression. Sev-
eral hallmarks of cancer, such as unbridled proliferation and cell
death resistance, are processes that are highly demanding in energy,
requiring increased supply of ATP, and reducing equivalents and
biosynthetic intermediates. Coherently, a critical bottleneck that
cancer cells need to overcome is the increased energetic require-
ment in a hostile environment that is poor in nutrients and char-
acterized by leaky, dysfunctional vessels with incipient hypoxia. In
order to scavenge further resources, tumor co-opt cellular micro-
environment to support growth via metabolic reprogramming of
the tumor stroma. Along with the altered metabolism in stromal
cells in the vicinity of the tumor, it is tempting to speculate that
metabolic alterations might actually occur on a systemic level.
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Although little is known concerning the potential reprogram-
ming of the whole host metabolism by the tumor, old and recent
data support this particular view connecting systemic metabolic
alterations to cancer growth, such as the following: (1) In an
experimental model of early-stage KRAS-driven malignant trans-
formation, a dysregulation of circadian rhythm is already present,
leading eventually to altered insulin, glucose, and lipid metabolism
[1]; (2) systemic alteration of insulin sensitivity is a well-
documented fact in advanced tumor [2] and is actually the first
alteration reported in cancer patients in 1919 [3]; (3) in drosophila,
tumor is intrinsically capable of promoting insulin resistance
through factor secretion, in order to increase nutrient availability
by the tumor [4]; and (4) tumor growth promotes dysbiosis of the
gut microbiome leading to general wasting syndrome [5].

The aforementioned alterations, along with chronic inflamma-
tion and metastatic dissemination, are often associated to a systemic
syndrome affecting different organ functions known as cachexia.

Cachexia (“bad condition” in Greek) is a muscle-wasting syn-
drome, even in absence of reduced caloric intake. It occurs in
several chronic and/or systemic diseases such as sepsis, AIDS,
heart failure, and, notably, cancer. Particularly in cancer, it is a
negative factor of prognosis, which affects strongly the quality of
life of patients, decreases the tolerance to anticancer therapies, and
is estimated to be the direct cause of death in at least one quarter of
the patients afflicted with cancer [2]. Understanding the underpin-
ning molecular mechanism of the metabolic alterations in cancer
cachexia can thus potentially provide new therapeutic options alle-
viating cancer patients.

Cancer cachexia is a slow process during which different organs
are affected, mostly due to chronic systemic inflammation that is
physiological (natural response from the organism to fight against
the disease) but also pathological (exacerbation by cancer cells that
exploit the immune cells to secrete growth factors promoting
tumor growth) [6]. Notable cytokines involved in cancer cachexia
and multi-organ wasting include interleukins 1 and 6, tumor necro-
sis factor α (TNF-α formerly known as cachectin), and interferon
gamma [7, 8].

In the brain, increased levels of these pro-inflammatory cyto-
kines and disrupted hormonal balance lead to loss of appetite
(anorexia), alteration of senses, and eventually increased energy
consumption [9, 10]. A noteworthy example is ghrelin (one of
the main orexigenic hormones) resistance; although its levels are
abnormally high in cachectic patients, food intake remains
decreased [11, 12].

In the digestive system, compelling evidence from cachectic
mouse models has shown altered composition of gut microbiome
[5, 13]. Surprisingly, a commensal strain of E. coli has been recently
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reported to buffer intestinal inflammation triggered by infection
and to prevent muscle wasting [14].

The liver, which is the metabolic hub and the body factory of
essential proteins (e.g., blood clotting factors, angiotensinogen,
albumin, lipoproteins, etc.), is also involved in the wasting process.
Hepatomegaly (abnormal enlargement of liver) has long been asso-
ciated with tumor progression and has been shown to correlate
with an increased energy expenditure in cachectic patients [15].
Indeed, not only the liver is a target of wasting but it actually
contributes to the process since the increased secretion of albumin
and other acute phase proteins in response to cytokines secreted by
local macrophages exacerbate systemic inflammation, thereby
increasing muscle atrophy [16–18].

Another salient alteration in the liver of cancer patients is the
accelerated gluconeogenesis using lactate produced by aerobic gly-
colysis of cancer cells (a metabolic pathway known as Cori cycle,
[19–21]) that is further enhanced by steatosis (lipid accumulation)
due to decreased secretion of very low-density lipoproteins. The
latter being also a feature observed in both cachectic patients and
mice [22–25].

In fact, the first studies showing altered carbohydrate metabo-
lism in cancer trace back to the last century and have noted that
although fasting blood glucose levels are roughly identical, cancer
patients have significantly decreased blood glucose clearance
[3, 26]. Correlation between insulin resistance and cachexia pro-
gression in cancer patients has later been reported [20], and fur-
thermore, glucagon secretion by the pancreas has been found to be
increased, thereby boosting liver gluconeogenesis [27–29]. More-
over, since insulin intrinsically acts as an anabolic factor, decreased
secretion and sensitivity therefore result in an imbalance of protein
synthesis versus protein breakdown that ultimately promotes
atrophy [30].

Other life-threatening defects typical in patients with advanced
cancer that have often been associated with cachexia include cardiac
failure and arrhythmias [2, 31]. Indeed, cardiac muscle is an impor-
tant target of cachexia, and it has been documented in mouse
models that both cardiac function and weight are decreased in
colon cancer [32]. Similarly to liver wasting, chronic cardiac failure
has also been associated with an increased energy expenditure,
while the high rate of oxidative metabolism has been evidenced in
cachectic rat hearts [33, 34]. More recent studies have suggested
that the pathways of cardiac muscle wasting are identical to those
involved in skeletal muscle atrophy, e.g., activation of ubiquitin-
proteasome degradation or NF-KB pathway [35, 36].

Albeit only few studies have investigated alterations in adipose
tissue during cachexia, solid evidence has indicated that white
adipose tissue also enters into the wasting process [37–40]. Para-
doxically, cancer patients suffering from extreme weight loss display
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raised serum levels of free fatty acids, glycerol, and triacylglycerol
[39, 41], which can be explained by upregulated activities of several
lipases in response to increased lipid mobilization promoting fac-
tors such as pro-inflammatory cytokines [8, 38, 42]. Interestingly,
this wasting in adipose tissue has been documented in cachectic
mice even before skeletal muscle atrophy manifests [38] and has
more recently been associated with browning, hence mitochondrial
enrichment characterizing the switch from white to brown adipose
tissue [43, 44]. However, unlike physiological browning upon
exposure to cold environment or in obesity, this metabolic shift in
cancer is more deleterious than beneficial as it contributes to
cachexia development by increasing energy expenditure.

Last, but most importantly, overt muscle atrophy is usually
considered as the hallmark of cachexia and seen at the late stage
of the disease, mostly prevalent in pancreatic and colon cancers.
Muscle wasting causes fatigue and general weakness and can drasti-
cally decrease respiratory function, making the syndrome life
threatening [45]. Skeletal muscle is the protein reservoir represent-
ing over 40% of the human body weight, whose breakdown into
nitrogen and carbon might nurture cancer cells through mechan-
isms that have not been fully elucidated [46]. Unfortunately, no
treatment to date has been able to reverse cancer-associated muscle
wasting, although circulating markers of muscle proteolysis have
been detected in cancer patients before the diagnosis of
cancer [47].

Indeed, pro-inflammatory cytokines are promoters of muscle
atrophy through modulation of signaling pathways involved in
protein turnover (such as PI3K-Akt-mTOR, NF-KB, JAK/STAT
pathways) [48]. For instance, cytokines IL-1 and TNF-α were first
found to induce muscle atrophy [49], but later investigations have
revealed that targeting one single cytokine does not suffice to
counteract atrophy [50]. It is now evident that diverse cytokines,
hormonal changes, and complex signaling pathways are simulta-
neously involved in cachexia and multiple targets must be consid-
ered to eventually achieve prevention or reversal of the wasting
syndrome [48]. Moreover, the underlying mechanisms causing
cachexia can actually stem from interplay of distant organs, as
evidenced by the study of Das and colleagues, showing that lipolysis
inhibition in murine models of cachexia offsets muscle
atrophy [38].

Several pathways of intracellular protein degradation in skeletal
muscle have been identified to play a role in the cachectic process. A
growing body of evidence has shown that ubiquitin-mediated pro-
teasome degradation (UPR) is induced and promotes atrophy in
murine models, while fewer studies have been done in human
patients, but conflicting data are nevertheless present [48, 51]. Sim-
ilarly, upregulated levels of autophagy mediators have been recently
reported in cachectic patients [52]. Finally, although less
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investigated, it has also been suggested that calcium-dependent
cysteine proteases (calpains) also contribute to cachexia, but inter-
ference of this pathway failed to halt the cachectic process in mice
[50, 53].

Interestingly, a role for epigenetic modulation of cachexia has
recently been established by the study of Segatto and coworkers
[54] who have identified the bromodomain and extra-terminal
domain protein BRD4 as an epigenetic regulator of muscle mass,
and its inhibition prevented both muscle and fat wasting and fur-
ther prolonged survival in murine colon cancer models.

Undoubtedly, hypermetabolism is often found in cachectic
cancer patients [55], and there has been growing interest in mito-
chondrial metabolism. As the soil of multiple vital cellular functions
including respiration, apoptosis, reactive oxygen species produc-
tion, etc., alterations in mitochondria have been reported in muscle
atrophy not only in the case of cancer-associated cachexia but also
in other neuromuscular diseases or even in physiological muscle
mass loss due to aging, known as sarcopenia [56].

In fact, it has been reported that type II (fast-twitch) glycolytic
fibers are the main target of cancer-induced atrophy while type I
(slow-twitch) oxidative fibers are resistant to cachexia as seen in
exercised skeletal muscle that underwent fiber-type switching from
glycolytic to oxidative metabolism [57, 58]. Outside the context of
cancer, this switch has been shown to protect skeletal muscle from
atrophy in several studies by repressing myostatin activity [59] or
UPR through activation of transcriptional factor peroxisome
proliferator-activated receptor gamma coactivator 1α (PGC-1α),
which is widely known as the master regulator of mitochondrial
biogenesis [57].

A phenotypic shift from fast- to slow-twitch fibers has also been
observed during cachexia; in other words, there is an increased
mitochondrial mass in cachectic skeletal muscle [56, 58]. Yet para-
doxically, fluxes of tricarboxylic acid cycle and ATP synthesis have
been shown to be greatly reduced in skeletal muscle of lung tumor-
bearing mice, suggesting therefore a mitochondrial uncoupling
[60]. Those data have been corroborated by in vitro analyses of
C2C12 myotubes treated with lung cancer conditioned medium
showing impaired electron transport chain (ETC) activity along
with a burst in mitochondrial reactive oxygen species (mtROS)
[61]. Nevertheless, a study has documented no altered ATP pro-
duction efficiency nor mitochondrial uncoupling but reduced com-
plex IV activity in cachectic muscle of peritoneal tumor-bearing
mice [62].

Furthermore, transcriptomic and metabolomic investigations
on human muscle cell-based models and in vivo samples have
unveiled that cancer cells secrete inflammatory mediators promot-
ing excessive fatty acid oxidation (FAO) that drives to oxidative
stress in skeletal muscle, while pharmacological inhibition of FAO
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was shown to efficiently counteract cachexia, both in vitro and
in vivo [63]. Similarly, genetic interference of triglyceride lipase
has been shown to prevent myocyte apoptosis and adipose tissue
and muscle atrophy in murine models of lung cancer [38]. Further-
more, the activation of ATP citrate lyase, a cytosolic enzyme that
converts mitochondrial-derived citrate to oxaloacetate and acetyl-
CoA, has been reported to ameliorate mitochondrial function in
skeletal muscle, while knockdown of this enzyme reduced the
activity of several electron transport chain complexes [64].

Quantification of ATP levels and energy metabolism typically
requires assessment of cellular glycolytic and oxidative phosphory-
lation rates and can provide in-depth understanding of molecular
pathogenesis. Investigating skeletal muscle metabolism in vitro can
however be tricky since physiological metabolic changes that occur
during myotube differentiation must be considered. It is therefore
important to carry out assays at a specific time point during differ-
entiation to obtain coherent results.

To this aim, we will briefly provide protocols of myotube
differentiation induction using a mouse myoblast cell line
(C2C12) and of mitochondrial metabolic profiling by Seahorse
MitoStress assay.

Several protocols have been set to study mitochondrial dynam-
ics over the last decades, but most require cell membrane permea-
bilization and/or extraction of mitochondria, and some require a
large amount of samples to meet the sensitivity range of the assay.
More recently, key parameters of mitochondrial oxidative metabo-
lism can be accurately measured without these shortcomings; the
Seahorse assay allows the quantification of oxygen consumption
rate (OCR) over time with pO2-sensitive fluorophores after succes-
sive injections of compounds that target specifically a complex of
the electron transport chain (ETC), namely, oligomycin (ATP
synthase inhibitor), FCCP (proton ionophore of the inner mito-
chondrial membrane, uncoupling the ETC and causing proton
leak), antimycin A, and rotenone (ETC complexes III and I inhibi-
tor, respectively).

2 Materials

1. Proliferation medium: Dulbecco’s Modified Eagle Medium
(DMEM), high glucose, 10% fetal bovine serum, and 1% peni-
cillin-streptomycin.

2. Differentiation medium: Dulbecco’s Modified Eagle Medium
(DMEM), high glucose, 2% horse serum, and 1% penicillin-
streptomycin.

3. 0, 25% Trypsin +0, 53 mM EDTA solution
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4. Phosphate buffer saline (PBS 1�): 10 mM PO4
3�, 137 mM

NaCl, and 2.7 mM KCl.

5. Seahorse XF analyzer (Agilent Technologies).

6. Seahorse XF 96-well microplate (Agilent Technologies).

7. XF Base Medium (Agilent Technologies).

8. XF calibrant.

9. 100 mM pyruvate

10. 200 mM glutamine

11. 2.5 M glucose

12. 20–200 μL multichannel pipette

13. Seahorse MitoStress kit containing:

14. Sensor cartridge, utility plate, and lid.

15. Oligomycin.

16. Phenylhydrazone (FCC).

17. Rotenone/antimycin A.

3 Methods

3.1 Cell Growth 1. Rapidly thaw a vial of cells in a 37 �C pre-warmed bath.

2. Once cells are thawed, transfer cells to a 100 mm dish with 8 ml
fresh complete medium (Dulbecco’s Modified Eagle Medium
(DMEM), high glucose, 10% fetal bovine serum, and 1%
penicillin-streptomycin). Place in incubator at 37 �C in 5%
CO2.

3. After 1 day, discard the medium, and add fresh medium.

4. When cells reach 70% confluency, split to 1:8 (see Note 1) by
removing the medium, and then rinse twice with PBS, and add
1 ml of 0, 25% Trypsin +0, 53 mM EDTA solution.

5. Place the dish in incubator for few minutes. When cells detach
from the plate, add complete growth medium to inhibit tryp-
sin; resuspend and transfer 1:8 of the cell suspension to an
appropriate volume (7–8 mL for a 10 cm2 dish) on a new dish.

3.2 Differentiation

Treatment

1. When the cells are fully confluent, remove culture medium,
rinse the cells twice with PBS, and add freshly prepared low
serum differentiation medium (Dulbecco’s Modified Eagle
Medium (DMEM), high glucose, 2% horse serum, and 1%
penicillin-streptomycin (optional)).

2. After 4–5 days in differentiation medium, the cells are fully
differentiated and ready to be used for experiment.
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3.3 Induction of

Atrophic Process

Using Conditioned

Medium from Cancer

Cells

Conditionedmedia from cancer cells should be prepared in advance
as the following:

1. Allow the cancer cell line (see Note 2) to reach full confluency
in a 10 mm dish.

2. Rinse two times with PBS, and add 8 ml of serum-free growth
medium.

3. After 24 h, collect the medium, and centrifuge briefly at
5000 � g for 5 min. The resulting conditioned medium can
either be immediately used or be stored at �20 �C.

4. Treat the differentiated myotubes with 10–30% of CM diluted
in low serum differentiation medium (Dulbecco’s Modified
Eagle Medium (DMEM), high glucose, 2% horse serum, and
1% penicillin-streptomycin) for 24 h.

3.4 Assessment of

Myotube Size

1. Take pictures at the brightfield microscope (magnification
�20) (Fig. 1).

2. Assess atrophy measuring diameters of muscular fibers using
ImageJ software (see Note 3).

3.5 Evaluation of

Mitochondrial

Metabolism: General

Overview

Oxygen consumption rate (OCR) is dynamically measured with a
Seahorse allowing the assessment of mitochondrial metabolism in
presence of various mitochondrial poison.

OCR is first measured at basal conditions prior to any treat-
ment, and the measurement represents the oxygen consumed by
cells for energy generation, accounting mitochondrial proton leak.
Then, OCR decreases following the injection of oligomycin, with
the difference in OCR between basal and after oligomycin treat-
ment reflecting the amount of oxygen used to produce ATP by
complex I. FCCP is thirdly used to induce OCR peak, which shows
the maximal respiratory capacity cells can reach. The difference
between the maximal OCR and the one used for ATP production

Fig. 1 C212 myotubes at 5 days of differentiation in control conditions (Left Panel) or after 24 h treatments
with 10% Conditioned Medium from the pancreatic cancer cell line MiaPaca2 (Right Panel)
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(spare capacity) indicates how close to the maximal cells are using
oxygen and reflecting the flexibility of energy production.

Last, antimycin A/rotenone is used to inhibit fully the electron
transport chain, causing OCR to slump. The persisting OCR repre-
sents the oxygen consumed by enzymes located outside mitochon-
dria (Fig. 2 depicting a difference in metabolism between normal
myotubes and cancer cell conditioned media-treated ones). The
difference between the non-mitochondrial respiration and the
OCR used for ATP production gives the proton-leak OCR, i.e.,
the portion of basal oxygen consumption that is not coupled to
ATP production. Increased proton leak can thus be a sign of
mitochondrial damage. The resulted information provided by the
assay will be exemplified herein.

3.6 Before the Assay

(1–5 Days in Advance)

1. Seed 2000 C2C12 cells/well in 100 μL culture medium on a
Seahorse XF 96-well microplate in the morning, incubate in a
5% CO2 incubator at 37 �C, and treat with differentiation
media after 6 h (see Note 4).

3.7 The Day Prior to

the Assay

1. According to the experimental design, treat the myotubes with
the specific factors and conditioned media.

2. Open the MitoStress kit that contains two plates: a cartridge
plate containing oxygen and pH sensors (upper plate) and a
utility plate for cartridge hydration (lower plate).

3. Fill the lower plate “utility plate” with 200 μL XF calibrant per
well, and place the cartridge plate onto it to hydrate the sensor
(see Note 5).

Fig. 2 Profiling of mitochondrial metabolism during cancer-induced myotube
atrophy. Differentiated C2C12 myotubes have been treated with 5% conditioned
media (CM) derived from colon cancer cells. Drug as indicated have been
injected over time to assess mitochondrial contribution to Oxygen Consumption
Rate (OCR)
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4. Incubate overnight (see Note 6) the assembled plates at 37 �C
in an incubator without CO2. The presence CO2 will affect the
pH of the calibrant resulting in incorrect pH measurements.

5. Switch on the XF analyzer; log into the XF 96 software to allow
the instrument warm up overnight to 37 �C.

3.8 On the Day of

Assay

1. Preparation of assay medium:Warm 50ml of Seahorse XF assay
medium to 37 �C, supplement the medium to have final con-
centrations of 1 mM pyruvate, 2 mM glutamine, and 10 mM
glucose, and set the pH to 7.35 (see Note 7).

2. Preparation of 10� compounds stock solutions: Resuspend
each compound of the kit with indicated volumes of prepared
assay medium (Table 1) (see table below), pipetting up/down
to homogenize (see Note 8).

3. Dilution of stock solutions: For each compound, dilute 300 μL
of stock solution in 2.7 mL assay medium to obtain 3 mL of
ready-to-inject solutions at 10 μM for oligomycin and FCCP
and 5 μM for Rotenone/Antimycin-A. Mix well by flipping
gently the tubes without vortexing.

4. Compound loading: Remove the previously hydrated cartridge
from the incubator, and load each diluted compound solution
into the corresponding port (see Note 9) as indicated in the
below Table 2:

Table 2
Cartridge loading

Compound Volume to load (μL) Port

Oligomycin 20 A

FCCP 22 B

Rotenone/antimycin A 25 C

Table 1
Preparation of stock solutions

Compound Assay medium to add (μL) Final concentration 10� (μM)

Oligomycin 630 10

FCCP 720 10

Rotenone/antimycin A 540 5/5
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3.8.1 One Hour Before

Assay Starts

Use a multichannel pipette for the following filling-emptying
procedure.

1. Remove the cell culture microplate from the incubator, and
check briefly under the microscope for cell confluency that
should be at least 80%.

2. Aspirate carefully the culture medium by placing the tip on the
edge of the well. Leave a small volume (approximately 50 μL)
to prevent cells from drying.

3. Gently wash the cells once with 100 μL/well of warmed assay
medium by injecting the same way as previously described for
cell seeding.

4. Load the wells with 100 μL/well of warmed assay medium, and
place the microplate back to the incubator without CO2 to
incubate for at least 1 h.

5. Assay running: Switch on the Seahorse Analyzer, open Wave,
and select template file by clicking on OPEN or design new
template with the Assay Wizard. Click on RUN.

6. Place the calibration plate with the loaded cartridge on the
instrument tray. Check the plate orientation, and click CON-
TINUE to calibrate the analyzer.

7. When the calibration is done (after 30 min), load the cell
culture microplate taken out from the incubator without
CO2, and click START (see Note 10).

8. When the assay is completed, all the data will be automatically
saved into a file with title as previously set. Remove the plates
from the instrument, and trash the cartridge (see Note 11).

9. Proceed to quantification of cell numbers and/or protein con-
tent on the retrieved culture microplate for normalizing the
data. Details explaining data analysis can be found on the
instruction manual from the manufacturer.

4 Notes

1. These cells should never reach full confluency as they will start
to fuse and differentiate upon cell-to-cell contact. It’s a fast-
growing cell line (doubling time is approximatively 12 h) that
should be passed every 2–3 days.

2. Different cancer cell lines can be used to induce atrophy in vitro
but not with the same power. A dose response should be
effectuated to determine the optimal concentration of CM to
use to induce atrophy.

3. Fiber diameters can be highly variable. To be consistent in the
analysis, it’s important to take pictures at different locations on
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the plate and to measure a minimum of 100 myotubes per
condition (take 10 pictures, and measure 10 myotubes in
each picture, for example). Also, avoid the area of where nuclei
are located, which is generally a bit thicker, and make sure to
measure the uniform and elongated part of the fiber.

4. Leave some wells blank for background correction (at least
four) by filling them with medium only. The upper part of
the well is wider than the lower part, so apply the tip with an
angle against the rim of the lowest part when injecting cell
suspension, and leave the plate at room temperature for
10 min before placing it to the incubator to allow uniform
monolayer adhesion of cells on the bottom of the wells. Even-
tually, start differentiation when cells are attached to the micro-
plate (approximately 4 h), and allow differentiation into
myotubes up to 4 days prior to assaying.

5. Make sure to not touch the sensors, which are extremely
fragile.

6. It is possible to hydrate the sensors for up to 72 h. In this case,
wrap the assembled plates with parafilm to prevent evaporation.

7. Since pH is temperature dependent, it is recommended to
adjust the pH when the medium is warmed.

8. Do not refreeze the reconstituted solutions, and use within a
day. Freeze-thawing can destroy the activity of the drugs.

9. When loading, place the tip vertically with no angle touching
the bottom of the port; check the orientation of the plate; a
notch should be found on the lower left corner. Make sure to
load each compound in the right port since the instrument
will inject in the A > B > C > D order. If only one or some of
the parameters is/are to be measured, do not leave any port
empty, but load the same volume of assay medium instead to
have the correct final compound concentration and equal final
volume in all the wells. Each port can contain up to 25 μL
volume.

10. If needed, it is possible to change the protocol after starting the
assay as long as the command has not yet been executed by
clicking MODIFY, DELETE, or ADD. Results can be visua-
lized while the assay is running by clicking RESULTS.

11. Check briefly under microscope if cells/myotubes have
remained attached to the bottom of the wells on the micro-
plate. Some treatments can loosen cell adhesion. To avoid poor
cell adhesion on plates, coating wells with poly-L-lysine prior
to cell seeding can eventually be considered.
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Chapter 18

Using Seahorse Machine to Measure OCR and ECAR
in Cancer Cells

Jing Zhang and Qing Zhang

Abstract

A large amount of energy used for nutrient processing and cellular functions is essential for tumorigenesis.
Total intracellular adenosine triphosphate (ATP) is mainly generated by glycolysis and mitochondrial
oxidative phosphorylation. Here, we provide a protocol for measurements of energy metabolism in cancer
cells by using Seahorse XF24 Extracellular Flux analyzer. Specifically, this machine measures glycolysis by
analyzing the extracellular acidification rate (ECAR) and measures mitochondrial oxidative phosphoryla-
tion on the basis of the oxygen consumption rate (OCR), through real-time and live cell analysis. This
protocol is provided for researchers who are unfamiliar with the method and to aid them in carrying out the
technique successfully.

Key words Energy metabolism, Glycolysis, Oxidative phosphorylation, Seahorse XF24 Extracellular
Flux analyzer, OCR, ECAR

1 Introduction

Altered metabolism, upon which cancer cells depend heavily to
support their uncontrolled cell proliferation, is a hallmark of cancer
[1, 2]. Cancer metabolic programs include reprogramming of gly-
colysis, glutaminolysis, oxidative phosphorylation, fatty acid
metabolism, one-carbon metabolism, etc., all of which provide
essential energy, biosynthesis, and intermediates for tumor cell
growth, division, and redox homeostasis [3]. Energy metabolic
pathways mostly involve glycolysis and mitochondrial oxidative
phosphorylation that are used to support all other cellular func-
tions. Through glycolysis cycle, glucose is sequentially metabolized
to pyruvate and lactic acid, with the concomitant production of
small amount of adenosine triphosphate (ATP). Through mito-
chondrial oxidative phosphorylation, pyruvate is transported into
the mitochondria, where it is oxidatively decarboxylated to acetyl-
CoA. Maximal ATP is then generated through the citric acid cycle
and oxidative phosphorylation, while oxygen is reduced to water
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during this process. It is worth noting that oxidative phosphoryla-
tion consumes more than 90% of oxygen in the body, the remaining
10% of which is used for non-mitochondrial respiration, including
substrate oxidation and cell surface oxygen consumption [4].

Otto Warburg proposed that cancer cells rely largely on glycol-
ysis to produce ATP even in the presence of oxygen [5]. However,
increasing experimental evidence suggests that mitochondrial oxi-
dative phosphorylation still plays an important role in cancer cells’
metabolism [6–15]. Various protocols using the Seahorse instru-
ment have been developed for analyzing glycolysis and oxidative
phosphorylation in different cell types [16–18]. Here, we use renal
cancer cell line 786-O as an example to describe detailed practical
procedures of quantifying ECAR andOCRwith the Seahorse XF24
Extracellular Flux analyzer to measure glycolysis and mitochondrial
oxidative phosphorylation, respectively. The optimal seeding den-
sity was determined to be 50,000 cells/well for 786-O cells for use
with this specific cell line in this protocol. The optimal concentra-
tions of the injection compounds were 4.5 g/L glucose; 1 μM
oligomycin and 50 mM 2-DG for ECAR; and 1 μM oligomycin,
1 μM FCCP, and 1 μM rotenone for OCR. For other cell types,
concentrations of the injection compounds may have to be
optimized.

2 Materials

2.1 Equipment 1. Seahorse XF24 Extracellular Flux analyzer.

2. Non-CO2 isotemp incubator.

3. Seahorse XF24 FluxPak.

4. Automatic cell counter.

5. pH meter.

6. Water bath.

2.2 Cell Lines of

Interest and Reagents

1. Renal cancer cell line 786-O.

2. Growth media: DMEM, 10% fetal bovine serum, 1% penicillin-
streptomycin.

3. PBS.

4. Trypsin-EDTA (0.05%).

5. XF calibrant solution.

6. XF assay medium.

7. Glucose.

8. Glutamine.

9. Sodium pyruvate.

10. Oligomycin A.
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11. FCCP.

12. Rotenone.

13. 2-DG.

3 Methods

3.1 The XF24 Assay:

Day 1

3.1.1 Seeding Cells in

XF24 Cell Culture Plate

(Blue Box)

1. The XF24 cell culture plate is designated with rows A–D and
columns 1–6 (seeNote 1). Plate 50,000,786-O cells in 100 μL
growth media per well (see Note 2), leaving background tem-
perature correction wells (A1, B4, C3, and D6) blank with
100 μL growth media.

2. Incubate plate at 37 �C, 5% CO2 for 2 h, check cells to ensure
that they have adhered to plate reaching almost 90–100%
confluence, and carefully add 150 μL growth media to each
well (see Notes 3 and 4).

3. Incubate cells overnight at 37 �C, 5% CO2 (seeNotes 5 and 6).

3.1.2 Preparing Sensor

Cartridge (Green Box)

1. Add 1 mL of Seahorse XF24 calibrant solution (pH 7.4) to
each well of the Seahorse 24-well plate; replace green sensor
cartridge on the top (see Note 7).

2. Incubate entire cartridge into a non-CO2 incubator at 37 �C
overnight or for up to 72 h (see Note 8).

3.1.3 Turning On

Seahorse Instrument and

the Seahorse XF24

Software (Fig. 1, See

Note 9)

1. Click the icon of “Seahorse XF24 Analysis Software” on the
desktop.

2. Continue with clicking “Standard.”

3. Then choose “Seahorse Guest.”

3.2 The XF24 Assay:

Day 2

All reagents should be at pH 7.4 and 37 �C at all times for the XF24
assay.

3.2.1 Changing Media for

XF24 Cell Plate from

Subheading 3.1.1

1. Prepare XF media (see Note 10).

For ECAR: 49 mL XF media with 500 μL 100 mM sodium
pyruvate and 500 μL 200 mM glutamine.
For OCR: 49 mL XF media with 500 μL 2.5 M glucose and
500 μL 100 mM sodium pyruvate.

2. Check cells to assure that they are even and around 90% con-
fluent in monolayer.

3. Remove almost all growth media from all wells (see Note 11).

4. Wash once with 1 mL XF assay media. Aspirate it off, and add
500 μL XF media to each well.

5. Place plate in non-CO2 incubator at 37
�C until ready to assay

(see Note 12).
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3.2.2 Loading Testing

Compounds in the Sensor

Cartridge

The sensor cartridge is equipped with four injection ports for
each well (Port A, B, C, and D, the order as shown in Table 1)
(seeNote 13). Dilute compounds with XF media from Subheading
3.2, step 1, and inject them respectively into the ports according to
following Tables 2 and 3 (see Notes 14–16).

3.2.3 Calibrating the

Sensors and Running the

Seahorse XF24 Assay

1. Click “Assay Wizard” (Fig. 2) to define all your experimental
parameters, including general information (Fig. 3a), back-
ground correction (Fig. 3b), Groups&Labels (Fig. 3c), and

Fig. 1 Overview of a whole set of Seahorse XF24 instrument. From left to right, they are Seahorse XF24
analyzer, combination computer with touchscreen display, and non-CO2 incubator

Table 1
Location of each port in sensor cartridge

D C

B A

Table 2
Compound preparation for ECAR

Compound Injection port
XF media
volume (μL)

Volume of stock
compound (μL)

Injection
volume (μL)

Glucose (450 μg/L) A 1386 154 55

Oligomycin (1 mM stock) B 1736 17.4 61.6

2-DG (1 M) C 900 900 68.5
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running protocol (Fig. 4). Click “End,” and choose “Save your
template” or “End wizard.” Or, click “Open” to load your
saved template (Fig. 2; see Note 17).

2. Click “Start” to start the program, and then load the sensor
cartridge for the calibration process (see Notes 18–21).

3. When calibration is complete (takes ~20 min), replace calibra-
tion plate with cell plate, and click “Continue.”

Table 3
Compound preparation for OCR

Compound Injection port
XF media
volume (μL)

Volume of stock
compound (μL)

Injection
volume (μL)

Oligomycin (1 mM stock) A 1540 15.4 55

FCCP (10 mM stock) B 1736 1.74 61.6

Rotenone (10 mM stock) C 1918 1.92 68.5

Fig. 2 The interface of the Seahorse XF24 software. “Assay Wizard” is on the bottom right line of the window;
“Open” is to the left of “Assay Wizard”
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Fig. 3 The interface of the Assay Wizard related to all experimental parameters. Define all your experimental
parameters from left to right. (a) Example of defining general project information. (b) Overview of choosing
background correction well and “Do background correction.” (c) Example of labeling sample groups
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3.3 Analyzing the

Seahorse XF24 Data

Seahorse XF24 data can be analyzed directly by the Seahorse soft-
ware, as shown in Fig. 5. Alternatively, go to the Agilent Seahorse
XF Software https://www.agilent.com/en/support/cell-analysis/
seahorse-xf-software, and download these useful tools. Results can
be automatically generated through the software. Some researchers
use other software to generate graphs manually from the raw data
(see Note 22).

4 Notes

1. The seeding surface of each well of XF24 cell culture plate has
the same size as a typical 96-well plate.

2. Accurate XF24 measurement requires the analyzed cells to be
seeded and grown in an even and uniform monolayer configura-
tion. Cell confluence between 90% and 100% is very important

Fig. 4 The interface of running protocol. The left side of the window is ECAR and OCR running protocol; the
right side “available commands” can be used to modify the protocol according to different assay purposes
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for the XF assay. Seeding density depends on the cell size,
although typically from 20,000 to 100,000 cells per well. We
recommend that the cell density is first optimized before the
commencement of the experiment. It is also recommended to
use at least triplicate wells/group for the XF24 assay.

3. For strongly adherent cells, it generally takes around 1 h for the
cells to adhere; for less adherent cells, it may take up to 6 h.

4. Slowly add 150 μL of growth medium to the side of each well
in order to not disturb the newly attached cells, to bring the
total volume of media to 250 μL per well.

5. The assay for comparison across different cell lines with various
growth rates does not necessarily require overnight culture of

Fig. 5 The interface of analyzing Seahorse data. (a) Click “OCR”/“ECAR” (what you are measuring) on the
bottom left line of the window, and choose OCR/ECAR (what you are measuring) for Y1 on the bottom right
side; click “Well Group Mode” in between to show the comparison among groups in the graph on the right.
Then click the icon in red circle to open the window as shown in (b); X and Y values can be adjusted according
to the result. Click the icon in blue circle to further open window as shown in (c); font size, line width, point
size, etc. for graph can be modified in detail. Click the icon in orange circle to add compound information in the
graph (d). (e) Example of oxygen consumption rate (OCR) result in 786-O cells by using the Seahorse XF24
instrument
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cells, and we therefore recommend to proceed to the next step
within their doubling time.

6. The assay for nonadherent cells and centrifugation of cell sus-
pension in the XF24 plate coated with Cell-Tak Cell and Tissue
Adhesive will allow these cells to be attached to the bottom of
wells. Thus, cells can be suspended directly in XF assay
medium, after which you should proceed to the next step
without the requirement of overnight incubation.

7. Each sensor cartridge has four reagent delivery ports per well,
used for the injection of testing compounds into their
corresponding wells during the assay.

8. If cartridge is being hydrated for more than 24 h, wrap it in
parafilm to avoid evaporation. The hydration should be no less
than 4 h.

9. This step is to allow the instrument and its program to stabilize
at 37 �C, because the stable temperature of 37 �C of the XF
instrument is required for accurate measurements. We recom-
mend to leave the instrument to stabilize to 37 �C overnight.

10. Make fresh XF for each experiment.

11. Do not remove all media completely from wells; leave some
medium (~50 μL) in each well to avoid cells being dried out.
Take extra caution not to disturb the cells at the bottom of the
wells.

12. A 1-h non-CO2 incubation is optimal and necessary for
de-gassing the cell plate, allowing for CO2 diffusion.

13. Testing compounds need to be loaded into the ports before
calibration of the sensor cartridge.

14. Different compounds and combinations of selected com-
pounds can be used dependent on the purpose of the assay.
Also, the concentration of each compound should be opti-
mized based on cell type. Detailed information for these com-
pounds and related interpretation of Seahorse results have been
previously reported [16]. We provide the concentrations of the
compound here, as they can be a good starting point for
researchers to optimize around.

15. The injected compounds are diluted 10� for Port A, 11� for
Port B, 12� for Port C, and 13� for Port D with XF24 assay
media.

16. XF24 assay medium or compounds should be loaded in all the
ports for all wells including background temperature correc-
tion or unused wells, serving as controls to ensure the proper
injection in all wells.

17. For your experimental parameters, make sure to define all
sample groups, check off “do background correction,” and
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then run the protocol. Then save your template such that you
can load your template easily when you start your assay in the
future.

18. Before you confirm “start,” you can also define or modify the
file directory saved previously.

19. Plate should be at 37 �C, and it can be warmed in non-CO2

incubator if necessary.

20. The notch on the cartridge should be located at the bottom left
for a correct loading.

21. For the accurate measurement of ECAR and OCR, all the
sensors in the cartridge should be individually calibrated to
determine each sensor gain based on the sensor output,
which is measured in the calibration reagent with known pH
value and oxygen concentration.

22. Given potentially different growth rates among different cell
lines, it is recommended to count cell number or measure
protein concentration in each well for normalization of XF
assay results.
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Chapter 19

Metabolic Profiling of Live Cancer Tissues Using NAD(P)H
Fluorescence Lifetime Imaging

Thomas S. Blacker, Michael D. E. Sewell, Gyorgy Szabadkai,
and Michael R. Duchen

Abstract

Altered metabolism is a hallmark of cancer, both resulting from and driving oncogenesis. The NAD and
NADP redox couples play a key role in a large number of the metabolic pathways involved. In their reduced
forms, NADH and NADPH, these molecules are intrinsically fluorescent. As the average time for fluores-
cence to be emitted following excitation by a laser pulse, the fluorescence lifetime, is exquisitely sensitive to
changes in the local environment of the fluorophore, imaging the fluorescence lifetime of NADH and
NADPH offers the potential for label-free monitoring of metabolic changes inside living tumors. Here, we
describe the biological, photophysical, and methodological considerations required to establish fluores-
cence lifetime imaging (FLIM) of NAD(P)H as a routine method for profiling the metabolism of living
cancer cells and tissues.

Key words NADH,NADPH, Autofluorescence, Fluorescence lifetime imaging, Live-cell microscopy,
Cancer metabolism

1 Introduction

Since the pioneering work of Otto Warburg almost a century ago
[1], it has become clear that the metabolic reprogramming of
cancer cells is crucial in facilitating their uncontrolled proliferation
[2–4]. The “Warburg effect” describes an increase in glucose
uptake and lactate generation upon carcinogenesis, despite the
presence of abundant oxygen, arising from an apparent switch in
the means of producing adenosine-3,5-triphosphate (ATP) from
oxidative phosphorylation (OXPHOS) to “aerobic glycolysis.” The
advantage of this metabolic shift is unclear, given that the complete
oxidation of a glucose molecule through OXPHOS yields almost
20 times more ATP than via glycolysis alone [5]. Warburg originally
attributed both his observations and the root cause of cancer to
defective mitochondria, the organelles at the heart of cell metabo-
lism, and the location of the OXPHOS machinery, whose
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impairment has now been implicated in numerous other patholo-
gies [6]. For many decades, the Warburg effect was presumed to be
a biochemical hallmark of all cancers, forming the basis of a widely
successful diagnostic tool, positron emission tomography (PET),
which measures enhanced radiolabelled glucose uptake to detect
tumors [7]. However, later research showed that many tumors and
their precursors defy Warburg’s hypothesis, predominantly main-
taining high ATP/ADP ratios using mitochondrial OXPHOS
[8]. Further, subsequent studies have also shown that tumors dis-
playing the Warburg effect still possess functional mitochondria
[9–11]. These findings demonstrate a significantly more complex
link between cancer and metabolism than in Warburg’s initial
description. Perhaps unsurprisingly, therefore, a heavy focus on
identifying ubiquitous characteristics of neoplastic tumors to
develop a “one-size-fits-all” approach to cancer treatment has so
far proven unsuccessful, the wide acceptance of the Warburg effect
perhaps diverting attention away from the unique metabolic phe-
notypes of individual cancers [12]. As understanding the pathways
active in individual tumors is crucial to developing effective treat-
ment strategies [13], tools for the metabolic profiling of cancer
tissues are vital. This chapter concerns the application of time-
resolved measurements of cellular autofluorescence to provide a
window into cellular metabolism in cancer, using the intrinsic
photophysical properties of the reduced metabolic cofactor nico-
tinamide adenine dinucleotide (NADH) and its phosphorylated
counterpart NADPH.

1.1 The Role

of NAD(P) in Cancer

Mitochondria are cytoplasmic organelles that, in normal differen-
tiated cells, act as the primary ATP generator through aerobic
respiration [5], in addition to regulating Ca2+ signalling, the pro-
duction of reactive oxygen species (ROS), and cell death [6]. In the
presence of oxygen, most differentiated cells catabolize their main
fuel, glucose, first through its cytosolic conversion in glycolysis to
pyruvate and then by its subsequent transport into the mitochon-
dria and oxidation via the tricarboxylic acid (TCA) cycle [3]. In
both mitochondria and cytosol, the electrons removed during this
chain of oxidation reactions are passed to NAD+, reducing it to
form NADH. The NADH generated by the TCA cycle donates
electrons to the electron transport chain (ETC) located on the
inner mitochondrial membrane. Glycolytically derived cytosolic
NADH cannot cross the mitochondrial membrane, but its reducing
equivalents may contribute to this pool by being passed to NAD+
in the mitochondrial matrix via the malate-aspartate shuttle
[14]. The passage of the electrons donated by NADH along the
complexes of the ETC to the terminal electron acceptor, oxygen, is
coupled to the pumping of protons from the mitochondrial matrix
to the intermembrane space, establishing the membrane potential
that powers the production of ATP by ATP synthase. By ferrying
electrons from the TCA cycle to the ETC, alongside those removed

366 Thomas S. Blacker et al.



during glycolysis, NADH plays a pivotal role in linking the oxida-
tion of carbon sources to the storage of the energy liberated in the
useable form of ATP.

Disruption of the passage of electrons along the ETC allows
electrons to leak directly to O2, causing its direct reduction to
superoxide O2

�. Such conditions occur in response to hypoxia or
upon exposure to respiratory chain inhibitors such as cyanide and
are reflected by an increased NADH/NAD+ ratio [15]. Superoxide
acts as the proximal ROS from which other toxic species such as
hydrogen peroxide (H2O2) can be produced, causing damage
inside the cell by reacting directly with proteins, lipids, and DNA
[14]. The cell contains two thiol-linked antioxidant defense systems
to decrease oxidative stress, mediated by glutathione and thiore-
doxin. Both molecules are maintained in their functional, reduced
form by the electron donor NADPH [14]. The phosphate group
attached to the adenine end of this NADH analogue allows
enzyme-binding sites to be distinct to those of its unphosphory-
lated counterpart. Thus, while the NAD pool participates in ATP-
yielding catabolic reactions, the NADP pool contributes specifically
to anabolic reactions, such as antioxidant maintenance and nucleic
acid and fatty acid synthesis [16]. In the mitochondria, the
NADPH pool is primarily maintained by the nicotinamide nucleo-
tide transhydrogenase (NNT) which, powered by the mitochon-
drial membrane potential, reduces NADP+ by oxidizing NADH.
TheNNT thereby siphons a portion of the NADHproduced by the
TCA cycle to act in an antioxidant capacity as NADPH, defending
against oxidative damage caused by the remaining NADH, should
electron leak from the ETC occur [14, 17].

The NAD and NADP pools are maintained in vastly different
redox balances due to their contrasting intracellular roles. The
NADPH/NADP+ ratio is maintained high due to the primary
role of the NADP pool in donating electrons to anabolic reactions.
In the cytosol this is largely carried out by the pentose phosphate
pathway, which may compete with glycolysis for glucose, reducing
NADP+ rather than NAD+. Glycolysis itself requires that the
NADH/NAD+ ratio is maintained low in the cytosol, as the path-
way is unable to proceed if the NAD+ pool is not restored to
provide electron acceptors for the key oxidation reactions
[14]. While the malate-aspartate shuttle contributes to maintaining
this balance, lactate dehydrogenase plays the critical role, convert-
ing the end product of glycolysis, pyruvate, into lactate, oxidizing
NADH to NAD+ in the process. High glycolytic fluxes are there-
fore necessarily correlated with significant lactate production [18].

The high levels of aerobic glycolysis in cancer cells observed by
Warburg occur only under anaerobic conditions in normal cells
[3]. Possible reasons for this include a higher ATP production
rate compared to OXPHOS [18], or a reduction in ROS genera-
tion, excessive quantities of which trigger apoptotic cell death
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[19, 20]. Cancer cell metabolism is also no longer coupled to
oxygen availability according to the Warburg effect, providing a
selective advantage within the tumor microenvironment where
oxygen concentration is often low or constantly fluctuating due
to a disrupted blood supply [21, 22]. Furthermore, glycolytic
intermediates may enter the pentose phosphate pathways via the
transketolase and transaldolase enzymes, generating NADPH to
provide the reducing equivalents required for fatty acid and nucle-
otide synthesis, in addition to ribose-5-phosphate, forming the
backbones of RNA and DNA [14]. Consequently, aerobic glycoly-
sis may fulfil an abundance of the biochemical requirements of a
proliferating cell [23]. However, this route to fulfilling the bioener-
getic needs of oncogenic proliferation is now known to be but one
of many [4].

The metabolic phenotype adopted by a cancer cell is largely
dictated by the specific oncogenes and tumor suppressor genes
expressed within it, acting on diverse metabolic targets ranging
from glucose metabolism and substrate transport to redox homeo-
stasis and protein, lipid, and nucleic acid synthesis [4, 24, 25].
p53-deficient tumors have been shown to be particularly reliant
on serine metabolism, feeding into the folate and methionine cycles
for the reactions involved in one-carbon metabolism [26]. This has
led to the emergence of serine starvation as a particularly attractive
therapeutic target [27]. The importance of glutamine to cancers,
feeding directly into the TCA cycle by its conversion into
α-ketoglutarate via glutamate, has long been known and appears
to be regulated by the c-MYC oncogene [28]. Additionally, metab-
olism may not only act to provide the energy and building blocks
required for proliferation but may also generate products that
directly cause oncogenic transformation, so-called oncometabo-
lites; a mutation in the enzyme isocitrate dehydrogenase creates a
mutant form that can convert α-ketoglutarate into
2-hydroxyglutarate (2-HG), the accumulation of which hampers
differentiation [29]. These examples show that the twenty-first-
century “post-Warburg” understanding of the links between cancer
and metabolism is one of a panoply of potential routes by which
metabolism can both drive and support tumorigenesis [4].

Importantly for the techniques described in this chapter, the
majority of the metabolic pathways commandeered by a cancer cell
to ensure its proliferation are dependent on redox reactions in
which the NAD and NADP pools participate, as summarized in
Fig. 1. In addition to the well-known roles of these cofactors in the
glycolytic and OXPHOS pathways perturbed by the Warburg
effect, serine biosynthesis involves the reduction of NAD+ to
NADH, the conversion of glutamine to α-ketoglutarate involves
the reduction of NADP+ to NADPH, and the production of 2-HG
by mutant isocitrate dehydrogenase relies on reversing its normal
function from an NADP+ reducing to an NADPH oxidizing form
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[27–29]. The NAD and NADP pools therefore lie at the heart of
the complex web of links between cancer and metabolism, and, as
such, their biochemical status may offer insight into the specific
metabolic pathways active in a given tumor. The development and
application of such approaches are made all the more appealing as
the reduced cofactors can be observed in living tissues using laser
scanning microscopy without the need for the addition of extrinsic
dyes [14].

1.2 Autofluore-

scence of NADH

and NADPH

The reduction of NAD+ to NADH involves the transfer of a
hydride ion to its nicotinamide ring. This decreases the energy
gap between the highest occupied molecular orbital (HOMO)
and the lowest unoccupied molecular orbital (LUMO) of the moi-
ety by approximately 2 eV, shifting the wavelength of light at which
it maximally absorbs from the far-ultraviolet 220 nm to the near-
visible 340 nm [30]. As a complex molecule, the large number of
vibrational degrees of freedom available in NADH broadens its
absorption spectrum by around 30 nm on either side of this peak.
Absorption of light at these wavelengths causes a transition into an

Fig. 1 NADH and NADPH play a role in a large number of the metabolic pathways known to be altered in cancer
cells. NADH is involved in the pathways whose relative activities are altered by the Warburg effect, cytosolic
glycolysis and mitochondrial energy metabolism, linking the tricarboxylic acid (TCA) cycle and electron
transport chain (ETC). NADH is also produced during serine biosynthesis, a key feature of p53-deficient
tumors. Meanwhile, NADPH is involved in the biosynthetic pathways required for cell proliferation. In the
mitochondria, NADPH is primarily produced by the nicotinamide nucleotide transhydrogenase (NNT). In the
cytosol, both the pentose phosphate pathway and isocitrate dehydrogenase (IDH) contribute. IDH mutation is a
known oncogenic transformation, causing oxidation of NADPH and production of 2-hydroxyglutarate, an
oncometabolite
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excited electronic state. In aqueous solution at room temperature,
the fate of 98% of the absorption events is to cause small-scale
motion of the nicotinamide ring [31]. However, the remaining
2% of the photons absorbed are reemitted as fluorescence. Excess
vibrational energy dissipated to the surroundings following excita-
tion causes the fluorescence photons to carry less energy than those
absorbed. NADH therefore emits light of wavelength 460 (�25)
nm [32].

The intrinsic fluorescence of NADHhas been used as a reporter
of metabolic state since the pioneering experiments of Britton
Chance in the 1950s [33]. Chance used changes in the intensity
of the fluorescence emitted from living tissues following illumina-
tion at 366 nm to monitor changes in the redox state of the NAD
pool and thus interrogate the function of the ETC in intact tissues
for the first time [34]. Our lab routinely uses a modern adaptation
of these experiments to estimate the redox state of the mitochon-
dria in live cell models [35]. In a confocal microscope with 351 nm
excitation and 435–485 nm emission filtering, the resting NADH
fluorescence level is compared with maximally oxidized and maxi-
mally reduced conditions. These are achieved, respectively, by
application of the uncoupler carbonyl cyanide-p-trifluoromethox-
yphenylhydrazone (FCCP), causing complex I of the ETC to oxi-
dize NADH at its maximum rate, and cyanide, inhibiting the ETC
and thus terminating NADH oxidation. However, a caveat to this
method is in its assumption that NADH is the only fluorescent
molecule present in this spectral region that may respond to these
pharmacological perturbations. The contribution from NADPH is
neglected [14].

As the phosphate group which allows enzymes to distinguish
between the NADP and NAD pools lies at the adenine end of the
molecule, far from the redox-active and fluorescent nicotinamide
ring, NADH and NADPH are spectrally identical [32]. Conven-
tional, intensity-based fluorescence measurements can therefore
not distinguish between these two dinucleotide pools, leading to
the labelling of their combined signal as NAD(P)H [14, 35]. How-
ever, such a technique would be desirable, given the drastically
different elements of intracellular metabolism that the NAD and
NADP pools are involved in regulating. We recently addressed this
issue by applying fluorescence lifetime imaging microscopy
(FLIM). The fluorescence lifetime of a molecule measures the
average amount of time it spends in the excited state following
absorption. Addition or removal of the pathways available for a
molecule to leave the excited state will therefore alter the fluores-
cence lifetime [36]. Enzyme binding is known to restrict the small-
scale motions that account for a large majority of the deexcitation
events occurring in NADH [37], thereby decreasing the rate at
which the molecules leave the excited state, increasing the
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fluorescence lifetime. Concomitantly, a greater proportion of exci-
tation events in enzyme-bound NADH will result in fluorescence
compared to free NADH in solution, increasing its brightness. In
solution, NADH and NADPH share a fluorescence lifetime of
approximately 0.4 ns [31]. Our work suggested that, inside live
cells, the binding site of NADPH increases its fluorescence lifetime
to a greater extent than that of NADH, at around 4.4 ns compared
to 1.5 ns [38]. Combining NAD(P)H imaging with FLIM thereby
allows the relative contributions of NADH and NADPH to the
total signal to be determined, allowing NAD- and NADP-
associated pathways to be separately interrogated in living tissues
for the first time.

1.3 Studying Cancer

Metabolism Using

NAD(P)H FLIM

Time-resolved measurements of NAD(P)H fluorescence in living
biological samples were first performed over 25 years ago [39]
when Schneckenburger and Koenig showed, in live yeast cells,
that the fluorescence lifetime of NAD(P)H was increased relative
to its lifetime free in solution, indicative of enzyme binding. In
subsequent work [40], again in yeast, Paul and Schneckenburger
demonstrated a correlation between oxygen tension and the aver-
age lifetime of the NAD(P)H signal. With the Warburg hypothesis
in place for 70 years, this finding inevitably motivated the initial
comparisons of the time-resolved fluorescence properties of NAD
(P)H in cancers relative to healthy tissue. Pradhan and colleagues
compared the fluorescence lifetime of NAD(P)H in metastatic and
non-metastatic variants of a number of cancer cell lines in suspen-
sion [41]. The average lifetime was approximately threefold lower
in metastatic cell lines relative to their non-metastatic counter-
parts. The potential for time-resolved NAD(P)H fluorescence
measurements to act as a label-free “Warburg sensor” was thus
established.

As discussed in Subheading 1.1, the Warburg effect is not a
universal feature of all cancers; carcinogenesis is critically dependent
on a wide range of metabolic shifts [4]. Given that a number of
these cause alterations in the redox balance of the NAD and NADP
pools and that fluorescence lifetime measurements are sensitive to
the balance between the reduced forms of these two nucleotides
[38], NAD(P)H FLIM measurements can be used as a direct
reporter of metabolic differences between cancer tissues. The com-
mercialization of time-resolved imaging add-ons to laser scanning
microscope systems in the early 2000s has allowed the number of
studies reporting differences in the fluorescence decay of NAD(P)
H between healthy and cancer tissues to increase steadily from
2005 onward (Fig. 2). In this year, a now highly cited study by
Bird and co-workers demonstrated the sensitivity of the NAD(P)H
fluorescence lifetime to metabolic perturbation in breast epithelial
cells, raising hope of an optical technique for staging breast tumors
[42]. Correlations between the fluorescence lifetime and cancer
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stage were subsequently observed in a hamster cheek model of oral
carcinogenesis [43]. In 2010, McGinty et al. demonstrated a wide-
field instrument able to delineate the boundaries of colonic adeno-
carcinoma using time-resolved measurements of tissue autofluores-
cence [44]. Adur et al. have since shown that a significant increase
in the average NAD(P)H lifetime inside the tumor contributes to
this capability [45]. Longer average NAD(P)H fluorescence life-
times have also been observed in malignant oral mucosa cell lines
compared to their non-malignant counterparts [46] and in cancer-
ous, relative to non-transformed, cervical tissues [47]. In contrast,
Skala et al. showed in vivo that the fluorescence lifetime of NAD(P)
H in healthy oral epithelial cells is longer than in the neighboring
precancerous tissue [43]. Shorter average lifetimes were also
observed in cancerous cell lines relative to control by Awasthi
et al. [48] and in melanomas relative to healthy skin by Pastore
et al. [49]. The complex changes in metabolism during carcinogen-
esis are therefore reflected in complex variations in NAD(P)H life-
times. Nevertheless, FLIM of NAD(P)H has now established itself
as a robust and reliable method for detecting metabolic shifts in
cancers.

The majority of the studies discussed here, alongside those in
the literature, are based on the time-correlated single-photon
counting (TCSPC) technique. The principles of this method are
outlined in Fig. 3. Its practical application for the study of meta-
bolic shifts in cancers is the subject of the remainder of this
chapter.

Fig. 2 Following commercialization of time-resolved fluorescence imaging tech-
nology in the early 2000s, the number of FLIM studies of NADH in cancer has
increased approximately linearly since 2005 (Scopus)
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2 Materials

2.1 Pulsed Laser

Source

A pulsed excitation source is a key feature of the TCSPC technique
and represents an important difference between fluorescence life-
time and routine confocal imaging [50]. Many well-equipped
microscopy facilities will now offer two-photon imaging platforms,
which rely on the use of a pulsed laser operating in the red to near-
infrared portion of the spectrum to excite the target molecule using
the near-simultaneous arrival of two photons each carrying half the
energy of the single-photon transition [51]. Consequently, FLIM
electronics can be added directly to these existing systems without
the requirement for a new dedicated laser. The widely tuneable Ti:
sapphire laser has become the workhorse instrument for such appli-
cations, providing short (~100 fs) pulses operating at ~80 MHz
repetition rates [52]. This ensures that there is sufficient delay
between excitation pulses (~10 ns) to measure the NAD(P)H
fluorescence decay, with more than 99% of the initial excited state
population having decayed by the time the next pulse arrives.

Fig. 3 A schematic overview of the time-correlated single-photon counting (TCSPC) method. Light from a
pulsed laser source is focused onto a sample. Fluorescence photons emitted by the target molecules are
registered by a detector. Electronics in a PC measure the time delay between the incident pulse and the
fluorescence emission. The excitation-emission delay times are recorded in a histogram. This data is then
analyzed to extract the fluorescence decay dynamics. FLIM combines this approach with the x-y coordinates
provided by microscope scan heads to build up fluorescence decay histograms at every pixel of an image
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Two-photon excitation provides a means by which to achieve
increased depth penetration into complex biological tissue prepara-
tions [53], making it a popular choice for clinical application of
NAD(P)H FLIM. However, NAD(P)H FLIM with single-photon
excitation has previously been applied [54], offering the advantage
of increasing the signal at the expense of axial resolution by opening
the confocal pinhole [55]. A number of excitation laser solutions
could be applied for this purpose. Single wavelength diode-
pumped solid state (DPSS) lasers with <100 ps pulse widths are
becoming available operating at the appropriate wavelength for
single-photon excitation at ~340 nm, the output of a Ti:sapphire
laser can be frequency doubled using an appropriate crystal (e.g.,
lithium triborate), or an optical parametric oscillator system can be
used to extend the tuning range of the Ti:sapphire into the visible.

2.2 Laser Scanning

Microscope

The pulsed laser excitation source must be coupled to a laser
scanning confocal microscope equipped with an objective lens of
suitable magnification for the biological preparation to be studied.
An appropriate selection of dichroic mirrors and emission filters
must also be available. Short-pass dichroic mirrors are required for
two-photon excitation as the fluorescence emission results at a
shorter wavelength than the incident illumination. The excitation
conditions used for NAD(P)H may also cause absorption in a
number of other intrinsic fluorophores, particularly flavins which
emit at longer wavelengths around 530(�30) nm [38]. Emission
filters specific for NAD(P)H should therefore be used, such as a
band pass around the emission peak at 460 nm. FLIM relies on
performing the TCSPC technique at each pixel of the image, so the
microscope must also provide scan signal outputs for the pixel
registration of the detected photons and allow the attachment of
an external detector (see Subheading 2.5).

2.3 Sample

Mounting

Considerations

Maintaining the biological integrity of the sample of interest at the
microscope is a vital aspect of the imaging process. The sample
must be kept sufficiently still over the time required to acquire
sufficient photons to generate a FLIM image (of the order of
minutes; see Subheading 5.3) so as to not cause spatial blurring in
the resulting dataset. The choice of buffer solutions, perfusion
systems, and environmentally controlled chambers to maintain
the physiological integrity of the living sample will vary from prep-
aration to preparation, and determining the correct conditions is
likely to be a significant undertaking at the start of a new research
project. However, live cell and tissue imaging is now a sufficiently
mature field that commercial solutions to a range of sample mount-
ing issues are available, allowing NAD(P)H FLIM studies to be
performed on a diverse array of biological samples, from cell cul-
tures on coverslips to in vivo tumors.
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2.4 TCSPC Detector The internal detectors of the microscope are unlikely to provide the
single-photon sensitivity required to perform the TCSPC tech-
nique. As such, an external detector must be attached to the micro-
scope at a suitable exit port. Microscope systems designed for
multiphoton imaging should provide non-descanned ports for
this purpose. As two-photon excitation does not require the use
of a confocal pinhole, the path followed by fluorescence to exit a
non-descanned port should contain fewer optical elements, increas-
ing the detection efficiency and ultimately the sensitivity of the
technique [56]. The most frequently used detectors for TCSPC
applications are photomultiplier tubes (PMTs) [57]. Here, a single
photon causes the ejection of electrons from a photocathode
which, via acceleration through an electric field and subsequent
collisions with further dynodes, causes a detectable current pulse
at the anode. The use of a hybrid PMT should be considered for
studies involving NAD(P)H fluorescence lifetimes [58]. These
detectors remove a large number of the signal amplification steps,
instead accelerating photoelectrons directly into a semiconductor
diode. This shortens its time resolution by almost an order of
magnitude from the hundreds of picoseconds for a conventional
PMT, close to the fast lifetime of free NAD(P)H, increasing the
accuracy with which the fluorescence decay parameters can be
determined. The extreme sensitivity of these detectors makes
them highly susceptible to damage from leakage of ambient light,
so a shutter assembly with automatic overload sensing is crucial.

2.5 TCSPC

Electronics

While the earliest implementations of the TCSPC technique were
modular pieces of electronic laboratory apparatus, modern applica-
tions make use of miniaturized circuitry such that all the compo-
nents can be condensed onto a hardware card inside a desktop PC
[59]. Counting cards are available commercially from Becker and
Hickl and PicoQuant, among others. These companies are also the
preferred source of bespoke detectors and shutter assemblies opti-
mized to both their photon-counting electronics and the micro-
scope upon which it is to be mounted. The cards will register the
detection of photons and measure the time delay between the laser
pulse and emission (see Fig. 3), ascribing the event to the appropri-
ate pixel using the signals provided by the microscope scanner. The
hardware will interface with appropriate acquisition software to
control the relevant experimental parameters, such as collection
time, and allow the data to be saved for subsequent analysis.

2.6 Operation

and Analysis PC

The fast rate of detected emission events induced by a MHz excita-
tion pulse train prompts the recommendation of a dedicated PC for
control of the FLIM acquisition, with background software kept to
a minimum to avoid buffer overflows and data corruption. The
resulting image files contain count data for hundreds of channels
in each of tens of thousands of pixels, so the resulting images can be
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large (10–100 MB per image). As such, access to high-volume
(~TB) external storage is important for multiuser facilities. Such
facilities should also consider dedicated analysis computers for
extracting fluorescence decay parameters from TCSPC data as
pixel-by-pixel curve-fitting approaches (see Subheading 4) can be
time-consuming. The more powerful these machines, the faster the
fitting and subsequent analysis can take place.

3 Methods

1. Tune the laser to the appropriate wavelength. For single-
photon studies, this should be as close to the absorption peak
at 340 nm as possible. With two-photon excitation, NAD(P)H
maximally absorbs at 700 nm [60]. However, this is close to the
minimum wavelength achievable using a Ti:sapphire laser, and
many models may be unable to maintain a stable, mode-locked
output. In such situations, a wavelength as close to 700 nm as
possible should be used, in order to maximize the proportion
of NAD(P)H excited relative to other intrinsic fluorophores
that may absorb in this spectral range [60]. The incident power
should be chosen in accordance with the considerations dis-
cussed in Subheading 5.2.

2. Select a dichroic mirror appropriate to the excitation condi-
tions used. This optical component allows the incident illumi-
nation to be separated from the spectrally shifted fluorescence.
The mirror should reflect the excitation wavelength onto the
sample through the objective, allowing the fluorescence to be
transmitted through it to the detectors. For single-photon
excitation, the dichroic should transmit light of longer wave-
length than that absorbed by the NAD(P)H. Dichroic mirrors
for two-photon must transmit light of a shorter wavelength
than that reflected.

3. Select emission filters appropriate for isolating the NAD(P)H
signal. A band-pass filter centered on the emission peak at
460 nm is recommended. While this cannot guarantee exclu-
sion of all autofluorescent compounds that absorb in this spec-
tral region, we have previously estimated that use of a 460
(�25) nm emission filter with excitation between 700 nm
and 740 nm is 95% specific for NAD(P)H [38].

4. Locate the sample in the microscope eyepieces using bright-
field illumination and roughly bring it into focus. Start a fast
scan, and use the internal detectors of the microscope to
observe the NAD(P)H fluorescence from the sample. Fine-
tune the focus to observe the desired focal plane and translate
the image until the required region is located. Rotate and crop
the image as necessary, remembering that increased zoom may
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reduce the signal levels obtainable due to the increased likeli-
hood of photodamage.

5. Adjust the microscope settings to send the NAD(P)H signal to
the external detector connected to the TCSPC system. Begin a
fast scan, and acquire a FLIM image for a predetermined length
of time, chosen based on the considerations discussed in Sub-
heading 5.3.

6. Repeat the imaging process across different regions of the same
sample, if possible, and across biological replicates for each
experimental condition. Guidance for choosing a suitable num-
ber of repeats is given in Subheading 5.5.

4 Data Analysis

The data produced by a traditional TCSPC experiment performed
on a fluorophore solution in a cuvette consist of the number of
photons emitted by the solution as a function of time after excita-
tion by a laser pulse. Time-resolved fluorescence microscopy
extends this into two spatial dimensions, obtaining these decay
measurements at every pixel of an image. A FLIM image is there-
fore a significantly more complex entity than a standard intensity-
based fluorescence image, the analysis of which can subsequently be
more involved. Here, the principle means by which to derive meta-
bolic information from the data contained within an NAD(P)H
FLIM image are discussed.

4.1 Biexponential

Fitting

NADH and NADPH may bind to a vast array of different enzymes
inside the cell, all of which may induce slightly different fluores-
cence lifetimes [14]. The cofactors may also exist in an unbound
form, exhibiting a correspondingly shorter lifetime [31]. Each pixel
of an NAD(P)H FLIM image could therefore be expected to
contain a highly heterogeneous mix of different fluorescent species
with different fluorescent lifetimes. In such a circumstance, multi-
exponential fitting can be employed. This method is generally
available in the software provided by commercial vendors of
FLIM systems, such as Becker & Hickl’s SPCImage and Pico-
Quant’s Fluofit. A fitting algorithm varies the lifetimes and weight-
ings of a sum of exponential decays until a good fit is achieved
between model and data [61]. The relative weightings of each
decay component then represent the relative abundances of each
fluorescent species. However, as fluorescence emission is a stochas-
tic process, Poisson noise inherent in the fluorescence decay
reduces the ability to separate the contributions of every species
to the measured signal [38]. The signal-to-noise ratio of such a
process increases as the square root of the signal [62]; however at
the signal levels obtainable in live tissues, only two components can
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be reliably resolved [38]. A basic rule of thumb states that ten times
more signal is required to resolve every additional component
[63]. Observing even a third component would therefore require
a tenfold increase in the acquisition time of each image to 10 min or
more, rendering the technique impractical and increasing the risk of
phototoxicity [64]. Fortunately, the two lifetimes extracted have
been shown to represent average values of the free and enzyme-
bound species present, τfree and τbound [38]. Their relative weight-
ing αbound therefore provides the percentage of total NAD(P)H
that is enzyme-bound at a given pixel.

4.2 Statistical Fitting

Methods

Biexponential analysis using weighted least-squares curve fitting is
the most commonly employed method for extracting the NAD(P)
H fluorescence decay parameters from the acquired FLIM data
[14]. The method relies on minimization of the χ2R fitting statistic,
which compares the magnitude of deviations between the pro-
posed model and the experimental data relative to the differences
expected purely from the presence of Poisson noise [65]. If the
difference between the data and the model is larger than that
expected from the noise, χ2R is large. If the only differences
between the model and the data can be ascribed to Poisson
noise, χ2R is approximately 1. The software fitting algorithm acts
by varying the model parameters until χ2R is minimized. In condi-
tions of low signal, such as may be encountered in cells with low
NADH and NADPH levels or with high susceptibility to photo-
toxicity, the statistical assumptions of the least-square fitting pro-
cess can break down [66], and the lifetimes become biased toward
incorrect values [67]. This can be corrected by making use of a
maximum likelihood estimator for the fitting statistic, which aims
to find the fluorescence decay parameter values that maximize the
statistical likelihood of obtaining the measured dataset
[68, 69]. This approach is available in the OMERO FLIMfit
software [70]. By recasting the problem as the recovery of a
probability distribution of lifetimes present in the data, it is also
possible to apply the maximum entropy method to further refine
the correct extraction of fluorescence decay parameters [71, 72];
however this approach has, to the best of our knowledge, yet to be
applied to FLIM. One potentially powerful advanced statistical
method which has been successfully applied to time-resolved fluo-
rescence imaging is the “fit free” approach of Bayesian inference
[73, 74]. Here, the arrival times of each photon in turn are used to
update the likelihood of a given underlying set of decay para-
meters. The method has been shown to give significantly more
precise estimates of fluorescence lifetimes and decay amplitudes
for measurements up to 10,000 photons, similar to that which
may be obtained in an NAD(P)H FLIM image with acquisition
times of the order of minutes [73].
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4.3 Phasor Analysis The enhanced precision analysis approaches described above will
play an important role in the application of FLIM as a precise,
quantitative experimental technique, providing absolute, numerical
information to aid the ongoing goal of a predictive, model-based
twenty-first-century biology [75]. However, to date, NAD(P)H
FLIM has largely been applied as a qualitative and descriptive tool
in which changes in the fluorescence decay parameters are used to
infer alterations in the metabolic state of a tissue. User-friendliness
and minimized data processing times are therefore a priority in the
choice of analysis method. Over the last decade, phasor analysis of
NAD(P)H FLIM data has become a popular means by which to
fulfil these criteria, generally using the Globals software (Labora-
tory for Fluorescence Dynamics, Irvine, USA) [76]. The method
involves using the real and imaginary components of the Fourier
transform of the TCSPC data at each pixel of the FLIM image as
coordinates of points in a two-dimensional phase space known as
the phasor plot. Each pixel in the FLIM image will correspond to a
location in the phasor plot, the coordinates of which reflect the
shape of the fluorescence decay at that pixel. Pixels with similar
fluorescence decay characteristics will cluster around similar loca-
tions in the phasor plot, providing a graphical means by which to
deduce heterogeneity within the fluorescence lifetimes present
across an image [76]. Changes in the relative abundance of two
or more species can also be graphically inferred; pure solutions of
freely diffusing and enzyme-bound NAD(P)H will occupy specific
points in the phasor plot, and changing the proportion of free and
bound NAD(P)H in a mixture of the two species will move the
coordinates of its fluorescence decay along the straight line joining
the two primary points. As the phasor approach does not require
fitting of the fluorescence decay data, it is computationally simple
and therefore fast. For this reason, its implementation has contrib-
uted significantly to the growth in applications of NAD(P)H fluo-
rescence lifetime imaging in recent years [77–79].

5 Notes

5.1 Instrument

Response Function

Measurement

The TCSPC components of a FLIM system do not operate infi-
nitely fast. In fact, a distribution of lag times may exist between
arrival of a fluorescence photon at the detector and registration of
an emission event in the control PC. This distribution, the instru-
ment response function (IRF), has a width which is typically of the
order of 100 ps, close to the timescale over which fluorescence from
free NAD(P)H decays; its influence must therefore be taken into
account. Most FLIM analysis software provides the functionality to
deconvolve the effect of the IRF in the extraction of fluorescence
decay parameters. The user must provide it with a measurement of
the fluorescence decay of a sample with infinitely short fluorescence
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lifetime, such as a scattering solution for single-photon measure-
ments or second harmonic generation from a collagen sample for
two-photon systems. Unfortunately both methods are technically
inadequate as the measured signal in this calibration will not be at
the wavelength of the fluorescence to be observed in the final
experiment. One solution is to use a gold nanorod solution as a
target, which has been shown to have a wide emission profile as well
as the required negligible lifetime [80].

5.2 Laser Power

Choice

Increased excitation power will increase the amount of fluorescence
emitted, reducing the influence of Poisson noise on the measure-
ments and therefore allowing fluorescence decay parameters to be
determined with increased accuracy. Additionally, increased signal
will allow the amount of pixel binning to be reduced (see Subhead-
ing 5.4), increasing the spatial resolution of the FLIM image.
However, laser power cannot be increased without limit, as photo-
damage will begin to reduce the biological viability of the sample
under study. 98% of the energy absorbed by free NAD(P)H is
converted into heat [31]. Laser light can also directly induce the
direct oxidation of NADH and the subsequent production of free
radicals [81]. As such, NAD(P)H photobleaching is typically used
as a proxy for the onset of photodamage [38, 82]. The ideal laser
power can then be chosen as the highest value that does not cause
photobleaching over the acquisition period. Laser repetition rate
and pulse width will affect the incident photon flux and would thus
likely be a factor in the level of photodamage at a given average
excitation power [83]. However, these properties of the incident
beam are difficult to control in a user-friendly microscope set-up.
Instead, the scan speed and zoom level can be adjusted to limit laser
dwell times. For extra confidence in the chosen settings, short
bursts of data can be collected at the start and end of an image
acquisition, and the data obtained can be binned into two single
decays [38]. If the NAD(P)H fluorescence decay parameters are the
same in the two decays, the user can be assured that the laser has not
caused significant perturbation to the metabolism of the sample
under study.

5.3 Acquisition Time

Considerations

The maximum rate at which photons can be detected in a TCSPC
experiment is limited to 1% of the incident laser repetition rate
[84]. This rule of thumb reduces to insignificance the likelihood
of more than one photon arriving in the time delay between two
pulses. Based on a computational analysis of the signal-dependent
uncertainty in the parameters obtained from biexponential fitting
[38], we typically aim to acquire sufficient fluorescence to register
at least 200 counts in the peak of each decay in the image. Acquir-
ing at the maximum rate using an 80 MHz Ti:sapphire laser,
assuming a homogeneous distribution of emission events across a
256� 256 FLIM image and 256 detection channels, the peak value
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is given by I(t ¼ 0) � 40T for typical NAD(P)H fluorescence decay
characteristics (αbound ¼ 0.2, τfree ¼ 0.4 ns, τbound ¼ 2.5 ns), where
T is the acquisition time in minutes. Each image must therefore be
acquired for around 5 min to detect sufficient signal. Unfortu-
nately, the requirement to keep incident laser powers low enough
to avoid photobleaching means fluorescence count rates can be
significantly less than the maximum rate permitted by the equip-
ment. Indeed, 5 � 104 counts per second are typical in our hands,
16 times below the pulse pileup threshold. Obtaining an image
over 80 min is wholly impractical; living samples will move and
perhaps alter their metabolism over this timescale. It is therefore
not possible to acquire sufficient counts at each pixel for a reliable
analysis based on increased acquisition times alone, and signal must
be increased by other means, notably spatial binning (see Subhead-
ing 5.4). Meanwhile, a practical acquisition time should be chosen.
This should be long enough to allow the spatial resolution of
relevant features of the sample that may be analyzed separately,
for example, subcellular organelles such as the nucleus or mito-
chondria, or different cell types in a complex tissue. The acquisition
time must also be short enough such that the biological integrity of
the sample is maintained, both during the collection of an individ-
ual image while the sample is exposed to the laser and over the
longer time period that the sample remains at the microscope while
repeats are being taken in different regions of the preparation.
Acquisition times of between 1 and 5 min are typical [38, 43, 85].

5.4 Spatial Binning The impracticality of acquiring sufficient counts at an individual
pixel for reliable fitting to NAD(P)H FLIM data means that spatial
binning of the collected photons is required. This procedure, typi-
cally performed by the FLIM analysis software, will combine detec-
tion events from surrounding pixels at each location of the image in
order to increase signal levels and decrease the relative impact of
noise on the uncertainty in the reported parameters. Typically, we
will increase the binning level until 200 counts are in the peak
channel of the lowest intensity pixel of interest [38]. The extent
to which the data are binned is frequently reported as the “binning
factor”. A binning factor of 1 indicates that the data from the eight
surrounding pixels are added to that in each pixel, resulting in a
ninefold increase in signal, at the expense of spatial resolution. As
Poisson statistics apply, this can be expected to decrease the uncer-
tainty in the fit parameters by a factor of approximately 1=

ffiffiffi

9
p

, or to
33% of their initial value. Increasing the binning further to include
the 5 � 5 region surrounding each pixel, a binning factor of 2, will
reduce the uncertainties to 1=

ffiffiffiffiffiffi

25
p

of their single-pixel value, a
further improvement of 13% over the first level of binning. The
gains in parameter precision by additional binning steps then
diminish significantly to 6, 3, and 2% by increasing to binning
factors of 3, 4 and 5, respectively. There is therefore little benefit
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to applying a binning factor above 2 should the threshold of
200 peak photon counts not be reached, with increases merely
reducing the spatial resolution of the FLIM image. Increased cer-
tainty in the parameters determined can instead be achieved by
taking averages across regions of interest of single measurements
and across repeat measurements of identical conditions.

5.5 Averaging

and Repeats

A FLIM image of a homogeneous solution of a fluorescent dye with
a single lifetime will still report pixel-to-pixel variations in the
measured fluorescence decay rate due to the Poisson noise inherent
in the TCSPC method. Interpreting these noise-induced variations
as physical phenomena can lead to extreme conclusions regarding
intracellular heterogeneity of biological properties, such as in the
use of temperature-sensitive lifetime probes [86]. The effect of this
noise can be eliminated by taking average parameter values across
pixels. This can be performed by exporting lifetime images from the
lifetime analysis package for analysis in ImageJ (National Institutes
of Health, Bethesda, USA). Performing this procedure implies the
underlying assumption that the local environment of the fluores-
cent probe at each pixel is the same. Inside the complex environ-
ment of the cell, this assumption does not hold. In the case of NAD
(P)H, three distinct microenvironments can be resolved from the
fluorescence intensity image itself; the cytosol, the darker nucleus
and the brighter mitochondria. As such, we typically extract
cytosolic-, nuclear-, and mitochondrial-specific NAD(P)H fluores-
cence decay parameters from each image we acquire. The mean
NAD(P)H lifetime is typically shorter in the nucleus than the rest of
the cell. We have shown this to be consistent with equal NADH
levels but decreased NADPH levels in the nucleus of HEK293 cells
[38]. Despite differing total NAD(P)H concentrations, the mito-
chondria and cytosol typically display similar fluorescence decay
parameters, likely reflecting the high interconnectivity of the
redox states of the NAD and NADP pools within and between
these two compartments [14, 16, 87]. As with all measurements
on living systems, these single region-of-interest measurements are
not sufficient to support hypotheses due to the need to account for
biological variability. Replicate measurements on independent sam-
ples must therefore be taken. We typically observe standard devia-
tions in the fluorescence decay parameters of around 3%. Based on
statistical power analysis, around eight biological replicates would
be required for a difference in lifetime of the order of the IRF width
(~100 ps) to be reported with a P value of less than 5% in 90% of
experiments. This reduces to three repeats for reporting statistically
significant differences of the order of two IRF widths (~200 ps).
The oft-quoted “n ¼ 3” should therefore be modestly exceeded in
order to make inferences that exploit the full time resolution of the
TCSPC method.

382 Thomas S. Blacker et al.



5.6 Experimental

Design Summary

The above considerations point to the initial steps of designing an
NAD(P)H FLIM experimental protocol outlined below. The pro-
cedure can then be tailored to the biological model under investi-
gation as required.

l Choose an acquisition time of between 1 and 5 min. Longer
times are preferable, but the preparation must remain still and
viable over the imaging time course.

l Choose the highest laser power that doesn’t cause photobleach-
ing over the acquisition time.

l Aim to perform more than three independent biological repeats
of each condition to ensure that the smallest technically feasible
differences in lifetime can be reliably determined.

l In the analysis stage, increase binning to a maximum of two.
Lower binning is better, but aim for the dimmest pixels of
interest to contain at least 200 photon counts in the peak
channel.

l Separately extract mean NAD(P)H fluorescence decay para-
meters from the cytosol, nucleus and mitochondria. Organelle-
specific dyes (e.g., TMRM) could be used to facilitate this pro-
cess if the compartments cannot be resolved by the NAD(P)H
intensity alone.

6 Conclusions

The original applications of NAD(P)H FLIM in live cells and
tissues were content to identify changes in the fluorescence decay
characteristics of the signal as indicators of unspecified metabolic
alterations. The contemporary ambition is to derive true biological
understanding from intracellular NAD(P)H lifetime data by trans-
lating fluorescence decay parameters into underlying biochemical
and physiological states [14]. With the Warburg effect in mind, the
large number of demonstrations of altered autofluorescence life-
times in cancer relative to healthy tissue prompted developments in
this area to focus on the effect of alterations in the balance between
aerobic and anaerobic energy metabolism on the NAD(P)H fluo-
rescence decay characteristics [43].

The application of pharmacological perturbations to alter the
balance in ATP production between OXPHOS and glycolysis in a
given cell type has been observed to correlate with changes in the
proportion of bound NAD(P)H species, αbound [42]. However,
these correlations may not hold for the comparison of metabolic
states in two independent cells or tissues [88]. Indeed, we have
previously shown that a genetically modified HEK293 cell line with
increased reliance on OXPHOS exhibits the same NAD(P)H
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fluorescence decay characteristics as the more glycolytic wild-type
cells [38]. In addition, a differently modifiedHEK293 cell line with
identical aerobic/anaerobic respiratory balance showed vastly dif-
ferent NAD(P)H fluorescence decay characteristics. The modifica-
tions in question were under- and overexpression of NAD kinase,
the master regulator of NADPH levels inside the cell. These results
demonstrated that the NADPH/NADH balance plays a crucial
role in determining the time-resolved NAD(P)H fluorescence char-
acteristics from a given tissue and that correlations between the
bound weighting and the means of ATP production may only apply
to acute, externally induced changes and may not be an overall
feature of the metabolic phenotype.

Deciphering the biochemical and physiological meaning
behind alterations in the subcellular photophysics of NADH and
NADPH remains an active and developing area of research
[89]. Nevertheless, exploiting the high sensitivity of fluorescence
lifetime measurements to metabolically induced alterations in the
local environment of intrinsic fluorophores continues to be applied
as a robust, precise, and minimally invasive means to detect changes
in the metabolism of living cells and tissues. Medical devices based
on these phenomena for monitoring cancer progression and deli-
neating the boundaries of surgically accessible tumors are being
constructed [90–92]. The extent to which these developments
succeed clinically is reliant on integrating fundamental scientific
understanding across scales and disciplines, from excited state
decay processes and mitochondrial redox dynamics to statistical
analysis of single-photon counting data and metabolic coupling
between cells in a complex tissue, positioning NAD(P)H FLIM as
a clear demonstration of the integrative frontiers of modern bio-
medical research.
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Chapter 20

Overview of Characterizing Cancer Glycans
with Lectin-Based Analytical Methods

Amanda J. Pearson and Elyssia S. Gallagher

Abstract

Glycosylation is a post-translational modification that is often altered in disease development and progres-
sion, including cancer. In cancerous patients, the abnormal expression of glycosylation enzymes leads to
aberrant glycosylation, which has been linked to malignant tissues. Due to aberrant glycosylation, the
presence of specific glycans can be used as biomarkers for identifying the type and stage of cancer. Glycan
structures are heterogeneous, with different protein glycoforms having different functional activities.
Lectins are an important tool in glycan analysis due to their specificity in binding to unique glycan linkages
and monosaccharide units, which allows for the identification of unique glycan structural properties. In this
review, we will discuss the use of lectins in microarrays and chromatography for characterizing glycan
structures.

Key words Lectin, Cancer, Glycan, Glycosylation, Microarray, Affinity chromatography

1 Introduction

1.1 Overview Glycomics, the study of glycans, is a relatively new area of research,
especially compared with other fields characterizing biomolecules,
such as proteomics and genomics. Much of this field is dedicated to
developing techniques for analyzing glycan structures and identify-
ing how the presence of glycans affects the structure and function
of the lipids and proteins to which they are covalently linked.
Because glycomics is still growing, research dedicated to the
involvement of glycosylation in disease is a small fraction of the
field [1].

Glycans are linear or branched chains of monosaccharides that
are added to other biomolecules, including proteins and lipids. It is
approximated that 50–70% of all eukaryotic proteins are glycosy-
lated as they are processed in the endoplasmic reticulum (ER) and
Golgi apparatus. Changes in protein glycosylation affect protein
structure and function [2], which can result in biological misfunc-
tion and disease progression, as observed in autoimmunity [3],
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cancer [4], and hereditary disease [5]. Herein, we will examine the
use of lectins for the structural determination of glycans [6]. Lec-
tins, proteins that bind to glycans, recognize specific monosacchar-
ides, linkages, and/or carbohydrate stereochemistries, making
them unique tools for structural analyses. While this review will
focus on the use of lectins, additional reviews describing glycan
structural characterizations by chromatography [7, 8], capillary
electrophoresis [9, 10], and mass spectrometry [11, 12] are present
in the literature.

1.2 Lectins Lectins are proteins that specifically bind to carbohydrates and are
found throughout nature in animals, plants, and microorganisms
such as fungi, bacteria, viruses, and protozoa [13]. Numerous
lectins have been purified, but it is assumed that many lectins have
yet to be discovered [14]. Lectins bind to glycans with specific
structural motifs (monosaccharides, linkages, and stereochemis-
tries) with binding affinities (Kd) in the μM range [15, 16]. To
combat these weak binding affinities, researchers have started
developing synthetic lectins, which are often boron-containing
peptides and aptamers, with a similar selectivity as natural lectins
to unique glycan structural characteristics but with binding affi-
nities in the nM–pM range [17–19].

1.3 Glycan Synthesis Glycans are classified as either O- or N-linked and are added to
proteins during and after translation. The main differences between
the two are in structure and linkage. N-linked glycans are attached
to proteins via asparagine residues present in conserved NXS/T
sequences, where X is any amino acid besides P, while O-linked
glycans are attached via threonine or serine residues [20].N-linked
glycans are usually highly branched, whereas O-linked glycans tend
to have minimal branching, being mostly linear. Glycan precursors,
monosaccharide subunits that are the core of bothN- and O-linked
glycans, are first formed in the cytosol and are then transferred to
the endoplasmic reticulum (ER) and Golgi apparatus for branch
extension and terminal glycosylation [21–23]. Following glycosyl-
ation and folding, glycoproteins are transported to their functional
locations, including cell surfaces [24]. The terminal glycosylation
and branching patterns are important factors in determining gly-
cans’ biological roles and involvement in disease. Terminal sugars
on plasma membrane proteins interact with other proteins and cells
due to proximity and thus can have significant impacts on cellular
interactions [25, 26].

In comparison to DNA replication and protein translation,
glycosylation is a non-template-driven process. Thus, the structures
that are formed are dependent on the glycosylation enzymes (e.g.,
glycosyltransferases and glycosidases) that are present in the ER and
Golgi at the time of protein translation, the specificity of the
enzymes for the developing glycan, and the availability of
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carbohydrate substrates. The resulting glycans are heterogeneous
and often contain different branching patterns or terminal sugars
[22, 27]. The heterogeneity adds to the challenge of glycan ana-
lyses since each protein can be present as multiple glycoforms, with
different glycoforms having different functionalities [28]. Ideal
analysis methods sample the heterogeneous glycan structures to
monitor changes in the glycan population during disease develop-
ment and progression.

1.4 Glycans

in Cancer

Though glycans have multiple roles in cancer, these roles have not
been fully elucidated. Glycosyltransferases and glycosidases,
enzymes that add and remove monosaccharides to developing gly-
cans, respectively, are often suppressed or overexpressed in cancer,
resulting in aberrant or altered glycosylation patterns
[29–31]. Aberrant glycosylation occurs in both N- and O-linked
glycans [32, 33]; however, changes inN-linked glycans are easier to
characterize. N-linked glycans are more complex, containing more
branching and diversity in monosaccharide subunits; thus, N-
linked glycans have more varied structural motifs providing a
greater diversity of structures for lectin analysis. Alternatively,
O-linked glycans have relatively simple structures, so if a lectin is
not able to bind to the few monosaccharides, linkages, or stereo-
chemistries, there is a lower probability that the structural compo-
nents will be identified. In addition, there are enzymes that are
better equipped for removingN-linked glycans from tissue samples,
while O-linked glycans do not have dependable enzymes for their
removal [34]. Peptide-N-glycosidase F (PNGaseF) removes most
N-linked glycans; however, there are cases in which complete degly-
cosylation can be difficult because sites are resistant to enzymatic
cleavage, requiring the glycoprotein to be incubated with the
enzyme for long periods of time [35]. Currently, O-linked glycans
are removed by chemical methods (hydrazine) or enzymes (pro-
nase), but neither is as effective as PNGaseF, making it more
difficult to characterize the full O-linked glycan signature [36, 37].

Glycan alterations have been observed in regard to tissue type,
cancer stage, and following exposure to radiotherapy [38–44]. In
malignant tissues, common terminal glycosylation patterns have
been observed due to overexpression of specific glycosylation
enzymes [30]. Common motifs in cancer include sialyl Lewis x
(sLex), sialyl Lewis a (sLea), and Lewis y (Ley), as seen in Fig. 1
[33, 41, 45, 46]. For example, Drahos’ group observed significant
changes in the abundance of glycans present during and after
radiotherapy, with some glycoforms increasing by fivefold and
other glycoforms decreasing by fivefold. The Drahos’ group
showed that these changes lasted for over a month following com-
pletion of radiotherapy treatment [47]. There is interest in using
the presence and abundance of certain glycoforms as biomarkers in
screening and staging cancers.
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2 Structural Analytical Methods

2.1 Lectin

Microarrays

2.1.1 Overview

of Microarray Analysis

Microarrays are simple, high-throughput techniques that maximize
the number of simultaneously analyzed samples or the number of
simultaneous measurements on a single sample. While microarrays
have the advantage of analyzing many samples, a disadvantage
comes from the long times needed for sample incubation before
detection. Microarrays are prevalent for analyses of DNA and pro-
teins [48–50]; yet, since the technique was first published in 2005,
lectin microarrays have become more widely used tools for analysis
of glycan structural motifs [51–53]. An overview of a lectin micro-
array is shown in Fig. 2. In general, a microarray analysis involves
spotting a surface with known analytes at different positions and
then adding a second, unknown analyte to the surface to initiate
interactions. Following incubation, the positions at which interac-
tions occur are detected, and structural information can be inferred
for the unknown analyte based on the binding affinities of the
known analytes spotted on the surface. The binding interactions
are generally detected by fluorescence, which gives an intensity
output that correlates to binding between lectins and glycans. By
comparing the relative fluorescence of different samples, the rela-
tive quantity of a particular structure can be compared to the

Fig. 1 Structures of terminal sugar moieties that are commonly overexpressed in
malignant cancers. While the monosaccharide structures of sLex and sLea

contain the same monosaccharides, the linkage between N-acetylglucosamine
and fucose is different. In addition, Ley has a fucose where sialic acid is present
in the other two glycans
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relative quantity of other structures [54]. The data is usually more
qualitative than quantitative, but there are a variety of ways to
interpret the collected data. For example, if performing a compara-
tive analysis, the intensity of the fluorescent signal illustrates differ-
ences in the glycans that are present in the two samples [55]. This is
useful for the study of cancer, because one can compare samples
from different tissues, stages, or donors and observe differences in
the structure or quantity of glycans.

2.1.2 Microarray

Preparation

Microarrays are versatile methods that vary in the type and number
of lectins spotted onto the array. The first step in developing a
microarray is choosing a solid support. Common supports are
polystyrene well plates [56], polymer gel slides [57], and epoxy
slides [58], with multiple commercially available supports available.
The size of the support varies and depends on the number of lectins
and the method for spotting them. If a microarrayer, or microarray
printer (automated instrument used to spot lectins), is used, the
size of the chip must accommodate the printer requirements. For
example, an average plate is 25 � 75 mm or a 384-well plate for a
NanoArrayIt printer [59]. Finally, the lectins are spotted onto the
array. The size and distance between spots vary but are important
factors to maximize the number of spots on the array while

Fig. 2 Overview of a lectin microarray. Different lectins are covalently linked to designated positions on a solid
support. A fluorescently labeled sample of glycans, glycoproteins, or cells is incubated with the microarray,
allowing for the glycans to bind to the surface-attached lectins. The binding interaction is detected via
fluorescence, giving an intensity for each position of the microarray where glycans interact with lectins. The
intensity for each position is shown here in shades of green, with the brightest green representing positions
with the most glycans binding and the duller greens representing positions with fewer bound glycans. Black
positions represent lectins that did not interact with any component in the sample
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ensuring that the lectins can be spatially resolved during detection
[52]. Currently, it is common for the space between each lectin to
be equivalent to or greater than the diameter of each lectin spot. A
common method for spotting lectins is using a microarrayer; these
printers draw lectin solutions from a reservoir and spot them in a
predefined pattern [50]. Microarray printers are preferred, because
they minimize the diameter of each spot and create more reproduc-
ible arrays. Despite these advantages, lectins can be spotted manu-
ally to reduce the cost of preparation. While there are various ways
to add the lectins to the array, the goal is simply for the lectin to
covalently bind an active group on the surface (e.g., epoxy, alde-
hyde, or amino) [60]. Once spotted, the microarray is ready for use
or storage. Storage requirements depend upon the array format,
but in general, arrays are stored at �20 �C and can be stored for
approximately 6 months. It is best to consider the materials used to
determine the activity of the array before using an array after a
lengthy storage time.

2.1.3 Types of Lectins

Natural Lectins

Natural lectins are the most abundant form of lectins currently in
use for lectin microarrays. They are convenient because they can be
purified or purchased commercially. Lectins are a useful structural
analysis tool, because they bind to various monosaccharides, lin-
kages, and stereochemistries within both N- and O-linked glycans.
O-linked glycans are much less studied in comparison to N-linked
due to the lack of dependable enzymes for their removal, so the
ability of lectins to simultaneously analyze both N- and O- linked
glycans is an advantage [9, 61]. While this review focuses on the use
of lectins in the structural analysis of glycans, other reviews focus on
identification and isolation of natural lectins [15, 16, 62, 63].

Synthetic Lectins Lectins are powerful tools for structural analyses of glycans, but
their use is often limited by their weak binding affinities, Kd ~μM
[15, 16]. Several groups have developed synthetic lectins with
stronger binding affinities compared to natural lectins. Lectins
bind to specific linkages and monosaccharides, and developing a
synthetic lectin that can be selective and recognize these structural
differences has been challenging [64]. The most successful syn-
thetic lectins use boron moieties, including boron aptamers and
peptide borono lectins (PBLs), which have binding affinities in the
nM to pM range [18, 19]. Both the aptamers and PBLs are synthe-
sized through similar methods, with incorporation of boronic acid
into a modified nucleotide or peptide, respectively. When designing
synthetic aptamers or peptides, an extensive number of lectins are
made and then screened to determine which compounds are most
selective for a particular structural motif. Due to the stronger
binding affinity of nucleotides with glycan hydroxyls, boron apta-
mers have been more regularly used than peptides. The binding
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interaction between boron and carbohydrates is the result of
boronic acid binding to diols on carbohydrates and forming bor-
onate esters. The stereochemistry of the carbohydrates affects the
binding affinity of the boronate, with the highest affinity for cis-
1,2-diols [65]. The development of synthetic lectins results in
greater coverage and diversity in the number and types of glycans
that can be identified, because synthetic lectins can be synthesized
to target glycan structural motifs that are currently unable to be
identified by natural lectins [66]. Other synthetic lectins have been
developed outside of the boron-based lectins, such as bio-inspired
lectins, aptamers, and peptides, which are reviewed elsewhere
[17, 64–68].

2.1.4 Sampling Methods One of the advantages of using microarrays is the minimal sample
preparation for many analytes, including crude cells [69], glyco-
proteins [70], blood [71], or urine [55]. To minimize matrix
effects, blood and urine are often sonicated, vortexed, and/or
centrifuged [55]. Prior to analysis, samples also require labeling
with a fluorescent tag, such as 2-aminobenzoic acid (2-AA) or
2-aminobenzamide (2-AB), that binds via reductive amination at
the reducing end of the glycan, to aid in analyte detection [72].

Tissues can also be analyzed with microarrays but require more
extensive sample preparation. Laser microdissection (LMD) allows
for analysis of precise tissue sections, rather than heterogeneous
tissue [73]. For example, LMD can be used to separate tissue
sections, allowing for analysis of a prostate tumor, rather than
prostate tissue containing a mixture of cancerous and normal cells
[74]. LMD is ideal for lectin microarrays because the arrays require
as little as 10 μg of sample. To sample human tissues, biopsies are
collected from patients [75] followed by LMD to isolate specific
cells. In preparation for LMD, the tissue sample is positioned on a
glass slide. Then, a thermolabile polymer is placed above the tissue
section and melted with an infrared laser, surrounding the cells of
interest, which bind to the polymer and can be removed. This
effectively dissects the cells of interest from excess tissue
[76]. After LMD, protein extraction is used to collect the glycan
or glycoprotein of interest [77]. The method of extraction is
dependent on the analyte being extracted, but generally, the tissue
is solubilized, sonicated, and then centrifuged to purify the glycan
or glycoprotein. Once extraction is complete, the sample is labeled
with a fluorescent tag prior to microarray analysis.

2.1.5 Detection Methods Once the glycan sample has been added to the microarray, the
interaction must be detected to probe the binding interactions
between lectins and glycans to characterize glycan structures. For
most assays, fluorescence intensity is measured, giving an estima-
tion of the amount of a structural motif in a glycan sample. Early
microarrays detected fluorescence with plate readers
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[51, 78]. However, evanescent-field fluorescence (EFF), a method
developed by Hirabayashi and coworkers, is the current standard
for lectin microarray detection [53]. In EFF, the microarray is set
on a glass slide, above a charge-coupled device (CCD) camera. An
excitation light is focused into the glass slide, which causes internal
reflection, creating an evanescent field. This field penetrates only
~100–200 nm above the surface, enabling detection of material at
the surface with weak binding affinities. EFF allows for detection
without a washing step, in which weak interactions are removed;
therefore these weaker interactions can be observed with EFF. The
wash steps are able to be eliminated due to the equilibrium created
between the lectin and glycan and the real-time imaging as the
result of internal reflection [79]. The emitted fluorescence signals
are then detected from below by the CCD camera [53, 80]. This
technique is advantageous due to its ability to detect materials with
low binding affinity, such as binding interactions with natural lec-
tins. When using traditional fluorescence, the microarray is washed
to remove low-binding species to reduce background signal. When
using EFF, a more accurate picture of the structural motifs of the
analytes in the sample is collected, because even those that are not
bound as tightly are detected [77, 81].

2.1.6 Commercial Lectin

Microarrays

For convenience, multiple companies have developed commercial
lectin microarrays. These are ready-for-use chips with spotted nat-
ural lectins. Currently, there are no commercial microarrays con-
taining synthetic lectins. One of the most used commercial lectin
arrays is the LecChip [82]. This array has 7 replicated arrays on the
same chip, with each array consisting of 45 different natural lectins.
This setup provides a considerable amount of data on a single chip,
requiring minimal time for data collection. These commercial
arrays also operate in the same manner as other microarrays, allow-
ing for the analysis of either glycoproteins, tissue extracts, or the
cell surface glycome: the glycans present on the cell surface. A
disadvantage of the LecChip is that it requires a 3–20-h incubation
period, depending on the glycan concentration and glycan-binding
affinities. While this is a high-throughput method that requires
little preparation for characterizing many samples, it is not a
rapid technique. This chip also lends itself to the use of EFF,
where an extra wash is not needed, yielding high sensitivity
[81, 83–85]. There are other commercial lectin microarrays such
as the Qproteome Glycan Array kit, which contains 20 natural
lectins and, thus, has lower glycan structural coverage due to the
reduced number of lectins compared to the LecChip. Because there
are few commercial options and each of these uses a predefined
group of natural lectins, many labs choose to create their own
microarray to increase the structural details collected during their
glycan analyses [58].
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2.1.7 Applications

of Microarrays

In developing and testing lectin microarrays, the primary analytes
have been purified glycoproteins. However, as the method has
become more established, it is becoming more common to analyze
surface glycans of cells [54, 56, 69, 86, 87], as well as the glycans
present in biological samples such as tissue, blood, and urine
[43, 44, 55, 60, 69]. This discussion of applications is not meant
to be exhaustive but, rather, will illustrate the variety of methods
currently available for characterizing glycan structures.

Glycoproteins Purified glycoproteins are the simplest samples for glycan analysis
using lectin microarrays, and they are most often used when
developing and testing new microarrays. For example, commercial
glycoproteins are used to verify the function of the microarray
when altering the lectin printing conditions [88] or using nano-
particles as supports for lectins [89]. For this example, we will
focus on the design of synthetic lectins, specifically peptide borono
lectins [18]. In a study by Lavigne’s group, low-diversity peptides
with phenylboronic acid substitutions were developed, creating
approximately 2,000,000 unique lectins. To test the binding and
selectivity of their lectins, they used four commercially purchased
glycoproteins (ovalbumin, bovine submaxillary mucin, porcine
stomach mucin, and carcinoembryonic antigen) to probe different
interactions with the lectins. Each lectin was bound to beads, and
the beads for each synthetic lectin were placed in a single well of a
96-well microplate. The glycoproteins were labeled with fluores-
cein isothiocyanate (FITC), a fluorescent tag, and then a single
glycoprotein was added to each well containing beads with a single
synthetic lectin. Bovine serum albumin (BSA) was used as a con-
trol to show the interaction of a protein with no glycans, as well as
to block non-specific interactions. After binding to the glycopro-
teins, BSA (1%) was added to the beads, and they were washed
multiple times with phosphate buffered saline (PBS). Fluorescence
was then used to measure the interaction between the glycopro-
teins and synthetic lectins. The study illustrated that borono lec-
tins bound selectively to the glycans of glycoproteins and that each
lectin bound to different glycan structural motifs. To show the use
of these synthetic lectins in cancer analyses, the authors incubated
the beads with carcinoembryonic antigen (CEA) at varying con-
centrations. The PBLs bound to the glycans and, thus, could
identify cancer targets [90]. While these lectins show potential,
additional experiments are needed to show binding to other can-
cer targets.

Cell Surface Glycans The cell surface glycome is a characteristic of each cell line and is
also subject to changes in cell culture conditions [91]. Hirabayashi’s
group analyzed a cell surface glycome in 2007, using a microarray
with 43 natural lectins on an epoxy slide [53, 84]. For this study,
approximately 1 � 107 cells/mL were harvested and labeled with
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CellTracker Orange, a fluorescent tag. The labeled cells were added
to the slide and incubated for 1 h, before detection via EFF. This
was one of the first papers that enabled analysis of the cell surface
glycome via lectin microarray. The analysis involved comparison of
glycan signatures of various cell lines, including Lec cells
(a variation of the Chinese hamster ovary (CHO) cell line contain-
ing mutations in glycosylation enzymes) [92]. Wild-type CHO
cells and multiple Lec cell lines (Lec1, Lec2, and Lec8 with muta-
tions in the genes mannosyl (alpha-1,3-) glycoprotein beta-1,2-N-
acetylglucosamine (MGAT1), solute carrier family 35 member A1
(Slc35a1), and solute carrier family 35 member A2 (Slc35a2),
respectively) [93] were harvested, and the glycome was analyzed
on lectin microarrays. All four cell lines showed a distinct binding
pattern on the lectin microarray, indicating that they each have their
own glycome signature. This was the first study published using
lectin microarrays to observe live cells, and the authors suggest that
this method could be used to study more complex cell lines and
classify cancerous versus normal cells.

Glycans from Biological

Samples

Glycans play significant biological roles, and changes in their struc-
ture are observed in disease and disease progression. Many groups
have looked at changes in glycan structures in blood, urine, or
tissues in patients with cancer. In 2011, Leathem’s group did a
study using the LecChip to analyze glycans from urine, sera, and
breast tissue samples, collected from healthy patients and those
with breast tumors [60]. Tissue samples were centrifuged, and
xylenes and ethanol were added to remove wax and formalin,
which were present for tissue storage. Serum was prepared by
adding clotting additives to blood samples, centrifuging, and
recovering the supernatant. Urine did not require any sample prep-
aration prior to microarray analysis. Sera and urine were analyzed
from patients who had metastatic cancer and those for which
metastasis had not been observed. All samples were fluorescently
labeled with cyanine 3 (Cy3). Samples were added to lectin micro-
arrays, and after 150-min incubation, fluorescence detection was
used to observe binding interactions. This study showed significant
differences in the glycan patterns for healthy and cancerous
patients. There was a difference seen in the presence of glycan
binding, as well as the intensity of fluorescence signals for bound
glycans. The data revealed patterns in the glycans but was not
conclusive enough to define specific glycan signatures for either
cancerous or healthy patients.

2.1.8 Microarray

Conclusions

Lectin microarrays are useful for qualitative and comparative infor-
mation regarding glycan structures. Furthermore, microarrays pro-
vide a way to sample the inherent heterogeneity within glycans.
However, there are limitations for this technique in the lack of
quantitative data. The amount of each glycan subgroup cannot be
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determined, and glycans cannot be separated for further analysis
using microarrays. Lectin affinity chromatography (LAC) is a com-
plementary technique that is used to separate and identify glycans
that are present in samples. We will discuss LAC in the next section
of this review.

2.2 Chromatography Chromatography is a versatile technique that allows for separation
of an analyte from a mixture based on a specific property, such as
size, polarity, or binding affinity. In this review, we will focus on
affinity chromatography, specifically LAC and its variations; other
reviews discuss additional applications of chromatography for gly-
can separation and analysis [43, 94–97]. In affinity chromatogra-
phy, ligands are immobilized, forming the stationary phase and
allowing for specific interactions with analytes in the mobile
phase; for LAC, lectins are the immobilized ligands. When a sample
is loaded onto the column, the glycans that interact with the
immobilized lectin bind to the stationary phase and are retained,
while the rest of the sample flows through the column. The glycan
can then be eluted off the column with a competing glycan or
carbohydrate that has a stronger affinity for the lectin than the
glycan in the sample, as seen in Fig. 3.

Fig. 3 Overview of a general lectin affinity column. Lectins are immobilized onto beads and packed into a
column. Then, fluorescently labeled samples of glycans or glycoproteins are loaded onto the column. The
glycans that bind to the immobilized lectin are retained (orange stars), while other analytes, including glycans
that do not interact with the lectin, are eluted from the column (red, blue, pink, yellow, and teal stars). The
bound glycans are eluted from the column following addition of a sugar with a stronger binding interaction
with the immobilized lectin
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There are variations and different purposes for the use of LAC.
A variation of this technique is serial lectin affinity chromatography
(SLAC), in which the sample is analyzed on multiple columns back
to back, with each column having a different immobilized lectin to
bind various glycan structural motifs. Another use of LAC is frontal
affinity chromatography (FAC), which is used to quantify the bind-
ing affinities between glycans and lectins.

2.2.1 Affinity Column

Preparation

While many chromatography columns can be purchased, it is
often necessary to prepare and pack columns with specific lectins.
Lectins must first be immobilized on stationary phase supports,
which vary depending on the pressure requirements of the separa-
tion [98]. Briefly, lectins are dissolved in coupling buffer (NaHCO3

and NaCl) and added to N-hydroxysuccinimide (NHS)-activated
sepharose or agarose [99]. The stationary phase support is chosen
to maximize lectin immobilization while minimizing non-specific
interactions with glycans. Before packing, the column is filled with
buffer to avoid forming bubbles in the packed particle bed. The
buffer is then removed as the column is filled with lectin-
immobilized gel. Once the column is packed, it can be stored at
4 �C for multiple years without loss of activity [99]. Most of the
time, the stationary phase beads are packed into column housings
that can withstand applied pressures, to allow for automation of
separations and to decrease analysis time.

2.2.2 Sampling

Requirements

and Detection Methods

Unlike lectin microarrays, columns cannot be used to analyze crude
samples. Many examples of LAC use serum samples to test immo-
bilized lectins. Prior to analysis, proteins in the sample must be
removed to reduce non-specific interactions [100–102]. However,
it is not ideal to remove the glycans entirely, because it has been
observed that lectins have stronger affinity to glycoproteins com-
pared to free glycans [98]. The glycan samples are then tagged with
a fluorescent label for detection and diluted before injecting them
into the column. However, samples do not need to be labeled if
using a non-fluorescent detector, such as a mass spectrometer
[103]. Fluorescence detection is common with SLAC and FAC,
when attempting to confirm the presence of the glycan. However,
mass spectrometry is more often used following LAC, when addi-
tional structural details of the sample are desired.

2.2.3 Serial Lectin

Affinity Chromatography

and Its Applications

LAC is often used as a purification method prior to additional
analysis techniques, such as mass spectrometry [102]. This is useful
for enriching a glycan from a crude sample, because only one lectin
is present. It is not an ideal technique for separations of samples
containing multiple glycans and is not often used by itself to analyze
the structure of glycans. However, SLAC is often used for the
fractionation and analysis of a sample containing multiple glycans.
An advantage of this technique is that glycan mixtures, containing
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bothN- and O-linked glycans, can be separated based on structural
motifs using simple instrumentation [98].

One of the original studies using this technique was published
in 1982, where SLAC facilitated the fractionation of N-linked
glycans [104]. This study used three separate lectin affinity columns
(Con A, pea lectin, and phytohaemagglutinin) to fractionate N-
linked glycans removed from mouse lymphoma cells, for further
structural characterization of the glycans. Since this study, there
have been developments in separation automation and the struc-
tural details of these analyses have increased with the use of more
specific lectins and more advanced detection methods, specifically
mass spectrometry. A more recent study from 2017 combined both
SLAC and mass spectrometry to separate and analyze glycoforms of
a single protein [105]. For this study, human blood samples were
obtained, and the glycoproteins in the plasma were separated for
analysis. This study characterized the O-linked glycans present on
glycoforms of IgA1, a human antibody. They used two lectins for
SLAC, Helix pomatia agglutinin (HPA) and peanut agglutinin
(PNA), to create four glycoprotein fractions (HPA+/PNA+,
HPA+/PNA�, HPA�/PNA+, and HPA�/PNA�). The O-linked
glycans were then released from the protein using pronase and
further analyzed with mass spectrometry. Thus, this technique
could be used for clinical diagnostics by analyzing serum samples
of healthy and cancerous patients to observe different glycoforms in
the samples.

2.2.4 Frontal Affinity

Chromatography and Its

Applications

FAC is a tool for determining glycan-lectin binding affinities. This
technique was originally published in 1986 [106] but has since
been automated using pressurized columns [99]. The principle
behind FAC, seen in Fig. 4, is that an excess of diluted glycan is
continuously added to a column that contains immobilized lectin.
The binding of the glycan to the lectin is then measured by the
elution volume or time that it takes for the analyte to exit the
column. If the glycan does not interact with the lectin, it will
elute rapidly. However, if the glycan binds to the lectin, it will be
retarded as it flows through the column [99, 107]. This technique
can be used to quantify binding affinities for specified interactions,
as in Eq. 1. In which, theKd is the binding affinity of the lectin, Bt is
the total amount of immobilized lectin, V is the reference volume,
V0 is the elution volume of the glycan or glycoprotein analyte, and
[A]0 is the initial analyte concentration. The difference between the
reference volume and the elution volume of the analyte (V � V0) is
the elution volume of the column.

A½ �0 V � V 0ð Þ ¼ Bt A½ �0
A½ �0 þKd

� � ð1Þ
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However, the exact concentration of the analyte is often
unknown, so a simplified equation is used (Eq. 2) in which the
concentration of the glycan ([A0]) is assumed to be significantly less
than Kd.

Kd ¼ Bt

V � V 0ð Þ , Kd � A½ �0 ð2Þ

The automated version of FAC is preferred due to its time
advantage (e.g., less than 10 h are required for 100 sample analyses)
[108]. This technique is highly useful when it comes to lectin
microarray analyses, which were described in Subheading 2.1,
because the development of FAC has quantified many binding
affinities for lectins and glycans [109, 110].

Due to its high specificity, FAC is an excellent technique for
identifying differences in lectin binding specificities. Galectins, a
subset of lectins, are a family of proteins with very similar binding
interactions to similar glycans. However, FAC was used to study six
different galectins, and unique binding fingerprints were observed
for each galectin [111]. This is a promising study and shows the
potential for the use of FAC for identifying differences between
lectins as new proteins are discovered. This is also a useful technique
that could eventually be combined with synthetic lectins to close
the gap of knowledge concerning the binding specificity of syn-
thetic peptides and aptamers.

Fig. 4 Overview of frontal affinity chromatography. Glycan A is added to the column but has no interaction with
the bound lectins. Thus, Glycan A passes through the column rapidly, and its elution can be used to determine
the reference volume, V0. Glycan B is then added to the column, and it interacts with the lectins; this retards
the elution of Glycan B, which has an elution volume described by V. Using Eq. 2, the differences in the elution
volumes can then be used to determine the Kd of the immobilized lectin and the glycan with which it interacts.
This can be repeated for different glycans, calculating the binding affinity of a lectin for a variety of glycans.
Reprinted by permission from Springer Nature: Springer Nature, Nature Protocols (Frontal Affinity Chromatog-
raphy: sugar-protein interactions, Tateno et al.) Copyright 2007 [99]
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3 Conclusions

Glycans are diverse and play prominent roles in many systems, yet
their structures are challenging to characterize. This review
describes a few of the most recent techniques that have been
developed and utilized to analyze the structures of both N- and
O-linked glycans, specifically those that involve the use of lectins.
Lectins are a powerful analytical tool because they bind different
structural motifs of glycans, such as monosaccharides, linkages, and
stereochemistries. This is particularly useful when analyzing glycans
involved in cancer, because a wide variety of glycans can be identi-
fied through their unique structural characteristics. These methods
allow for comparison of the type and number of glycans that are
present when observing cancerous samples. These are techniques
that are paving the way for monitoring glycan biomarkers in cancer.
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Chapter 21

Hyperpolarized MRI for Studying Tumor Metabolism

Mikko I. Kettunen

Abstract

Hyperpolarized magnetic resonance imaging (MRI) can be used to detect real-time in vivo tumor metabo-
lism. Dissolution dynamic nuclear polarization method increases polarization of 13C-labeled molecules,
typically [1-13C]pyruvate, which can be injected into an animal during MRI scanning. Increased polariza-
tion leads to a higher observed signal, which allows for the detection and imaging of the transfer of 13C-
label between the injected marker molecule, pyruvate, and its metabolic products, most importantly lactate.
This information can be used to assess the metabolic status of the tumor, for example, during therapy. Here,
the basic methodology and data analysis for a preclinical hyperpolarized pyruvate experiment are described.

Key words Hyperpolarization, Pyruvate, MR spectroscopy, Modeling

1 Introduction

Exploiting the difference between physiological and pathological
metabolism is one of the main driving forces behind the develop-
ment of noninvasive imaging methods. Among the most common
preclinical and clinical imaging modalities, magnetic resonance
(MR)-based methods are unique in that they allow for, both, a
relatively high spatial resolution and a noninvasive separation of a
range of metabolites (see Note 1). The higher information content
provided by the latter also partially compensates for a much lower
sensitivity when compared to methods such as positron emission
tomography (PET). Spectroscopic analysis of metabolite distribu-
tion in the tissue using 1H spectroscopy reveals a wealth of infor-
mation of steady-state metabolite concentrations, but the
production of metabolic maps is still time-consuming (minutes to
tens of minutes). Further insight into metabolism can be acquired
using dynamic metabolic studies of 13C-labeled marker molecules,
e.g., 13C-glucose, by monitoring the transfer of 13C-label to
different downstream metabolites using 13C MR spectroscopy.
This method, however, has traditionally suffered from very low
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sensitivity, making the studies very long (tens of minutes to hours)
and imaging very challenging.

Hyperpolarization amplifies the MR-visible signal of, e.g., 13C-
labeled molecules several thousandfold. Although there are several
ways to achieve a hyperpolarized signal, dissolution dynamic
nuclear polarization (dDNP) [1] (see Note 2) is currently the
most used methodology because of its flexibility in terms of marker
molecules and high signal amplification. dDNP increases the sensi-
tivity of, e.g., 13C-label >10,000-fold, making real-time metabolic
mapping of the marker molecule and its metabolic products feasi-
ble. The signal levels remain increased for up to 3 min (seeNote 3),
depending on the studied molecule, and largely remove the obsta-
cles associated with traditional 13C spectroscopy while limiting
studies to rapid metabolic events. Finally, as the signal is
pre-amplified, it is largely independent of the actual imaging mag-
net used, so the dDNP technique makes rapid real-time metabolic
imaging viable also at lower magnetic fields; this technique is
already being implemented in clinical imaging [2].

The majority of dDNP studies have so far focused on cancer
using [1-13C]pyruvic acid [3]. Pyruvate is situated at the crossing
point of the glycolytic pathway, which is in many ways optimal for
studying tumor metabolism, with major downstream metabolism
to lactate, alanine, or acetyl-CoA (releasing carbon dioxide in the
process), depending on the needs of the cell. High glycolytic activ-
ity (the so-called Warburg effect) in tumors leads to an elevated
lactated production, which is reflected as increased labeling of
[1-13C]lactate resonance following an intravenous injection of
hyperpolarized [1-13C]pyruvate (Fig. 1) [4]. It has been shown
that the lactate labeling efficiency is related to factors such as tumor
grade [5, 6] and can also be used to detect metabolic changes
related to tumor therapy [3, 7].

Fig. 1 Major metabolic downstream products of pyruvate (at the center) and a corresponding 13C spectrum.
In tumors, pyruvate and lactate signals are usually the most prominent. Enzymes catalyzing the reactions,
LDH¼ lactate dehydrogenase, ALAT¼ alanine transaminase, PDH¼ pyruvate dehydrogenase, CA¼ carbonic
anhydrase
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2 Materials

dDNP is based on microwave-induced signal pre-amplification of
the labeled marker molecule, usually 13C, at a relatively high field
(>3 T) and low temperature (~1 K), followed by a rapid dissolution
of sample, providing a neutral room-temperature solution of the
marker molecule with increased signal levels [1]. To achieve this, a
marker molecule is mixed with radical-containing free electrons.
Furthermore, the frozen sample needs to form an amorphous glass
when frozen to allow efficient hyperpolarization. Unlike most other
molecules, neat pyruvic acid forms glass when frozen, so there is no
need for additional glassing agents.

2.1 Preclinical

[1-13C]Pyruvic Acid

Sample for In Vitro or

Small Animals at

3.35 T (e.g.,

Hypersense)

dDNP experiments require a dedicated hyperpolarizer system
based around a high-field (3 T or more) magnet placed near the
imaging magnet. In addition to the magnet, the main components
of the hyperpolarizer include a variable temperature insert, capable
of achieving ~1 K temperature to freeze the sample, a MR probe for
solid-state signal buildup monitoring, a GHz-range microwave
source (e.g., 94 GHz for 3.35 T), and a setup for rapid dissolution
and removal of the sample (e.g., dissolution stick [1] or fluid path
[8, 9]). The majority of the existing hyperpolarizer equipment are
commercial systems, either preclinical Hypersense (Oxford Instru-
ments, UK) or clinical SpinLab (Research Circle Technology, US)
systems, but noncommercial designs based on the same principles
are also available. The differences among systems are relatively
minor, with the commercial ones usually featuring more automated
sample dissolution process. In addition, a regular magnetic reso-
nance (MR) imaging system with 13C-channel will be required for
signal detection.

1. [1-13C]Pyruvic acid stock solution: 1 g neat [1-13C]pyruvic
acid (~14.1 mol/L, 99% 13C) (see Note 4), 16.7 mg trityl
radical (15 mmol/L, 8-carboxy-2,2,6,6-tetra-(hydroxyethyl)-
benzo-[1,2–4,5]-bis- [1, 3]-dithiole-4-yl)-methyl sodium salt
(OX063; Research Circle Technology, US/GEHealthcare) (see
Note 5).

The amount of radical needed for one hyperpolarized
pyruvate sample is too small to be measured accurately, so a
stock solution is prepared by mixing the pyruvic acid and
radical (see Note 6).

2. [1-13C]Pyruvic acid sample: 40 mg (~31 μL) of pyruvic acid
stock solution, 1 μL of 1/10 dilution of 0.5 mmol/mL Gd
chelate (~1.5 mmol/L, e.g., Dotarem, Guerbet).

Warm up the pyruvate stock solution to room temperature,
weigh pyruvic acid into the sample cup, and add an aqueous
solution of a gadolinium chelate (see Note 7). Gd chelates are
potentially unstable at low pH, so Gd should be added just
before the sample goes into the polarizer to avoid degradation.
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3. Dissolution (neutralization) buffer [8]: 1 L MilliQ water,
24.23 g (200 mM) tris-hydroxymethyl aminomethane (TRIS
base), 4 g (100 mM) NaOH, 100 mg EDTA, pH ~7.6 (see
Note 8).

3 Methods

3.1 Hyperpolari-

zation

The exact steps required to achieve a polarized sample depend on
the hyperpolarizer system used, so the main steps for polarization
are summarized below, and the reader is advised to consult specific
instructions for their system of choice.

1. During the polarization, immerse the sample into liquid helium
under vacuum, so that temperatures ranged 1.0–1.4 K are
reached. The variable temperature insert and probe need to
be cooled down with liquid helium close to the operation
temperature before the sample insertion. This avoids crystalli-
zation of the sample during the sample loading, which would
lead to an inefficient polarization.

2. Prepare the sample by connecting the filled sample cup to, e.g.,
sample loading stick or fluid path. Load the correct amount
(typically 5–6 mL for Hypersense and 14 mL for SpinLab) of
prepared dissolution fluid to the system (see Note 9). When
working with fluid path-based systems, all the preparation
(sample loading, dissolution fluid loading, helium gas priming)
needs to be done before the fluid path is inserted into the
polarizer. In contrast, in dissolution stick-based systems, disso-
lution fluid can be usually added at a later stage (e.g., just
before the dissolution), and helium priming is not usually
needed as the sample is not separated from liquid helium in
the system.

3. Repressurize the probe to atmospheric pressure before loading
the sample. This avoids air getting sucked and frozen inside the
system.

4. After loading the sample, initiate the microwave-driven polari-
zation at the optimized microwave frequency and power. Dur-
ing polarization it is important to keep the sample covered in
helium. Typical polarization times for pyruvate are from 30 to
120 min depending on the polarization field. The polarization
process can be monitored using a small flip-angle pulse-acquire
experiment and should be relatively consistent between sam-
ples (see Note 10).

5. Heat the dissolution fluid to the set temperature [e.g., 130 �C
(SpinLab) or 180 �C (Hypersense)]; lift the sample out of
helium, and perform the dissolution collecting the sample to
a suitable container. In commercial systems, the dissolution
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process is automated. The temperature is set to be high enough
to allow rapid dissolution of the sample to avoid polarization
losses and, in most cases, should not be changed. In systems
with manual dissolution (e.g., dissolution stick), it is crucial to
repressurize the system before the dissolution is performed to
avoid rapid influx of air into the system. The sample is lifted a
few cm above helium just before the dissolution is initiated to,
on one hand, allow more efficient dissolution and, on the
other, minimize signal losses when the sample is outside helium
and optimal magnetic field. A significant heat load is intro-
duced to the sample when the dissolution stick is lowered in
place; therefore the dissolution process needs to be initiated as
soon as the stick is in place.

A typical sample produced with the above procedure has
~80mM [1-13C]pyruvate concentration and neutral pH (~7.5)
(see Note 11). The sample coming out of the polarizer can
initially be hot (around 60 �C), so care should be taken when
handling it.

6. Remove the sample needed for the imaging experiment to a
separate syringe, and make sure it has cooled down sufficiently
before using it. Because of the continuous loss of the sample,
however, it is vital to perform the injection as soon as possible.

The achieved levels of polarization for [1-13C]pyruvate vary
greatly (usually being in the range of 20–70%) (see Note 12)
depending on factors such as polarization field (higher polarization
field usually yields higher polarization, albeit at a cost of longer
polarization times). Polarization levels above 15% are usually
required for in vivo experiments, but lower polarization can be
used for in vitro experiments.

3.2 MRI Experiment As mentioned above, injection of [1-13C]pyruvate leads to 13C-
labeling of its major downstreammetabolites, alanine, carbon diox-
ide, and lactate. Carbon dioxide rapidly exchanges the majority of
the label to bicarbonate. Furthermore, aqueous pyruvate is in an
equilibrium with pyruvate hydrate. Therefore, a 13C spectrum
following injection of [1-13C]pyruvate contains a maximum of
five peaks spanning over 20 ppm: 13C-bicarbonate (~163 ppm),
pyruvate (172.9 ppm), alanine (178.5 ppm), pyruvate hydrate
(181 ppm), and lactate (185.1 ppm) (seeNote 1). In tumor studies,
the main interest are pyruvate and lactate signals (12 ppm apart),
but alanine and bicarbonate can also be of interest when visible in
tumor.

Hyperpolarized signal is lost relatively quickly, as the spin
returns to their equilibrium state through T1 relaxation (for pyru-
vate T1 is around 50–60s ex vivo and 30s in vivo in typical magnetic
fields used for research), and, furthermore, any radiofrequency
(RF) irradiation destroys some hyperpolarized signal irreversibly.
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Therefore, hyperpolarized MRI experiments differ from traditional
MRI experiments in a few significant ways. Most importantly, low
flip angles are usually employed, and their number is kept as low as
possible to minimize RF-based losses. Fast imaging approaches
where one metabolic map is ideally recorded after each RF pulse
are, therefore, favored for imaging studies. Furthermore, because
there is no need to wait for the signal to recover after RF pulsing,
repetition time can be kept minimal when needed (e.g., when more
than one RF pulse is required for each snapshot metabolite map).
In the following, some typical MR approaches are summarized.

3.2.1 MR Spectroscopy

(e.g., Cell Experiments,

Bioreactors, In Vivo

Experiments

with Superficial Tumors)

Low flip-angle MR spectroscopy either without (ex vivo) or with
(in vivo) slice selection is the simplest way to monitor tumor
metabolism. The MR experiment can be usually started before the
addition of the sample, so the whole metabolic curve can be
recorded for analysis. All the produced peaks can be easily detected,
and peak integrals can be obtained using any standard method,
either in time- or Fourier-transformed frequency domain. Typical
repetition time is around a second for pyruvate experiment with flip
angle around 5�. Proton decoupling is not routinely used during
hyperpolarized experiment, because the 13C-label is in carboxylic
acid making JC-H coupling small. When converting a proton spec-
troscopic sequence for 13C use, it is important that fat/water
suppression and outer volume suppression pulses are turned off
because these could irreversibly destroy some pyruvate signal. Sim-
ilarly, voxel selection based on 180� refocusing pulses is usually not
used because they often lead to increased loss of polarization.
Finally, it is vital that the chemical shift artifact is minimized by
using high enough slice selection gradient and a suitable spectral
bandwidth to cover all peaks.

3.2.2 Chemical Shift

Imaging (CSI, e.g., In Vivo

Metabolic Snapshots)

Addition of two phase encoding gradients to MR spectroscopic
sequence allows the spatial localization of the observed signal
within the slab. This is the simplest approach to collect spectro-
scopic imaging data with no limitations from the wide spectral
bandwidth, and it is usually available in all imaging systems.

While CSI produces metabolic maps with high sensitivity, it
requires a large number of low flip-angle RF pulsing (e.g., 16 � 16
matrix requires 256 pulses, although this can be reduced by not
sampling the full k-space) (see Note 13) and therefore is not opti-
mal for hyperpolarized studies as it allows typically only a single
metabolic map to be acquired. A center-out-spiral phase encoding
is usually applied to collect the most important part of k-space first,
before significant RF-caused signal loss has occurred. Repetition
times are usually kept short (around 20–50 ms) to collect data as
quickly as possible. It is worth noting that, because the hyperpolar-
ized 13C spectra are very simple, with five or fewer reasonably
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separated peaks typically present, full free-induction decay does not
need to be sampled for accurate separation of the peaks.

Because of the limitations of CSI pulse sequence, the data
acquisition is started after the injection of hyperpolarized sample.
In case of tumor imaging, the main metabolite of interest is usually
lactate, so the imaging time is often selected close to the time point
where lactate signal is maximal (based on previous spectroscopic
analysis). The peak time varies between tumor models and depends
on experimental factors such as injection rate, which should, there-
fore, be maintained constant during the experiments. Times
around 15–20s are often used to minimize signal loss due to T1.
Typical voxel size is in the order 1.5 � 1.5 � 5 mm3.

3.2.3 Fast Spectroscopic

Imaging (e.g., In Vivo

Metabolic Time Courses)

The limitations of CSI can be bypassed by using a number of fast
spectroscopic imaging approaches, which are suitable for dynamic
follow-up of metabolism or imaging of larger volumes through 3D
imaging. The sparsity of 13C spectrum makes them optimal for fast
imaging approaches; in many tumor cases, the pyruvate and lactate
are the only two prominent peaks. The most important factor to
note when converting proton imaging sequences to carbon is that
four times stronger gradients are needed, due to lower carbon
gyromagnetic ratio. This can quickly lead to problems with the
gradient performance if not accounted for. The technical challenges
usually limit the resolution to around 5 mm, but the imaging
parameters are highly dependent on the frequency difference
between metabolites and, therefore, vary depending on the mag-
netic field of the imaging system and the selected imaging
approach. The most common approaches are briefly summarized
in the following paragraphs.

Imaging time can be significantly shortened by replacing one of
the phase encoding directions with an echo-planar-type spectro-
scopic data collection (EPSI). Because the same frequency encoded
signal is collected repeatedly following excitation, both spatial and
spectroscopic information can be separated simultaneously by
Fourier transformation. This reduces the number of RF pulses in
case of 16 � 16 matrix to just 16, and a corresponding shortening
in the imaging time is achieved. EPSI-type pulse sequences are
widely available in imaging systems and can be set up for carbon
experiments relatively easily (see Note 14). Alternatively, both
phase encoding directions could be replaced with a repeated
spiral-type data acquisition, in which case full metabolic map
could in theory be achieved with just one excitation pulse.

As an alternative to Fourier-based spectroscopic imaging, the
sparsity of 13C spectra can be exploited by acquiring MR images
(theoretically N + 1 images are needed to separate N peaks) at
specific echo times, which are selected to give maximum phase
separation of the underlying metabolic signals and then using
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spectral decomposition methods to resolve the data [10, 11]. Typi-
cally, seven to eight images for time point are needed to allow the
separation of pyruvate and all its downstream metabolites. When
pyruvate and lactate are the only two prominent peaks, even fewer
images may be sufficient. The appeal of this approach is that normal
fast imaging sequences can be used to collect data, making it easier
to optimize, and higher spatial resolution can be achieved. Despite
its more complex post-processing, spiral-type data collection has
been favored over echo-planar imaging because it allows for shorter
echo times.

Finally, an approach where individual peaks are excited using
spectral-spatial pulses and imaged sequentially can be adopted. In
this case, the number of RF pulses per time point often matches the
number of metabolites imaged, and only the peaks of interest (e.g.,
pyruvate and lactate) are imaged. Again, standard fast imaging
sequences can be used for data collection. While spectral-spatial
pulses used for this approach are not regularly available in standard
MR systems (see Note 15), they offer great flexibility in designing
the experiment [12]. However, great care is needed with shimming
because variations in frequency offsets lead directly to signal losses
and cannot be corrected in post-processing.

3.2.4 In Vitro Experiment 1. Confirm that the sample (e.g., a test tube with around 108

tumor cells or a bioreactor) is at the correct place inside the
imaging magnet.

2. Shim the system at 1H channel.

3. Change the system to 13C and optimize the coil performance
(tune/match) (see Note 16).

4. Start spectroscopic pulse sequence before the addition of a
hyperpolarized compound.

5. Sample for 3–5 min until the signal has decayed away.

3.2.5 In Vivo Experiment 1. Anesthetize the animal (see Note 17), place an injection line,
e.g., to the tail vein, and place the animal inside the magnet.

2. Shim the system at 1H channel.

3. Collect reference images for metabolic maps or placing the
spectroscopic slab.

4. Optimize the 13C coil performance (tune/match) (see
Note 16).

5. Select the 13C acquisition slice/slab based on 1H data.

6. Depending on the imaging approach, start the spectroscopic
pulse sequence either before the intravenous injection of hyper-
polarized compound or at a fixed time point after the injection.
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Despite the large increase in the amount of signal available, a
high-concentration bolus (3–10 mL/min) of marker molecule
(e.g., 80 mM [1-13C]pyruvate) still needs to be injected, typically
at 5–10 mL/kg. This is in contrast, for example, to PET studies,
where only trace amounts are used. Such high doses may transiently
disturb the underlying metabolism and even lead to potential tox-
icity effects. No significant side effects have been reported for
tumor experiments using hyperpolarized pyruvate, but normal
physiological monitoring is advisable during the experiments.

3.3 Data Analysis Currently there is no consensus on the best approach to analyze the
data from hyperpolarized pyruvate experiments (Fig. 2). This is
partially due, both, to the fact that there are several ways to collect
the data, as presented above, and to the relatively young age of the
field, so the methodology is still evolving.

3.3.1 Single Time Point:

Lactate-Pyruvate Ratio

This is the simplest and fastest analysis for hyperpolarized data. In
some cases, for example, for CSI-type snapshot imaging, it is also
the only analysis method available. It is worth noting that the
lactate-pyruvate ratio changes continuously during the experiment
(Fig. 2), so the analysis is only meaningful if the data have been
acquired at similar time points.

3.3.2 Time Courses:

Kinetic Modeling

The label transfer can be analyzed in more detail when partial or the
entire time course is available. The labeling of downstream pro-
ducts, most importantly lactate, can be described using two-site
Bloch-McConnell exchange model [3, 7] (see Note 18):

dPyr

dt
¼ � kPL þ ρPyr

� �
Pyrþ kLPLac þInflow½ �

dLac

dt
¼ � kLP þ ρLacð ÞLacþ kPLPyr

Fig. 2 Typical tumor pyruvate and lactate signal time courses and the corresponding lactate-pyruvate ratio;
pyruvate injection is started at time 0 s. Time courses can be analyzed using a two-site exchange model
including both exchange (k) and relaxation (ρ) parameters for each metabolite
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where kPL and kLP are reaction rates for pyruvate ! lactate and
lactate ! pyruvate reactions and ρPyr and ρLac are the effective
longitudinal relaxation rates (1/T1) for pyruvate and lactate,
respectively (Fig. 2) (see Note 19). Additional terms to account
for inflow terms (e.g., gamma variate function or boxcar step
function) or additional exchanging sites can be easily incorporated
into the model. Similar equations can be written for other down-
stream metabolites. It is worth noting that the loss of carbon
dioxide is an irreversible reaction, which, therefore, only proceeds
one way. The differential equations can be solved analytically [7] or
using numerical methods, and these are considered to be the gold
standard (see Note 20).

Modeling approaches can be used to produce apparent reaction
rates with units (s�1). For in vitro experiments, these can often be
converted to actual fluxes (e.g., nmol/s/cell) by taking into
account the injected pyruvate concentration and the number of
cells used [7]. However, the in vivo experiments probe a complex
system with multiple compartments and involve both the transport
(via monocarboxylate transporters) and metabolic steps. For exam-
ple, pyruvate needs to be transported inside the cell (e.g., tumor
cell or red blood cell), and the lactate may be exported from the
cells after the label enters the blood stream. Furthermore, the
uptake of marker molecule may be transport-limited, leading to a
situation where the signal coming from the marker molecule will be
mostly in blood stream, while the signals from downstream pro-
ducts are coming from tissue and/or blood. Finally, it is also worth
noting that the visibility of hyperpolarized signal is dependent not
only on the absolute metabolite concentration but also on the
polarization level and the longitudinal relaxation rates of different
metabolites. Because of this, the in vivo results are usually reported
as apparent rates with unit s�1. Further work on the metabolic
interpretation of the experiments still remains to be conducted,
and correct biological interpretation of DNP result therefore
often requires careful analysis of potential signal losses and tradi-
tional biochemical analysis.

3.4 Beyond [1-13C]

Pyruvate Metabolism

While [1-13C]pyruvate experiment is by the far the most used in
cancer studies, other hyperpolarized marker molecules can also be
used, although these are much less frequently studied. For example,
injection of [1,4-13C2]fumaric acid leads to malate labeling in
regions with significant necrosis [13], while [1-13C]bicarbonate
[14] and [13C]urea [15] can be utilized to assess tumor acidosis
and perfusion, respectively. [13C]glucose can also be hyperpolar-
ized to potentially reveal further insights into glycolysis and pentose
phosphate pathway [16]. Finally, multiple markers could be used
simultaneously to get a more detailed understanding of the metab-
olism, providing that reasonable separation between resonances can
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be sustained [15]. This may open up previously unprecedented
window to real-time metabolism.

All metabolites mentioned in the previous paragraph can be
polarized using similar methods as those presented for pyruvate (see
Note 21). The most important difference is that most of the other
metabolites require a glassing agent (e.g., glycerol) as a part of the
hyperpolarized sample for efficient polarization. Similarly, neutral
dissolution buffers can be often used, as the original preparation is
not highly acidic (of the metabolites mentioned above, only fuma-
rate is polarized as acid form). Similar imaging and analysis methods
can also be applied, provided the correct frequencies for each
metabolite are used when setting up the experiments.

4 Notes

1. The chemical structure of the molecule leads to variations in
electron shielding around the nuclei, thus causing them to
resonate at different frequencies (chemical shifts). These chem-
ical shifts are typical for molecules and can therefore be used to,
e.g., identify molecules, in case of hyperpolarized experiments
pyruvate and its metabolic products. Chemical shifts can be
found from, e.g., online databases such as “Human Metabo-
lome Database,” http://www.hmdb.ca [17].

2. For spin¼ 1/2 nuclei such as 1H or 13C, polarization is defined
as the population difference between high- and low-energy
states and depends on the strength of the main magnetic field
and temperature according to the Boltzmann distribution.
Under normal conditions, the populations in both states are
nearly equal, and polarization is therefore very low (e.g., 8 ppm
for 13C at 9.4 T at room temperature), making MRI not
sufficiently sensitive. Polarization can be increased by increas-
ing the magnetic field strength or lowering temperature or by
using hyperpolarization methodology.

Dissolution dynamic nuclear polarization (dDNP) meth-
odology is based on microwave-induced signal
pre-amplification of the labeled marker molecule, usually 13C,
at low temperature (~1 K) followed by a rapid dissolution of
sample providing a room-temperature solution of the marker
molecule with increased sensitivity. Microwaves induce polari-
zation transfer between free electrons in the radical and nearby
13C. The hyperpolarization is efficiently distributed through-
out the amorphous solid sample through spin diffusion. The
13C signal loss is slow in solid state (longitudinal (T1) relaxation
times are long) leading to a signal buildup and a significant
increase in the overall signal level.
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Alternative means to achieve hyperpolarization include
brute-force (high magnetic field and low temperature), laser-
driven optical pumping (for hyperpolarized gases), and
parahydrogen-induced polarization (PHIP, SABRE), usually
achieved by reacting the hyperpolarized parahydrogen with a
suitable labeled precursor, yielding the final hyperpolarized
marker molecule.

3. The metabolism available for hyperpolarized studies is ulti-
mately limited by T1 relaxation times of 13C-label in the marker
and product molecules because all transport, uptake, and
metabolism need to occur during a time period of two to
three T1 relaxation times after which the majority (>90%) of
the signal is lost. The majority of markers up to now have T1

times in the range of 10–50 s (e.g., pyruvate has T1 of around
50–60 s in liquid and around 30 s in vivo), giving a metabolic
time window of up to 3 min. This relatively short time period
limits the method to mainly catabolic reactions and possibly the
initial steps of anabolic processes. Other significant factors
influencing hyperpolarized experiments are the sufficient
chemical shift between precursor and metabolites, especially
because the precursor signal is often much larger than the
products, and the relative nontoxicity of the injected metabo-
lites, because the concentrations used are often several folds
higher than those normally are present. For example, a typical
preclinical pyruvate dose is injected intravenously at 80 mM
and 5–10 mL/kg yielding around 8 mM blood concentration,
whereas typical plasma pyruvate concentration is around
~0.2 mM.

4. [1-13C]Pyruvic acid can currently be purchased in non-clinical
and clinical quality; the latter is designed for clinical hyperpo-
larizer studies. Non-clinical quality pyruvic acid is suitable for
preclinical research. Pyruvic acid forms an amorphous glass
when it is frozen, so it is directly suitable for hyperpolarizer
experiments.

5. The best polarization has been achieved using trityl radicals
(e.g., OX063, AH15011), which to date have been only avail-
able through GE Healthcare. In most cases, there is relatively
little difference between OX063 and AH15011 in terms of
performance. Other radicals, such as nitroxide-based
TEMPO, can also be used, but these usually achieve lower
polarization levels. The optimal radical concentration depends
on the polarization field and is usually slightly higher at higher
magnetic fields (e.g., 20–25 mM at 7 T). Too low radical
concentration leads to slow polarization, whereas too high
radical concentration leads to rapid polarization but lower
final polarization level.
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6. Pyruvate and radical are normally stored in a cold, dry place
protected from direct light to improve stability. Allow the
radical and pyruvic acid to warm up to room temperature
before proceeding with the sample preparation. Weigh the
radical into a suitable container (e.g., conical tube) and add
pyruvic acid. Vortex the sample until a dark green liquid with
no visible radical residual is obtained. Sonication is usually not
needed to fully dissolve the radical into small stock solutions.
Store the stock solution in cold, dry place protected from direct
light (e.g., in a desiccator inside �20 �C freezer), preferably as
pre-made sample aliquots.

7. Addition of Gd chelate leads to a reduction in electron T1

relaxation time, which allows higher 13C polarization levels to
be achieved at lower magnetic fields (e.g., 3.35 T). The addi-
tion of Gd chelate leads to a small reduction on liquid state T1

relaxation time, but this is greatly offset by the benefits of the
higher polarization levels. Due to this effect, however, the Gd
concentration should be kept as low as possible. Gd3+ ion is
also highly toxic, so Gd should always be added in a chelate
form to avoid any unexpected biological side effects even at
these low concentrations. The beneficial effect of Gd appears to
be largely lost at higher polarization fields (4.6 T or more), due
to altered polarization conditions [18].

8. Hyperpolarized pyruvic acid sample is highly acidic (pH < 1)
and needs to be neutralized and made isotonic as part of the
dissolution process. Both of these goals can be achieved using
buffered NaOH solutions, in which any biologically compati-
ble buffer can be used. The buffer usually contains some ethy-
lenediaminetetraacetic acid (EDTA) to chelate impurities.
TRIS base in the recipe can be replaced with Trizma crystals
with preset pH 7.6. An alternative recipe based around
HEPES-buffer can be found in [6]: 1 L MilliQ water, 9.54 g
(40 mM) 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES), 3.76 g (94 mM) NaOH, 1.752 g (30 mM) NaCl,
and 100 mg EDTA.

In some cases, it is favorable to separate the dissolution and
neutralization steps. For example, AH15011 radical is not
highly soluble in acidic conditions and can be filtered out of
the sample before the sample is neutralized using NaOH in the
collection cup. It is worth noting that OX063 solubility is not
highly pH dependent. For preclinical work, simultaneous dis-
solution and neutralization is usually favored, because of its
simplicity.

9. The amounts of dissolution volumes cited here are the typically
used volumes for preclinical experiments and give approxi-
mately 5 mL of the final polarized sample. This results in a
significant loss of sample because a typical injected dose used in
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preclinical experiments is 0.1–2 mL and the dissolved sample
cannot be easily recycled. The dissolution volume can be
decreased (up to 50%) to minimize the dose of pyruvic acid
or to obtain higher pyruvate concentrations, as long as rapid
dissolution can be achieved. The achievable volume reduction
depends on the hyperpolarizer equipment used, however. For
example, in Hypersense equipment, the chase gas will remove
the whole sample from the system, whereas SpinLab systems do
not use a chase gas, so some sample will be always lost as dead
volume and significant volume reductions are more difficult to
achieve. An alternative approach for the reduction of final
sample volume is to replace some of the dissolution buffer
with perfluorocarbon solutions, which rapidly separate from
water-based buffer after dissolution [19].

10. Microwave irradiation used dDNP experiments is performed
around the precession frequency of the electron (e.g., around
94.1 GHz for Hypersense operating at 3.35 T). The polariza-
tion frequency yielding the highest signal depends on the
properties of a given molecule and the radical used. The polari-
zation efficiency can be optimized by recording a series of
hyperpolarized spectra while sweeping the microwave fre-
quency (e.g., in steps of 1 MHz) around the expected maxi-
mum and using the polarization frequency giving the highest
solid-state signal. While most polarizer systems allow direct
monitoring of NMR, this can also be achieved by using the
main imaging system for signal detection. The conversion of
the obtained signal intensity to absolute polarization is not
usually straightforward at this stage.

11. The exact amount of NaOH may vary slightly from system to
system depending on, e.g., the dead volume of the dissolution
system; therefore, the pH of the final samples needs to be
confirmed and the amount of NaOH of dissolution buffer
adjusted accordingly. The recipe given in materials is from
SpinLab-based dissolution system. The alternative recipe
given in Note 8 has been successfully used in Hypersense-
based system.

12. Measurement of polarization levels can be achieved using
either a dedicated polarimeter or by comparing the hyperpo-
larized signal to thermal equilibrium signal measured from the
same sample. While the latter is more accurate, as the same
sample is used for both measurements, it is very time-
consuming, due to low thermal signal; the aforementioned is
not easily achieved during in vivo work.

13. Either a constant or variable flip angle can be used for the
experiment. In the latter case, the flip angle steadily increases
during the data collection to compensate for the loss of the
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signal due to previous pulsing, which may improve the data
quality. Variable flip angles have been particularly popular with
fast imaging sequences.

14. The technical limitations, mainly gradient performance, limit
the spatial resolution for spectroscopic imaging. The band-
width of the collected spectra depends on the repeat rate of
the read-out block, leading easily to a situation where the
spectral range of the peaks exceeds the technical specifications
of the instrument. The sparsity of the 13C spectra allow signifi-
cant folding of the peaks, which alleviates the situation, but
imaging parameters need to be selected carefully to avoid over-
lapping the peaks of interest.

15. Matlab implementation for spectral-spatial pulse design can be
found in “Hyperpolarized MRI Technology Resource Center”
website (https://radiology.ucsf.edu/research/labs/
hyperpolarized-mri-tech, under topic “TR&D 1: Improved
DNP Methodology and HP MR Acquisition Techniques” in
Dissemination and Training).

16. Calibration of flip angles is usually performed in a 13C-contain-
ing phantom (e.g., 13C-acetate) before the actual hyperpolar-
ized experiment because the sample usually does not contain
enough 13C signal before the experiment and there is no time
to perform it after the injection. As long as the used phantom is
of similar composition, flip angles remain approximately the
same between samples. In animals, fat signals (20–40 ppm) can
also be used to check flip angles before hyperpolarized experi-
ments provided enough fat is visible to the coil.

17. There is some evidence that, similar to PET experiments, fast-
ing animal prior to the experiments may lead to less variation in
the results [20], but further confirmations are required.

18. It has been shown that labeling of lactate signal is mainly driven
by the lactate dehydrogenase (LDH)-catalyzed label exchange
between the injected [1-13C]pyruvate and the existing tumor
lactate pool, which needs to be taken into account when inter-
preting the results [3, 7].

19. The effective longitudinal relaxation rates include the signal
losses from RF pulses, which can be modeled more explicitly if
a better estimate of actual relaxation rate is wanted. Equation

ρ ¼ 1

T 1,eff
¼ 1

T 1
� 1

TR
ln cos αð Þ

gives effective relaxation rate for an experiment with a constant
flip angle (α) and repetition time (TR). A more accurate esti-
mate of relaxation rates can be achieved by varying either flip
angle or relaxation time or both during the scan.
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20. A reasonable starting guess for the fitting is required; in vivo
kPL exchange rates are usually around 0.05–0.1 s�1 and relaxa-
tion rates 1/30 s�1. In vitro exchange rates can be several
orders lower due to smaller number of cells. Simultaneous
solving of all four unknowns is usually not feasible, so simpli-
fications are made (e.g., relaxation rates are assumed to be
equal or kLP is assumed to be 0 s�1). Even after these modifica-
tions, the fit can easily become unstable or produce unrealistic
values (e.g., negative kLP) especially if the beginning of the time
course is not fully sampled. Nevertheless, the value for kPL is
usually robustly fitted regardless of the approach taken. The
quality of numerical fitting can be improved by making both
signals to contribute similarly to the residual, for example, by
normalizing the residual data for each signal. This helps espe-
cially with in vitro data, wherein the pyruvate signal is much
larger than the lactate signal.

Several derivations of the two-site exchange model, aimed
to simplify the estimation, have been proposed. These can be
used to either estimate the exchange rates or derive parameters
that correlate with the underlying exchange rates. While the
approaches vary in detail, and the obtained absolute exchange
rates may vary slightly, they all appear to report well on the
most significant parameter, the forward pyruvate ! lactate
reaction rate, kPL [21, 22]. However, unlike the two-site
model, these approaches have not yet been used extensively.
The most commonly used approaches are summarized below.

(a) Precursor-product [21]
A simple precursor-product model only fits lactate

response (kPL and kLP + ρLac) based on pyruvate input.
In this approach, the number of unknowns is limited, and
the factors such as pyruvate and relaxation do not need an
explicit form making the fitting more stable.

(b) Lactate-pyruvate ratio analysis [23]

In this approach, a relation between the lactate-
pyruvate ratio (RLP) and exchange rates is established
after a selected time point, t0 (e.g., after pyruvate has
peaked)

RLP tð Þ ¼ r 1þRLP t0ð Þ½ � þ RLP t0ð Þ � r½ �e�s t�t0ð Þ

1þRLP t0ð Þ þ r �RLP t0ð Þ½ �e�s t�t0ð Þ

where r ¼ kPL/kLP and s ¼ kPL + kLP. Relaxation terms are
effectively removed, and only two terms need to be fitted.
Alternatively, a linear fit to data describing RLP and its
changing rate can be used to derive exchange rates
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q ¼
dRLP

dt

1þRLP
¼ �kLPRLP þ kPL

Both of these approaches may allow an efficient estimation
of exchange rates with only a few time points.

(c) Area-under-the curve analysis [24]
It has been shown that the ratio of areas under lactate

and pyruvate correlates with exchange rates by a simple
ratio:

P
LacP
Pyr

¼ kPL
kLP þ ρLac

The analysis is easy to perform, signal-to-noise ratio
can be maximized by summing over the time course, and
no assumptions about pyruvate inflow are required. How-
ever, no exact value for kPL is directly obtained, and the
analysis may become inaccurate if the full-time course
cannot be sampled.

(d) Lactate peak analysis
The peak signal amplitude and time of lactate signal

are both closely related to kPL and can, therefore, be used
as a marker for the transfer. The lactate-pyruvate ratio at
the time of the lactate peak has been shown to be equal to
the product kPL and effective T1, while an estimate of T1

can be obtained by estimating the lactate peak width at
around 80% height [25].

RLP tLac,max

� � � kPLT 1

Alternatively, the time-to-lactate peak (TPP) can be
used as a surrogate for kPL activity [22]:

TPP ¼ tLac,max � tLac,0 ¼ 1

kPL þ kLP
ln 1þ T 1 kPL þ kLPð Þ½ �

21. While there is currently no centralized database for hyperpolar-
ized preparations and new ones are published continuously, a
number of most common formulations can be found from
“Hyperpolarized MRI Technology Resource Center” website
(https://radiology.ucsf.edu/research/labs/hyperpolarized-mri-
tech, under topic “Formulationof carbon-13 labeledcompounds
for dissolution-DNP” in Dissemination and Training).
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Chapter 22

Overview of Glutamine Dependency and Metabolic
Rescue Protocols

Shuo Qie, Dan He, and Nianli Sang

Abstract

Enhanced glutaminolysis and glycolysis are the two most remarkable biochemical features of cancer cell
metabolism, reflecting increased utilization of glutamine and glucose in proliferating cells. Most solid
tumors often outgrow the blood supply, resulting in a tumor microenvironment characterized by the
depletion of glutamine, glucose, and oxygen. Whereas mechanisms by which cancer cells sense and
metabolically adapt to hypoxia have been well characterized with a variety of cancer types, mechanisms by
which different types of tumor cells respond to a dynamic change of glutamine availability and the
underlying importance remains to be characterized. Here we describe the protocol, which uses cultured
Hep3B cells as a model in determining glutamine-dependent proliferation, metabolite rescuing, and
cellular responses to glutamine depletion. These protocols may be modified to study the metabolic roles
of glutamine in other types of tumor or non-tumor cells as well.

Key words Anaplerosis, Cell proliferation, Endoplasmic reticulum stress, Glutamine depletion,
Metabolism, Nitrogen anabolism

1 Introduction

Increased utilization of glutamine and glucose is a common bio-
chemical feature of most rapid proliferating cells, indicating crucial
metabolic roles in supporting cell division. Whereas glucose plays
important roles in carbon anabolism, energy homeostasis, and
redox balance [1], glutamine may serve as both a nitrogen source
and a carbon source participating in a variety of biosynthesis,
actively occurring in all types of proliferating cells [2]. In addition
to its direct roles in nitrogen-dependent anabolic processes such as
protein translation, nucleotide biosynthesis, and asparagine biosyn-
thesis, glutamine serves as an important precursor of glutamate in
most cells. Upon entering the mitochondria, glutamine can be
readily converted into glutamate through glutaminolysis catalyzed
by glutaminases [2]. A variety of transamination processes involve
glutamate as amino group donor, or α-ketoglutarate as the amino
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group acceptor, to maintain the dynamic homeostasis of the intra-
cellular pool of amino acids. Particularly, proliferating cells have
increased demands for glutamate, aspartate, serine, and glycine for
the biosynthesis of nucleotides, biomembranes, and glutathiones
and require one-carbon units for a variety of cell functions
[3–5]. The high levels of intracellular concentrations of glutamine
and glutamate also serve chemical potential to power the cross-
membrane transport of nutrients and metabolites, which indirectly
participates in other cellular processes [6, 7]. The carbon skeleton
derived from glutamine catabolism may eventually enter into vari-
ous carbon metabolic pathways to support the production of
NADPH and NADH directly or indirectly through anaplerotic
pathways [8–10]. The multiplicity of metabolic fates and complex-
ity of metabolic pathways have been extensively studied by using
isotope tracking and mass spectrometry [11–13]; however, deter-
mining the indispensable role of glutamine in specific type of cells
under specific physiological or pathological context usually
demands functional assays.

Under in vivo conditions, solid tumors usually have poorly
developed vasculature, leading to a microenvironment character-
ized by localized hypoxia and nutrient depletion. To survive in such
microenvironment, tumor cells usually resort to stress response and
metabolic reprogramming, both of which may involve transcrip-
tional control of gene expression and biosignaling [14]. Hypoxia
inducible factor (HIF)-mediated transcriptional and metabolic
reprogramming are the best known cellular response to hypoxia
[15, 16]. Under hypoxic condition, HIF activation upregulates the
expression of angiogenic, glycolytic, and other relevant genes that
induce the adaptive response to hypoxia [17]. Glutamine, even
though classified as a nonessential amino acid at organismal levels,
has been shown to be essential for most types of cells in culture
[2]. Lack of glutamine has been shown to trigger both general
stress responses and metabolic responses specific to glutamine
depletion [14]. The general responses observed in past studies
include endoplasmic reticulum stress response, cell proliferation
inhibition, and activation of heat shock protein system. However,
currently available studies are not sufficient to generalize glutamine
sensing or signaling pathways. It remains unclear if different tumor
cells or under different biological contexts may have different glu-
tamine dependency and may respond to glutamine depletion
differently.

In addition to tumor cells, normal cells may also conditionally
assume a rapid proliferation status; these include endothelial cells in
wound healing, activated T and B cells in responding to pathogens,
hematopoietic stem cells, etc. In another scenario, normal tissues
may experience ischemia-triggered hypoxia and glutamine deple-
tion. Importance and roles of glutamine utilization in normal cells
under these conditions remain to be determined.
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We present the protocols we have used to study glutamine
metabolism in Hep3B cells, a tumor cell line originated from
hepatocytes, which depends on glutamine for proliferation. The
protocols are intended for the determination of the glutamine
dependency of cell functions and cellular responses to glutamine
depletion. We also introduce the method to determine the critical
metabolic roles in specific cell types and physiological context by
functional rescuing tests. These approaches may be utilized to
complement the genetic approaches and mass spectrometry-based
tracking of carbon or nitrogen derived from isotope-labeled
glutamine.

2 Materials

2.1 Cell Culture

and Proliferation

Assay Equipment

and Kit

1. Hep3B cells (ATCC HB-8064).

2. Water jacketed, humidified cell culture incubator, with 5% CO2

and 95% air atmosphere, temperature setting at 37 �C.

3. CyQUANT® GR dye (a proprietary product of molecular
probes): 500� solution in dimethyl sulfoxide (DMSO) (see
Note 1).

4. Fluorescence microplate reader equipped with excitation wave-
length at 485 nm and emission detection at 530 nm.

5. Hank’s Balanced Salt Solution (HBSS buffer 1�): NaCl
140 mM, KCl 5 mM, CaCl2 1 mM, MgSO4-7H2O 0.4 mM,
MgCl2-6H2O 0.5 mM, Na2HPO4 0.3 mM, KH2PO4 0.4 mM,
glucose 6 mM, and NaHCO3 4 mM.

2.2 Cell Culture

Media and Reagents

1. Regular Dulbecco’s modified Eagle’s medium (DMEM): with
4.5 g/L glucose (about 25 mM) and 4 mM glutamine.

2. Glutamine-free DMEM: with 4.5 g/L glucose; without
glutamine.

3. Penicillin/streptomycin solution (100� stock): penicillin
10,000 units, streptomycin 10,000 μg/mL.

4. 0.25% trypsin.

5. 1� phosphate buffered saline (PBS): 137 mM NaCl, 10 mM
Na2HPO4, 2.7 mM KCl, 1.76 mM KH2PO4, pH 7.4.

6. Dimethyl sulfoxide (DMSO), cell culture grade.

2.3 Cell Culture Sera 1. Regular fetal bovine serum (FBS), heat inactivated.

2. Dialyzed (10 kD cutoff) FBS, heat inactivated (see Note 2).

2.4 Other Conditional

Nutrient Supplements

1. Ammonium sulfate, 0.4 M stock.

2. Glucose, 2 M stock.
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3. Glutamine, 0.2 M stock.

4. Sodium pyruvate (100� stock).

5. Nonessential amino acid mix (100� stock): L-alanine 890 mg/
L, L-asparagine 1320 mg/L, L-aspartic acid 1330 mg/L, L-
glutamic acid 1470 mg/L, glycine 750 mg/L, L-proline
1150 mg/L, and L-serine 1050 mg/L.

6. Dimethyl-α-ketoglutarate (DM-α-KG), 1 M stock.

7. Any other metabolites to be tested.

3 Methods

3.1 Cell Revival

and Maintenance

1. Prepare regular DMEM media: warm up a bottle of regular
DMEM, and add FBS to 10%, sodium pyruvate to 1 mM
(final concentration), and penicillin/streptomycin solution
mix to 1�.

2. Thaw cryopreserved cells at 37 �C in water bath with gentle
shaking.

3. Immediately after complete thawing, transfer cells into a 15mL
centrifuge tube containing 10 mL of the prepared regular
DMEM media. Gently mix.

4. Spin down at 4 �C in a centrifuge, 1000 � g for 5 min.

5. Dispose of the supernatant by careful aspiration.

6. Resuspend cells in the regular DMEM culture media
prepared in 1.

7. Transfer the cell suspension to a 60 mm or 100 mm cell
culture dish.

8. Place the culture dish in a humidified incubator with 5% CO2/
95% air atmosphere at 37 �C.

9. Trypsinize cultured Hep3B cells upon reaching 90% conflu-
ence, dilute cells in a ratio of 1:4 with regular DMEM media.

10. Continue maintaining the cells in the regular DMEM media
until experiments dictate otherwise (see Notes 3 and 4).

3.2 Effects

of Glutamine Depletion

on Gene Expression

and Signaling

The effects of acute glutamine depletion on gene expression and
signaling are complicated and far-reaching [14]. In most cases,
these may include cell stress response, cell cycle arrest, inhibition
of the mechanistic target of rapamycin complexes (mTORC),
autophagy, and metabolic reprogramming [18–20]. A common
starting point to explore these aspects is to expose the cells to
glutamine depletion and analyze the change of gene expression
and protein markers of relevant cellular processes. The following
protocol outlines the overall processes to prepare the RNA and
protein samples for further studies. Methods for analyzing gene
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expression, enzyme activities, protein markers, and cellular func-
tions are outside the scope of this chapter.

1. Preparing glutamine-free DMEM culture media: warm up a
bottle of glutamine-free DMEM with 4.5 g/L glucose. Add
dialyzed FBS to 10%. Add sodium pyruvate to a final concen-
tration of 1 mM and penicillin/streptomycin (1�).

2. Trypsinize freshly cultured Hep3B cells reaching 90% conflu-
ence, dilute cells in a ratio of 1:4, and culture in 10 cm culture
dishes with glutamine-free DMEM prepared in step 1, but add
glutamine to culture dishes to a final concentration of 4 mM for
acclimation overnight (about 12–16 h) (see Note 5).

3. 24 h later, replace with fresh glutamine-free DMEM.

4. For control cells, add glutamine to 4 mM immediately after the
replacement of fresh media (see Note 6).

5. Continue culturing all the cells for 6–48 h (see Note 7).

6. At desired time, harvest the cells, prepare protein samples, or
isolate RNA for subsequent analysis.

7. Protein samples may be used to detect cellular stress responses,
for example, biomarkers of cell signaling, apoptosis, autophagy,
and change of metabolic enzymes.

8. RNA samples can be used to detect the expression of specific
genes and noncoding RNAs or for non-biased gene expression
profiling using microarrays or RNA sequencing.

3.3 Effects

of Glutamine

Concentration on Cell

Proliferation

Overall, glutamine depletion will negatively affect the cell prolifer-
ation rate; however, glutamine-independent cell survival and pro-
liferation have also been observed [2, 21]. We provide the
following protocol to evaluate the importance of glutamine on
the proliferation rates of any cell type to be tested. In addition,
this protocol can be used to evaluate the rescuing effects of any
metabolite that may potentially substitute glutamine in order to
support cell proliferation. Data from these rescuing experiments are
expected to provide insight into the metabolic roles of glutamine in
a specific type of cells at given physiological conditions.

Considering glutamine may contribute carbon source for ana-
plerotic reaction in the mitochondria; glutamine depletion may
potentially affect activities of metabolic enzymes [2, 22]. As such,
the activity of metabolic enzymes may not accurately correlate to
cell numbers in this specific context; instead, DNA content deter-
mination or assay based on labeled nucleotide incorporation (3H-
thymidine or 5-bromo-20-deoxyuridine) should be a more reliable
approach. We use CyQUANT® NF Cell Proliferation Assay Kit to
determine cell proliferation rates (seeNote 1). The core component
of the kit, the CyQUANT® GR dye, exhibits strong fluorescence
enhancement after binding with double stranded DNA (dsDNA).
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As DNA content is closely proportional to cell number, the assay is
designed to produce a linear analytical response in the range of
100–20,000 cells per well in a 96-well microplate. If absolute cell
number determination is desired, a standard curve can be generated
from plating out known cell numbers. The relative cell number
stands for the ratio of cell number at indicated time to the starting
cell number at the time of treatment. If absolute cell number
determination is desired, a standard curve can be generated from
plating out cells in a range of 100–20,000 cells/well and running
the test after cells are attached (about 4–6 h after seeding). We
recommendmonitoring the cell proliferation daily for 5 consecutive
days at precisely 24 h intervals. The protocol is modified as
following:

1. Trypsinize freshly cultured Hep3B cells reaching 90%
confluence.

2. Resuspend cells in 20 mL glutamine-free DMEM with 10%
dialyzed FBS and 4 mM glutamine.

3. Count the cell number using a hemocytometer and an upright
microscope or using an automatic cell counter.

4. Dilute the cells to make a suspension of 200 cells/100 μL in
glutamine-free DMEM with 10% dialyzed FBS and 4 mM
glutamine.

5. Plate 200 cells in 100 μL per well in a 96-well cell culture
microplate compatible with the assay kit. Set up at least four
wells for each experimental condition and one microplate for
each observing day (see Note 8).

6. Allow cells to recover overnight (around 12 h).

7. After 12 h, take one microplate to measure cell numbers as the
basal control.

8. For other microplates, replace regular DMEM media, which
contains 4 mM glutamine, with glutamine-free DMEMmedia,
which is supplemented with defined concentrations of gluta-
mine, including 0 mM and 4 mM as the controls (see Note 9).

9. Follow the protocol provided by the manufacturer of the assay
kit to determine the cell numbers (see Note 10).

10. Based on needs, dilute the 500� CyQUANT® GR dye solu-
tion with 1� HBSS buffer to 1� working solution.

11. Remove culture medium gently.

12. Add 50 μL of 1� CyQUANT®GR dye solution to each well of
the microplates.

13. Cover the microplates with aluminum foil to avoid lights.

14. Incubate the plates at 37 �C for 30 min.
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15. Measure the fluorescence intensity using a fluorescence micro-
plate reader with excitation at 485 nm and emission detection
at 530 nm.

16. Analyze the data, perform statistical analysis, and create report.

3.4 Rescuing

Glutamine Depletion

by Glutamine-Derived

Metabolites

The carbon and nitrogen from glutamine can be tracked to enter
various metabolic pathways in the cells (see Fig. 1). Glutamine
serves as a substrate directly in the production of glutamate and
asparagine. Through transamination reactions, glutamate may
channel the amino groups to a variety of keto acids to produce
nonessential amino acids. Glutamine and some of the nonessential
amino acids synthesized from nitrogen provided by glutamine are
important in nucleotide synthesis and glutathione biosynthesis. In
addition to serving as a nitrogen source, glutamine also provides
the carbon skeleton α-KG. α-KG may be used in the Krebs cycle in
the mitochondrion to produce ATP or in anaplerotic reactions to
support a variety of biosynthetic processes. In some tumors
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Fig. 1 Diagram showing metabolic pathways of glutamine and potential metabolites or nutrients that may
functionally rescue cell proliferation under glutamine depletion Blue arrows and text indicate factors that may
facilitate the production of glutamate in cells, and black arrows and text indicate the pathways or metabolites
that consume glutamate. Under specific context, one or more of the metabolites may become rate limiting for
cell proliferation. By examining the rescuing effects of various relevant metabolites, it will be possible to
determine the key metabolic limitation caused by glutamine depletion under specific biological conditions. AA,
amino acids; α-KG, α-ketoglutarate; NEAA, nonessential amino acids; GLS, glutaminase; GDH, glutamine
dehydrogenase; GSH, glutathione. In addition, glutamine has been found to facilitate the production of
2-hydroxyglutarate (2-HG) in the presence of mutant forms of isocitrate dehydrogenases (IDHm) or hypoxia,
which is indicated by red arrows and text. The potential metabolic consequence of 2-HG production may be
tested through providing cells with esterified 2-HG in culture media
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harboring mutations of cytosolic isocitrate dehydrogenases
[23, 24] or under hypoxic condition [25, 26], α-KG may undergo
abnormal metabolic pathways to create an oncometabolite
2-hydroxyglutarate (2-HG).

Accordingly, the metabolites that may potentially rescue gluta-
mine depletion include glutamate, aspartate, asparagine, alanine,
cysteine, serine, glycine, nucleotides (or precursors), glutathione,
α-KG, and the other anaplerotic metabolites of the Krebs cycle. We
use α-KG as an example in the following rescue protocol. Similarly,
other metabolites can also be tested to determine the rate-limiting
factors upon glutamine depletion in a specific setting. In addition to
cell proliferation, other parameters such as autophagic rate, apopto-
tic rate, antibody production of cultured B cells, etc. can be used as
readouts in rescuing experiments.

Since α-KG cannot diffuse across the cell membrane,
dimethyl-α-KG (DM-α-KG) is commonly used to increase the
intracellular α-KG level (see Note 11). Upon entering cells,
DM-α-KG is hydrolyzed by endogenous enzymes to α-KG, which
may rescue cell proliferation either by facilitating the homeostasis of
glutamate (depending on the expression of transaminases and/or
glutamate dehydrogenase) (seeNote 12), or by providing anaplero-
tic carbon metabolites.

1. Trypsinize freshly cultured Hep3B cells reaching 90%
confluence.

2. Resuspend cells in 20 mL glutamine-free DMEM with 10%
dialyzed FBS and 4 mM glutamine.

3. Count the cell number using a hemocytometer and microscope
or using an automatic cell counter.

4. Dilute the cells to make a suspension of 200 cells/100 μL in
glutamine-free DMEM with 10% dialyzed FBS and 4 mM
glutamine.

5. Plate 200 cells in 100 μL per well in a 96-well cell culture
microplate compatible with the assay kit, and place the micro-
plates in cell culture incubator to recover overnight. A total of
six microplates are needed.

6. On the following day, take one microplate to measure cell
numbers as the basal control.

7. For other five microplates, replace culture media with
glutamine-free DMEM and add 0mMglutamine as the control
of glutamine depletion, 4 mM glutamine as the control of
normal glutamine supply, and various concentrations of
DM-α-KG. A suggested range is from 0.5 to 10 mM.

8. At 24 h interval, take one microplate and measure the cell
numbers. Replace culture media for the other microplates (see
Subheading 3.3, step 9).
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3.5 Establishing

Glutamine-

Independent Cells

as a Chronic Adaptive

Model

Cancer cells usually have multiple ways to obtain carbon source to
support the needs for energy, reducing power and biosynthesis. In
most cases, glutamine-dependent proliferation is caused by the
limitation of nitrogen sources to support the proliferative biosyn-
thesis. As such, some type of tumor cells may adapt to the utiliza-
tion of alternative nitrogen sources, a feature that heavily depends
on the availability of specific type of metabolic enzymes to synthe-
size glutamate. For example, glutamate dehydrogenase may cata-
lyze the synthesis of glutamate using ammonia and α-KG as
substrates [2, 21]. On the other hand, glutamine synthetase is
expressed in most cell types; accordingly, by providing sufficient
glutamate,most cells may synthesize glutamine to partially compen-
sate for glutamine removal. The following protocol takes advantage
of the adequate expression of glutamate dehydrogenase in Hep3B
cells to establish a chronic adaptive cell model, which utilizes
ammonia to synthesize glutamate in order to support cell prolifera-
tion. The procedures may be modified to test other cells or meta-
bolites (see Note 13).

1. Trypsinize cultured Hep3B cells reaching 90% confluence.

2. Resuspend cells in glutamine-free DMEM with 10% dialyzed
FBS and 4 mM glutamine, and reseed the cells with 1:4 split.

3. 24 h later, replace media with glutamine-free DMEM including
10% dialyzed FBS and 0.8 mM ammonia.

4. Keep culturing cells at 37 �C in a humidified incubator with 5%
CO2.

5. Change the culture medium every 2 days, and pass the cells at a
ratio (1:2) when reaching 90% confluence.

6. After 6–8 weeks, cell subpopulation will assume ammonia-
dependent proliferation (see Note 14).

7. The cells should be maintained in glutamine-free DMEM sup-
plemented with 10% dialyzed FBS and 0.2–0.4 mM ammo-
nium sulfate (see Note 15).

8. To characterize these cells, split cells in a ratio of 1:2 or 1:3.

9. Feed cells with fresh media (glutamine-free DMEM with 10%
dialyzed FBS and 0.4 mM ammonium sulfate) 24 h before cell
harvesting for protein or RNA sample preparation.

4 Notes

1. These experiments are designed to study the metabolic roles of
nutrients. Manipulation of culture nutrient may significantly
affect the mitochondrial metabolism. Therefore, cell number
determination based on measuring the activity of metabolic
enzymes (such as succinyl CoA dehydrogenase) may create
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artifacts [27, 28]. 3H-thymidine and 5-bromo-20-deoxyuridine
(BrdU) incorporation assays are reliable methods, but these
assays require the use of hazardous materials and complicated
procedures. As DNA content is closely proportional to cell
numbers, we recommend methods based on measuring DNA
content as indicators of cell numbers in these experiments.
There are several commonly used DNA staining dyes commer-
cially available. In our lab we routinely use dsDNA-specific
CyQUANT® GR dye, a proprietary dye supplied in 500�
solution, to determine cell numbers, becasue it gives satisfac-
tory accuracy, repeatability, and sensitivity [29]. Other staining
dyes of nucleic acids may be optimized and used in combina-
tion with RNase treatment to quantify DNA contents. Some
dyes may require permeating the cells or lysing the cells.

2. Regular FBS contains various levels of glucose and amino acids;
therefore, to analyze the nutrient effects, it is critical to use
dialyzed FBS to exclude these variable parameters. In addition,
for these metabolic or nutrient dependency studies, batch to
batch variations of sera may create artifacts. It is strongly
recommended to order sufficient sera of the same batch from
the same vendor for all set of experiments to provide a good
control.

3. All cells are maintained in humidified incubator with 5% CO2,
95% air atmosphere at 37 �C, and the cells should be split upon
reaching 90% confluence. For Hep3B cells used in most cases,
we usually split twice a week with a 1:4 ratio. Other fast pro-
liferating cells may need to be split more frequently or at a
lower ratio (1:5–1:8).

4. Unless freshly purchased from ATCC, tumor cell lines
should be authenticated prior to the start of experiments. The
use of commercially available ones is highly recommended, for
it provides more reliable results. The importance of authentica-
tion is to confirm the identity of the cell lines and to prove that
they are free of any contamination. This is crucial for reproduc-
ibility of findings.

5. If immunofluorescent studies are planned, 1:5 and 1:10 dilu-
tion should be used, and cells should be reseeded in chamber
slides.

6. We do not recommend the use of regular culture media as a
control. To use the same bottle of media for both control and
experimental groups can minimize potential artifacts and can
produce the most reliable results.

7. It is recommended to examine cells at various time points after
exposure to glutamine depletion. To plan this experiment, it is
important to carefully design the experiment in advance and
determine the total dishes of cells will be needed. If more than
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four dishes are needed, trypsinize two dishes (or more dishes as
needed) of actively proliferating cells, and thoroughly mix
them together. Use the mixed cell suspension to seed all dishes
that are to be used in the whole set of experiments.

8. Initial plating cell numbers may be adjusted experientially to
100–500 cells per well, based on the proliferation rate of the
cell type to be tested. Fast proliferating cells may reach the
plateaus too fast if seeded at a high density.

9. Normal cell culture media uses 4 mM of glutamine, which
represents the optimized condition for cell proliferation
in vitro. Under physiological conditions, normal tissues may
reach 50 μM glutamine, and due to poor vascularization in
solid tumors, tumor cells may be exposed to glutamine con-
centrations below 50 μM. A careful titration of glutamine
concentration between 0 and 50 μM may be more relevant to
in vivo situations; but it remains important to include 4 mM
glutamine as a key reference point of optimal proliferation.

10. It is important to note that keeping the precise 24 h intervals
between cell number determinations will make the prolifera-
tion curves more reliable and more reproducible. At the expo-
nential proliferating phase, several hours make a lot of
differences in cell numbers.

11. The cell’s ability to uptake the rescuing metabolites should be
taken into consideration in experimental design. For amino
acids, the efficiency of cell surface transporters may affect res-
cuing effect. Sometimes, it may be necessary to confirm the
uptake efficiency for data interpretation. For example, most
cells cannot uptake glutamate efficiently, and most organic
acids need certain type of modification to increase the uptake.
As a rule of thumb, when anaplerotic metabolites are tested,
properly esterified precursors that can easily enter the cells
should be used.

12. The utilization of certain metabolites depends on the expres-
sion of relevant metabolic enzymes in the cells. In certain cases,
it may be necessary to genetically engineer the cells to express
the required enzymes prior to the rescuing test.

13. By using the same procedures, we have created a glutamine-
independent HeLa line, which overexpresses alanine transami-
nase and is able to proliferate perpetually in glutamine-free
media supplemented with 4 mM of alanine.

14. Ammonium-dependent proliferation can be demonstrated by
comparing the cell proliferation rates of the cells cultured in
glutamine-free DMEM plus 10% dialyzed FBS with and with-
out ammonia supplement, respectively.

15. The cells can be cryopreserved as regular cells in dialyzed FBS
with 20% DMSO.
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Chapter 23

Integration of Metabolomics and Transcriptomics to Identify
Gene-Metabolite Relationships Specific to Phenotype

Andrew Patt, Jalal Siddiqui, Bofei Zhang, and Ewy Mathé

Abstract

Metabolomics plays an increasingly large role in translational research, with metabolomics data being
generated in large cohorts, alongside other omics data such as gene expression. With this in mind, we
provide a review of current approaches that integrate metabolomic and transcriptomic data. Furthermore,
we provide a detailed framework for integrating metabolomic and transcriptomic data using a two-step
approach: (1) numerical integration of gene and metabolite levels to identify phenotype (e.g., cancer)-
specific gene-metabolite relationships using IntLIM and (2) knowledge-based integration, using pathway
overrepresentation analysis through RaMP, a comprehensive database of biological pathways. Each step
makes use of publicly available R packages (https://github.com/mathelab/IntLIM and https://github.
com/mathelab/RaMP-DB), and provides a user-friendly web interface for analysis. These interfaces can be
run locally through the package or can be accessed through our servers (https://intlim.bmi.osumc.edu and
https://ramp-db.bmi.osumc.edu). The goal of this chapter is to provide step-by-step instructions on how
to install the software and use the commands within the R framework, without the user interface (which is
slower than running the commands through command line). Both packages are in continuous development
so please refer to the GitHub sites to check for updates.

Key words Metabolomics, Gene expression, Pathway analysis, Network, Omics integration, R
packages, Gene, Metabolite

1 Introduction

Metabolomics is a powerful approach for uncovering disease bio-
markers and for elucidating biological mechanisms that become
disrupted by disease. As a result, metabolomics data is increasingly
collected in large cohorts, as evidenced in large initiatives such as
the Metabolomics Workbench [1] and the COnsortium of METa-
bolomics Studies (https://epi.grants.cancer.gov/comets/). At the
same time, the advancement of high-throughput technologies is
producing a deluge of data to address clinical and translational
research questions, thereby requiring bioinformatic and computa-
tional approaches that can manage, analyze, and interpret the data
[2]. With this in mind, metabolomics data is increasingly integrated
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with other omics data, such as gene expression data, to fully exploit
and improve interpretability of metabolomic profiles [3]. More
specifically, metabolomics and transcriptomics integration helps to
elucidate mechanisms that drive diseases and also to uncover puta-
tive biomarkers (metabolites) and targets (genes).

2 Materials

Integration approaches can be broadly characterized as numerical,
knowledge-based, or a combination of both. In this section, we
describe current approaches and tools within each category, with an
emphasis on approaches that are available as R packages. While the
focus is on integration of gene expression andmetabolomics data, it
is worth noting that most of these methods can be applied to a
wider array of omics combinations, so long as any assumptions
regarding the distribution of the data (e.g., normality) are met. In
this section, we highlight how the combination of our linear
modeling-based (numerical) approach, IntLIM (Integration
through Linear Modeling), and our pathway enrichment
(knowledge-based) approach, RaMP, uncovers putative gene-
metabolite dependencies, which can be prominently enriched in
cancer-related pathways.

2.1 Numerical

Approaches

Gene expression and metabolomics data are commonly analyzed
independently via univariate analysis methods, such as t-tests or
analysis of variance (ANOVA). However, in these types of analysis,
each feature (e.g., gene, metabolite) is considered to be indepen-
dent, and the relationship between features, including potentially
crucial biological information, is lost. To complement results from
univariate analyses and to assess how the relationships between
features change in response to a phenotype (e.g., cancer type),
multivariate approaches can be applied. These methods can be
categorized as supervised or unsupervised. In supervised analyses,
the phenotype information is utilized, and the goal is typically to
identify the set of features that best separate groups by phenotype.
In unsupervised analyses, the phenotype is not utilized, thereby
allowing one to assess the overall structure of the data, which may
or may not relate to phenotype. Unsupervised analyses are typically
applied to uncover substructures in a dataset (e.g., a subgroup of
samples with similar metabolite abundances) and are useful for
quality control (e.g., to evaluate possible batch effects).

The R package mixOmics provides access to a wide range of
multivariate analysis techniques, including principal component
analysis, independent component analysis, partial least squares,
and canonical correlation analysis [4]. The DiffCorr package also
supports integration of multi-omics data, allowing the user to
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identify pattern changes between two experimental conditions in
correlation networks [5].

Other numerical integration methods focus on identifying
pairwise relationships between genes and metabolites and involve
calculating global correlations. Identifying these relationships is
biologically relevant because functionally related genes and meta-
bolites show coherent co-regulation patterns [6, 7]. Of note, these
gene-metabolite correlations can be used to develop correlation
networks, which can then be compared between different pheno-
types [8, 9]. Alternatively, logistic regression models that combine
gene and metabolite levels can be applied to predict phenotype.

Most numerical approaches assess global gene-metabolite rela-
tionships or use gene and metabolite levels to predict phenotype.
However, these methods do not directly test whether associations
between genes and metabolites depend upon phenotype. This
distinction is important because global associations between
genes and metabolites may not only reflect one phenotype of
interest but could reflect other features (e.g., environment, histol-
ogy). The discordant method [10] addresses phenotype specificity
of gene-metabolite relationships although they do not capture pairs
of features that are correlated in one group and not correlated in
another group. These approaches are also not necessarily imple-
mented into user-friendly frameworks.

To address these limitations, we developed IntLIM [11], which
is publicly available as an R package with an associated user-friendly
RShiny web application (https://github.com/mathelab/IntLIM,
https://intlim.bmi.osumc.edu). IntLIM is based on a linear mod-
eling approach that integrates gene expression and metabolite data
to identify gene-metabolite associations that significantly differ by
phenotype (e.g., a gene-metabolite pair that is positively correlated
in one group but negatively or not correlated in another group).
Specifically, the following linear model is applied to all possible
gene-metabolite pairs: metabolite � gene + phenotype + gene:pheno-
type. Significant p-values of the interaction coefficient (gene:pheno-
type term) denotes phenotype-specific gene-metabolite associations
by testing the hypothesis that a gene-metabolite association is
significantly altered by phenotype. We have demonstrated the util-
ity of IntLIM to identify relevant tumor-specific gene-metabolite
relationships involved in known cancer-related pathways (e.g., glu-
tamine metabolism) [11].

2.2 Knowledge-

Based Approaches

Numerical integration approaches typically fail to capture complex
and indirect relationships between transcripts and metabolites. For
example, nonlinear reaction kinetics, metabolite-metabolite con-
nections that regulate metabolite levels, and posttranslational mod-
ifications all contribute to the complexity of gene-metabolite
relationships. Knowledge-based approaches can help capture these
complex relationships. Fortunately, a multitude of databases store
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annotations and biological pathways related to genes and metabo-
lites including KEGG [12–14], Reactome [15], WikiPathways
[16–18], HMDB [19–21], SMPDB [22, 23], BioCyc [24], and
Pathway Commons [25], among others.

Several user-friendly tools incorporate gene and metabolite
annotations for pathway enrichment or network analyses. Meta-
boAnalyst [26] is a comprehensive metabolomics suite incorporat-
ing annotations from KEGG [12–14], HMDB [19–21], and
SMPDB [22, 23] and allowing for metabolite overrepresentation
analysis, integrated topology and enrichment analysis, and
integrated metabolite and gene analysis. IMPaLa [27] incorporates
biological pathway information on genes and metabolites from
11 different databases and supports overrepresentation analysis
given a list of genes and metabolites. Other large-scale efforts,
such as Pathway Commons [25], integrate many databases to
facilitate pathway enrichment and network analyses and/or method
development. Notably, they do not currently integrate HMDB,
which is one of the most comprehensive public repositories for
metabolite annotations.

Other tools provide a wider array of analyses, from raw meta-
bolomics data preprocessing to pathway analyses. Of these, XCMS
[28, 29] uses information from METLIN [30], KEGG [12–14],
HMDB [19–21], LIPID MAPS [31], NIST [32], and MassBank
[33], to perform predictive pathway analysis on direct metabolite
features obtained from raw mass spectrometry data. XCMS is avail-
able as an R package or through an online interface. Metabox [34]
performs network analysis using an internal graph database incor-
porating data from KEGG [12–14], PubChem [35], UniProt [36],
ENSEMBL [37], and Pathway Commons [25]. Metabox also sup-
ports overrepresentation analysis using KEGG and functional class
scoring of annotation terms. Metabox is publicly available as an R
package and can be run in a web browser.

While these tools offer numerous benefits to the research com-
munities, there are still areas of development needed. First, the
underlying integrated databases used for analysis are typically not
accessible for inexperienced programmers, as they frequently
require the use of an application programming interface (API) or
database programming languages (e.g., MySQL). These technical
hurdles make it difficult to performmore complicated batch queries
or to leverage the information contained in integrated databases
with more advanced analysis tools. Furthermore, especially in cases
of pathway analysis, there is an assumption that these pathways are
independent of one another. This assumption fails to recognize that
pathways can be hierarchical, as is the case with KEGG [12–14] and
Reactome [15] pathways. For instance, some biological pathways
are completely embedded in larger pathways yet are listed separately
(e.g., DNA methylation is a subpathway of gene expression). In
addition, we have demonstrated that pathways from one database
often overlap with pathways from other databases [38].
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RaMP (Relational database of Metabolomics Pathways) has
been developed to address some of these concerns [38]. RaMP
integrates pathway-level information from KEGG [12–14], Reac-
tome [15], WikiPathways [16–18], and HMDB [19–21] into a
relational MySQL database. The underlying MySQL dump file is
downloadable so that it can be readily integrated with other tools.
Furthermore, all the code used to create the database is publicly
available (https://github.com/mathelab/ramp-backend), and we
provide an interface to the RaMP database through an R package,
which includes a user-friendly RShiny web interface (https://
github.com/mathelab/ramp-db, https://ramp-db.bmi.osumc.
edu). RaMP supports simple and batch queries and supports path-
way enrichment analysis of both genes and metabolites, including
functional clustering of pathway-level results. This clustering capa-
bility groups enriched pathways that share overlapping genes or
metabolites (based on a user-defined cutoff of overlap), thereby
accounting for the hierarchical nature of many pathway annotations
and facilitating interpretation of results when highly overlapping
pathways are significant.

3 Methods

3.1 Identifying

Phenotype-Specific

Gene-Metabolite Pairs

Using IntLIM

We demonstrate how to apply IntLIM [11] to integrate metabo-
lomics and gene expression data collected in breast tumor and
adjacent non-tumor tissue [39]. Using IntLIM, we identify gene-
metabolite associations that differ in tumor tissue vs. non-tumor
tissue. The formatted gene expression and metabolomics data are
available through GitHub (https://github.com/Mathelab/
BreastCancerAmbs_GeneMetabolite_Data). Please note that each
function contains a documentation that can be accessed by preced-
ing the function name with a question mark (e.g.,? function_name)
in the R console.

3.1.1 Installing IntLIM Running IntLIM requires the user to have R version 3.2.0 or
higher. (The latest version of R can be downloaded from https://
cloud.r-project.org/). RStudio offers a user-friendly interface to
the R console and is available for download at https://www.
rstudio.com/products/rstudio/download3/. Prior to installing
IntLIM, it is necessary to install the MultiDataSet package
[40]. This can be done via the following commands in R.

> source("https://bioconductor.org/biocLite.R")

> biocLite("MultiDataSet")

The next step is to install IntLIM from the GitHub repository.
This requires the install_github() function from the devtools pack-
age [41] available in CRAN. The installation of both devtools and
IntLIM is accomplished via the following lines.
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> install.packages("devtools")

> library(devtools)

> install_github("mathelab/IntLIM")

IntLIM is then loaded via the library() function:

> library(IntLIM)

3.1.2 Inputting Data IntLIM requires four input files:

1. geneData: a gene expression data file (rows are gene IDs,
columns are sample IDs),

2. metabData: a metabolite abundance data file (rows are metab-
olite IDs, columns are sample IDs),

3. sampleMetaData: a sample meta-data file (rows are sample IDs,
columns are phenotypic or clinical variables),

4. an “input.csv” file that provides file names of other input files.

Note that all input files should be placed in one folder, and
they should be formatted as comma-separated values (CSV)
files. Optionally, users can also input metadata information related
to genes and metabolites, where rows are genes or metabolites.

For the metabData and geneData files, the first row contains
the gene-metabolite IDs, and the first column contains the sample
IDs. For the sample metadata file, the first column is assumed to be
the sample ID, which should match the first row of metabolite and
gene expression data. Importantly, it is required that all sample IDs
in the metabolite data and gene expression are also in the sample
metadata file. The sample metadata contains clinical or phenotypic
information about the different samples. In our breast cancer data-
set, the sample metadata contains a “DIAG” (or diagnosis) column,
describing whether the sample is “TUMOR” or “NORMAL.”

IntLIM additionally requires an “input.csv” file that lists the
names of all other input files. The directory of all files listed in
“input.csv” is assumed to be the same as the “input.csv.” This
input file contains two required columns: “type” and “filenames.”
The “type” corresponds to the file types, as listed above: metab-
Data, geneData, and sampleMetaData are required, and metabMe-
taData and geneMetaData are optional. The “filename” column
contains the name of the corresponding data CSV files. For conve-
nience, all formatted files for the breast cancer data are available at
https://github.com/Mathelab/BreastCancerAmbs_GeneMetabol
ite_Data. These formatted files allow users to readily try using
IntLIM, and the files can be used to run all the code present in
this protocol.

The ReadData() function reads the data into R. The location of
the CSV meta-file that lists the location of the other files (“input.
csv”) should be passed to the filename parameter of the ReadData()
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function. If meta-information is input through geneMetaData and
metabMetaData files, then the “metabid” and “geneid” parameters
should also be specified. These IDs correspond to the name of the
column from metabolite/gene metadata to be used as IDs, and
these IDs must match the metabolite/gene abundance data.

> inputData <- ReadData(’input.csv’, metabid=’id’, genei-

d=’id’)

[1] "CreateMultiDataSet created"

The ReadData() function creates a MultiDataSet [40] object
containing both gene expression and metabolomics data. The
ShowStats() function produces a summary of the data read in:

> ShowStats(inputData)

Num_Genes Num_Metabolites Num_Samples_withGeneExpression

1 20254 536 108

Num_Samples_withMetabolomics Num_Samples_inCommon

1 132 108

Using the example dataset noted above from the breast cancer
study, we have read in abundances from 20,254 genes in 108 sam-
ples and abundances from 536 metabolites in 132 samples. A total
of 108 samples contain both gene expression and
metabolomics data.

3.1.3 Filtering Data Users can filter data by removing metabolites or genes with low
abundances or metabolites that contain a high percentage of
imputed values. For metabolomics data, we assume imputed values
are imputed by a minimum value observed for a given ion or
metabolite across all samples in the dataset. The FilterData() func-
tion produces a new MultiDataSet object with filtered gene and
metabolite data. Here we chose to remove 10% of the lowest
expressing genes and metabolites with more than 80% imputed
values.

> inputDatafilt <- FilterData(inputData,geneperc=0.10, metabmiss = 0.80)

[1] "No metabolite filtering by percentile is applied"

> ShowStats(inputDatafilt)

Num_Genes Num_Metabolites Num_Samples_withGeneExpression

1 18228 379 108

Num_Samples_withMetabolomics Num_Samples_inCommon

1 132 108

The filtered dataset object contains 18,228 genes and
379 metabolites. To write the filtered dataset to a CSV file:

> OutputData(inputData=inputDatafilt,filename="FilteredData.zip")
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3.1.4 Inspecting Data Prior to running linear models, we suggest that users visualize their
data to identify potential artifacts (e.g., batch effects) or outliers.
The PlotDistributions() function produces boxplots of gene and
metabolite levels. Users can define the color scheme for plotting
genes and metabolites via the “palette” parameter (Fig. 1a).

> PlotDistributions(inputDatafilt, palette = c("black", "black"))

ThePlotPCA() function produces a principal components analysis
plot (PCA) by plotting the data upon the two principal components
capturing the highest amount of variation within the data. PCA
reduces dimensionality of the data and allows the user to observe
how different samples cluster with regard to one in high dimensional
space. Users can color-code individual samples by phenotype by spe-
cifying the “stype” parameter. Our “stype” is “DIAG” or diagnosis of
tissue, which is either “TUMOR” or “NORMAL.” The “common”
parameter specifies whether all samples, or only the samples in

Fig. 1 Visualization of breast cancer gene expression and metabolite data on IntLIM. (a) Boxplot distributions
(b) PCA plots
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commonbetween the gene expression andmetabolomics data, should
be plotted.

> PlotPCA(inputDatafilt, stype = "DIAG", common = F)

From the PCA plots (Fig. 1b), we observe a clear separation of
both tumor and non-tumor samples in both gene expression and
metabolomics data and do not detect any clear outliers.

3.1.5 Running Linear

Models

The RunIntLim() function computes linear models on all possible
gene-metabolite pairs. The function takes a MultiDataSet object
(containing gene and metabolite data) and the “stype” (e.g., pheno-
type from sample metadata) as input. For the breast cancer analysis,
we use the filtered gene expression and metabolite data (inputData-
filt object) and the “stype” of “DIAG” (diagnosis of tissue as
“TUMOR” or “NORMAL”). The RunIntLim() function calculates
the p-values of the statistical interaction term gene/phenotype and
adjusts the p-values by the false discovery rate (FDR) method.

> myres <- RunIntLim(inputDatafilt, stype="DIAG")

[1] "Running the analysis on"

NORMAL TUMOR

47 61

[1] "10 % complete"

[1] "20 % complete"

[1] "30 % complete"

[1] "40 % complete"

[1] "50 % complete"

[1] "60 % complete"

[1] "70 % complete"

[1] "80 % complete"

[1] "90 % complete"

user system elapsed

294.708 29.973 325.436

The results are stored in an “IntLimResults” object, named
“myres” here, which includes the following slots: “interaction.pva-
lues,” “interaction.adj.pvalues,” and “filt.results.” The “interac-
tion.pvalues” and “interaction.adj.pvalues” slots contain matrices
of interaction p-values and FDR-adjusted interaction p-values of
gene-metabolite pairs, respectively. We can visualize the raw inter-
action p-values calculated via the DistPvalues() function.

> DistPvalues(myres)

From the distribution of p-values (Fig. 2a), we see a peak close
to 0 indicating gene-metabolite pairs that significantly differ based
on phenotype.
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Linear modeling results can be filtered by FDR-adjusted inter-
action p-value and effect size, where the effect size is the interaction
coefficient. For each gene-metabolite pair is the difference in Spear-
man correlations between the two phenotypic groups. A volcano
plot can be generated to assist the user in determining
FDR-adjusted p-value and effect size cutoffs using the pvalCorr-
Volcano() function. The “diffcorr” (for Spearman correlation dif-
ferences) and “pvalcutoff” (for FDR-adjusted p-values) options
allow the user to plot lines on the volcano plot to help define
filtering cutoffs (Fig. 2b).

Fig. 2 Visualization of IntLIM results for breast cancer data. (a) Histogram of p-values. (b) Volcano plots of
IntLIM results. (c) Heatmap of gene-metabolite pairs (FDR-adjusted p-value <0.05 and Spearman correlation
>0.5). (d) Plot of GPT2 and 2-hydroxyglutarate
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> pvalCorrVolcano(inputResults = myres, inputData = inputDatafilt, diffcorr = 0.5,

pvalcutoff = 0.05)

We select an FDR-adjusted interaction p-value of 0.05 and an
absolute Spearman correlation difference of 0.5 as our cutoffs. The
ProcessResults() function then filters gene-metabolite pairs based
on those cutoffs. In addition, ProcessResults() performs hierarchi-
cal clustering of gene-metabolite pairs, based on the pattern of
effect size. Specifically, Spearman correlations of each gene-
metabolite pairs are calculated within each phenotype and input
for hierarchical clustering. The parameter “treecuts” allows users to
specify how many clusters to “cut” the results into.

> myres <- ProcessResults(inputResults = myres,

inputData = inputDatafilt, diffcorr = 0.50, pvalcutoff = 0.05, treecuts =2)

[1] "2842 gene-metabolite pairs found given cutoffs"

Based on our selected cutoffs, we identify 2842 gene-
metabolite pairs that are tumor-dependent. The results are stored
in the “filt.results” slot of the myres “IntLimResults” object. We
can observe the first few lines of the filtered results using the head()
function.

> head(myres@filt.results)

metab gene NORMAL_cor TUMOR_cor

1 1-arachidonoylglycerophosphoethanolamine* C16orf42 -0.3374451 0.40211586

2 1-arachidonoylglycerophosphoethanolamine* TOMM40 -0.4068953 0.52906640

3 1-arachidonoylglycerophosphoethanolamine* C6orf186 0.3840933 -0.45903202

4 1-methylnicotinamide TGFB2 0.5392218 -0.13463776

5 1-methylnicotinamide KANK4 -0.5587962 0.06456901

6 1-methylnicotinamide CASC2 0.4997256 -0.31078794

diff.corr Pval FDRadj Pval cluster

1 0.7395610 1.499692e-05 0.04284062 1

2 0.9359617 1.667433e-05 0.04435878 1

3 -0.8431254 3.587729e-06 0.02777541 2

4 -0.6738596 1.703903e-05 0.04481976 2

5 0.6233652 1.128466e-05 0.03969863 1

6 -0.8105135 6.923041e-06 0.03449098 2

The OutputResults() function outputs result to a CSV file:

> OutputResults(inputResults = myres, filename = "FinalResults.csv")

3.1.6 Visualizing

Significant Gene-

Metabolite Pairs

The CorrHeatMap() function produces a heatmap of the Spearman
correlations within each phenotypic group:

> CorrHeatmap(inputResults = myres, top_pairs = 3000)
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The top_pairs parameter denotes the maximum number of
pairs to plot (3000 in this example). We observe two major clusters
(Fig. 2c). The smaller cluster (1038 gene-metabolite pairs) consists
of gene-metabolite pairs positively correlated in tumor tissue but
negatively correlated in normal tissue. The larger cluster (1084
gene-metabolite pairs) consists of gene-metabolite pairs negatively
correlated in tumor tissue but positively correlated in normal tissue.
From the heatmap, we are able to observe that most gene-
metabolite associations that become altered change the directional-
ity of their associations in tumor tissue. Integrating these results
into pathway analysis tools will provide further insight into what
pathways are altered in tumor tissue.

3.1.7 Extracting Relevant

Genes and Metabolites

for Pathway Analysis

The getMetabList() function allows users to extract metabolite
names or source IDs for input into pathway analysis tools such as
RaMP [38] (described below). To extract IDs, the metadata on
metabolites needs to contain columns for the “sourceID” and
“IDtype.” The “sourceID” is the identifier for the metabolite,
and the “IDtype” describes the type of identifier (kegg, hmdb,
CAS, etc.). If no such columns exist, the unique metabolite
names provided are extracted. By default, getMetabList() will pre-
pend the “IDtype” to the “sourceID” since this is what is expected
by RaMP. We extract the metabolite IDs as follows:

> metab.list <- getMetabList(inputResults = myres, inputData = inputDatafilt,

outputMetab = "id")

> length(metab.list)

[1] 145

#Output first 10 ids:

> metab.list[1:10]

[1] "kegg:C02918" "kegg:C03916" "kegg:C01885" "kegg:C04102"

[5] "CAS:19420-57-6" "CAS:69747-55-3" "kegg:C03819" "CAS:29743-97-3"

[9] "CAS:73033-09-7" "kegg:C00956"

Analogously, the getGeneList() function retrieves a list of all
gene IDs corresponding to the genes identified by the IntLIM
analysis.

> gene.list <- getGeneList(inputResults = myres, inputData = inputDatafilt,

outputGene = "id")

> length(gene.list)

[1] 968

It is important to note that source IDs have the following
format: “database_origin:id.” This format is required for queries
that use RaMP.
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3.1.8 Visualizing

Significant Gene-

Metabolite Pairs

Lastly, IntLIM produces scatterplots of gene-metabolite pairs to
visualize the alteration of their association by phenotype. In the
published breast cancer study (PMCID: PMC3871244),
2-hydroxyglutarate was identified as being elevated in breast
tumor tissue. With IntLIM, we were able to identify a tumor-
dependent relationship between the gene GPT2 and
2-hydroxyglurate. We can visualize this using the scatterplot func-
tion (Fig. 2d).

> PlotGMPair(inputData = inputDatafilt, stype = "DIAG",

geneName = "GPT2", metabName = "2-hydroxyglutarate")

From the scatterplot, we observe that the relationship between
GPT2 and 2-hydroxyglutarate is weakly negatively correlated in
normal tissue (r ¼ �0.11) but positively correlated in tumor tissue
(r ¼ + 0.40). This alteration in GPT2–2-hyrdoxyglutarate may
carry implications for metastasis of breast tissue.

3.2 Identifying

Pathways Involved

in Phenotype-Specific

Gene-Metabolite Pairs

Using RaMP

RaMP installation is a two-step process: (1) installation of the
RaMP package and (2) installation of a local copy of the RaMP
database. Detailed instructions on how to perform both of these
tasks can be found at https://github.com/Mathelab/RaMP-DB.
An overview of how to install RaMP is also outlined below. In this
section, we outline the utility of the RaMP package with four
example analyses: (1) retrieving analyte(s) from pathways of inter-
est; (2) retrieving pathways from analyte(s) of interest and
performing overrepresentation analysis (including clustering of
similar enriched pathways); (3) identifying genes that catalyze reac-
tions involving metabolites given a list of metabolites (or vice
versa), and generating network visuals; and 4) retrieving ontologies
(e.g., biofluid, cellular location, origin, tissue type) associated with
metabolite(s).

3.2.1 Installing the RaMP

R Package

Similar to IntLIM, we use the function install_github() to install
RaMP:

> install.packages("devtools")

> library(devtools)

> install_github("mathelab/RAMP-DB")

> library(RaMP)

The RaMP package and its dependencies should begin to auto-
matically download.

Next, the database connection information should be config-
ured. The file that contains this information is within the package
installation, and the directory can be found by typing the following:

> system.file("shinyApp", package="RaMP", mustWork=TRUE)

Integration of Metabolomics and Transcriptomics 453

https://github.com/Mathelab/RaMP-DB


This line will return the directory location, in which you can
find the “db.properties.template” file. Rename this file to “db.
properties,” and then edit it based on your current environment
as follows:

host=<hostname of mysql server>

dbname=<db name on mysql>

username=<username to connect to mysql>

conpass=<password for username to connect to mysql>

Note that none of the RaMP associated functions will work
until the RaMP database has also been installed (next step).

3.2.2 Installing the RaMP

Database

To download and use a local copy of the RaMP database, a MySQL
environment should be set up on your machine. If this is not
already completed, a free download and instructions for setup are
available at www.mysql.com/downloads. It is important to make
note of the “root” user password when establishing your MySQL
account. This password is used to access the RaMP database in
many of the functions included in the package. If the password is
lost or forgotten, it can be changed (instructions for this can be also
be found on the MySQL website). Of note, one can also install the
database on a remote server with a known host name, so the
database could be used by multiple computers running RaMP.

Once the MySQL environment is set up, launch the MySQL
server. To do so on the command line, type the following:

> mysql -u root -p your_password_here

When MySQL is running, initialize the RaMP database by
typing the following:

mysql > create database ramp;

mysql > exit;

The database can now be populated with the ramp mysql dump
file, which can be directly downloaded from https://github.com/
Mathelab/RaMP-DB/inst/extdata/. The dump file name will
have the “.sql” suffix with a number indicating the time of the
latest update for the file, e.g., “ramp180302.sql.gz,” where
180302 denotes the date—YearMonthDay—of the latest database
update. This step can be performed with the code below (note that,
similar to launching MySQL, it may be necessary to specify the
location of your “myramp.sql” file or to be in the same directory as
the myramp.sql file. It will most likely be in your downloads
directory):

> mysql -u root -p ramp < myramp.sql
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A local copy of the RaMP database should now be available on
your machine. If the database is not located on a local computer,
then the parameter -h can be specified with the hostname.

The line above can also be used to update the RaMP database as
new versions of the RaMP dump file become available through our
GitHub repository. This line will automatically overwrite the previ-
ous database with the same name, so you don’t have to recreate an
empty database if you have already done so. Please note that you
must manually download the updated file and update your
local database. Updating the R package will not update the local
RaMP database automatically.

It is worth noting that RaMP functions that query the RaMP
database take the following database-related parameters as input:
(1) username (default: root), (2) conpass (password to access the
database), (3) host (default: localhost), and (4) dbname (default:
ramp). If the instructions above were followed to set up the RaMP
database locally, only the conpass parameter will need to be passed
to the functions.

3.2.3 Retrieve a List

of Analytes from Pathways

of Interest

Assuming that installation was successful, a copy of the RaMP SQL
database is now present on your machine. One major utility of
RaMP is the ability to easily search for analytes (genes or metabo-
lites) in individual or multiple pathways of interest using the func-
tion getAnalyteFromPathway(). This function takes two
mandatory parameters as input: (1) “pathway,” pathway name(s),
and (2) “conpass,” MySQL password. In this example, analytes
from the “glycolysis” pathway are retrieved.

> glycolysisAnalytes <- getAnalyteFromPathway(pathway="glycolysis",conpass="")

[1] "fired"

[1] "Timing .."

user system elapsed

0.092 0.002 0.709

> head(glycolysisAnalytes)

pathwayName pathwayCategory pathwayType compoundName

1 Glycolysis smpdb2 hmdb GALM

2 Glycolysis smpdb2 hmdb SLC2A2

3 Glycolysis smpdb2 hmdb PKM

4 Glycolysis smpdb2 hmdb PANK1;pantothenatekinase1

5 Glycolysis smpdb2 hmdb D-Glucose

6 Glycolysis smpdb2 hmdb PGAM2;phosphoglyceratemutase2

sourceCompoundIDs

1 hmdb:HMDBP07277;ensembl:ENSG00000143891;kegg:130589;uniprot:Q96C23

2 uniprot:P11168;hmdb:HMDBP05474;kegg:6514; ensembl:ENSG00000163581;

entrez:6514

3 uniprot: P14618;ensembl:ENSG00000067225;uniprot:V9HWB8;kegg:5315;
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entrez: 5315;hmdb:HMDBP00763

4 ensembl:ENSG00000152782;kegg:53354;uniprot:Q8TE04;hmdb:HMDBP01026

5 hmdb:HMDB0000122;chemspider:5589;CAS:50-997;chebi:4167;

kegg:C00031;chebi:17634; pubchem:5793;CAS:2280-44-6

6 ensembl:ENSG00000164708;kegg:5224;uniprot:P15259;hmdb:HMDBP00267;

entrez:5224

geneOrCompound

1 gene

2 gene

3 gene

4 gene

5 compound

6 gene

Note: when inputting metabolite source IDs into getPathway-
FromAnalyte(), make sure IDs are properly formatted. IDs
should be prepended with their database of origin, e.g., kegg:
C02712, hmdb:HMDB04824, or CAS:2566-39-4. The list of
IDs that are included in RaMP are listed on our GitHub site
(https://github.com/Mathelab/RaMP-DB) and currently include
CAS, chebi, chemspider, enzymeNomenclature, ensembl, entrez,
hmdb, kegg kegg, LIPIDMAPS, pubchem, and uniprot.

3.2.4 Retrieving

Pathways Given Analytes,

Performing Pathway

Overrepresentation

Analysis, and Clustering

Similar Resulting Pathways

RaMP can assist in identifying pathways associated with analytes of
interest. To start, a list of metabolites and/or genes of interest is
used for input. In this example, a list of significant gene-metabolite
pairs output by IntLIM is used as input for pathway analysis. The
lists used in the following examples are stored in the gene.metab.
res.RData dataset, which is also included in the RaMP R package
(https://github.com/Mathelab/RaMP-DB/tree/dev/inst/
extdata). To load the data:

> mydir <- system.file("extdata", package="RaMP", mustWork=TRUE)

> load(paste0(mydir,"/gene.metab.IntLIM.res.RData"))

> # To view the objects loaded:

> ls()

[1] "gene.list" "gene.res" "metab.list"

[4] "metab.res" "mydir"

The objects metab.list and gene.list are lists of KEGG/HMDB
and ensemble IDs, respectively, which correspond to analytes that
were identified as members of significant gene-metabolite pairs by
IntLIM in the prior section.

To retrieve all pathways from the RaMP database that include
any of the analytes output by IntLIM, both “metab.list” and “gene.
list” will be input in the getPathwayFromAnalyte() function
through the “analytes” parameter. While metabolites and genes
can be input simultaneously, either the names or source IDs of
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the analytes, not a mix of names and source IDs, can be processed.
To designate which type of input is used, the user can designate
“names” or “IDs” for the “NameOrIds” parameter. Lastly, the user
must provide theMySQL password through the conpass argument.
The following code is used to run getPathwayFromAnalyte() on
the example data:

> myPathways <- getPathwayFromAnalyte(analytes=c(gene.list,metab.list),

conpass="",NameOrIds="ids")

> head(myPathways)

rampId pathwayRampId pathwayName

1 RAMP_C_000000943 RAMP_P_000051316. Alanine, aspartate and glutamate

metabolism

2 RAMP_C_000000943 RAMP_P_000048918 Amino Acid metabolism

3 RAMP_C_000000943 RAMP_P_000048900 Alanine and aspartate

metabolism

4 RAMP_C_000000943 RAMP_P_000051291 Mineral absorption

5 RAMP_C_000000943 RAMP_P_000051360 Aminoacyl-tRNA biosynthesis

6 RAMP_C_000000943 RAMP_P_000051210 Metabolic pathways

pathwaysourceId pathwaysource commonName

1 00250 kegg l-asparagine

2 WP3925 wiki l-asparagine

3 WP106 wiki l-asparagine

4 04978 kegg l-asparagine

5 00970 kegg l-asparagine

6 01100 kegg l-asparagine

Remember that if using IDs as input, they should be pre-
pended with their database of origin (e.g., kegg:C02712).

Also note that while the internal RaMP IDs are returned for
compounds and pathways, these are only useful for harmonizing
metabolites and pathways across databases and are not used
otherwise.

The function call returns all pathways from the RaMP database
that includes any of the analytes in your input. Importantly, path-
ways and analytes in the dataframe are not necessarily unique, as a
single analyte may map to several pathways, and several analytes in
the user data may be associated with the same pathways.

To output the table from getPathwayFromAnalyte() as a CSV
file, one could use the write_to_csv() function as follows:

> writePathwaysToCSV(myPathways,outputfile=“myfile.csv”)

Using the output of this table, it is now possible to perform
pathway overrepresentation analysis (using the Fisher’s exact test)
with the runCombinedFisherTest() function. This function takes
genes and metabolites as input together or separately. When both
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genes and metabolites are input, overrepresentation analysis is first
performed independently, and then p-values are combined using
the Fisher method [42].

> myFishersDF <- runCombinedFisherTest(pathwaydf=myPathways, conpass=" ")

> print(head(myFishersDF$fishresults))

pathwayRampId Pval.Metab Num_In_Path.Metab Total_In_Path.Metab

1 RAMP_P_000048626 NA NA NA

5 RAMP_P_000048628 NA NA NA

8 RAMP_P_000048630 NA NA NA

10 RAMP_P_000048636 NA NA NA

14 RAMP_P_000048648 0.2914752 2 9

20 RAMP_P_000048650 NA NA NA

Pval.Gene Num_In_Path.Gene Total_In_Path.Gene Pval_combined

1 0.029177925 4 64 0.0291779250

5 0.122862751 3 67 0.1228627510

8 0.033500948 2 16 0.0335009480

10 0.087152253 4 92 0.0871522531

14 0.001359978 4 27 0.0003963999

20 0.217371940 2 48 0.2173719405

Pval_combined_FDR Pval_combined_Holm

1 0.119646102 1.0000000

5 0.329821621 1.0000000

8 0.131628270 1.0000000

10 0.271377549 1.0000000

14 0.005129462 0.7908178

20 0.459628927 1.0000000

pathwayName

1 Lung fibrosis

5 Association Between Physico-Chemical Features and Toxicity Associated Pathways

8 Codeine and Morphine Metabolism

10 Corticotropin-releasing hormone signaling pathway

14 Lipid Metabolism Pathway

20 Differentiation Pathway

pathwaysourceId pathwaysource

1 WP3624 wiki

5 WP3680 wiki

8 WP1604 wiki

10 WP2355 wiki

14 WP3965 wiki

20 WP2848 wiki

The output of runCombinedFisherTest is a list containing two
objects:

(a) fishresults: A dataframe with one unique pathway per line,
displaying results of overrepresentation analysis. The number
of columns will vary depending on whether genes, metabolites,
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or both were input. In this example, where genes and metabo-
lites were input, the columns are:

Column 1: The unique RaMPID for the pathway in that line.

Columns 2 to 4: The p-value for metabolites, the number of
user metabolites in that pathway, the total number of meta-
bolites in that pathway.

Columns 5 to 7: Same as 2:4, but for genes.

Columns 8 to 10: Combined p-values, including adjustments
for multiple comparisons using the false discovery rate and
Holm methods.

Columns 11 to 13: Pathway information (Common name,
source ID, and source database)

(b) analyte_type: A string describing the data types that were
detected (genes, metabolites, or both).

Due to the large number of statistical tests being performed
(one per pathway being considered), p-values are adjusted for mul-
tiple comparisons using the methods by Benjamini Hochberg or
Holm to correct for multiple comparisons (FDR) and Holm
method. The FilterFishersResults() function filters the pathway
results by FDR (via the p_fdradj_cutoff argument) or the Holm
method (with the p_holmadj_cutoff argument):

> myPathwaysSignificant=FilterFishersResults(myFishersDF, p_holmadj_cutoff=0.1)

>

> head(myPathwaysSignificant$fishresults)

pathwayRampId Pval.Metab Num_In_Path.Metab Total_In_Path.Metab

42 RAMP_P_000048718 NA NA NA

182 RAMP_P_000048918 1.357424e-03 22 97

211 RAMP_P_000048922 NA NA NA

305 RAMP_P_000049039 4.008352e-05 5 32

334 RAMP_P_000049067 6.351244e-03 2 10

399 RAMP_P_000049098 NA NA NA

Pval.Gene Num_In_Path.Gene Total_In_Path.Gene Pval_combined

42 2.918568e-05 9 87 2.918568e-05

182 1.647419e-03 7 94 2.236245e-06

211 1.599853e-05 8 62 1.599853e-05

305 NA NA NA 4.008352e-05

334 1.177852e-03 5 44 7.480828e-06

399 1.700290e-06 11 98 1.700290e-06

Pval_combined_FDR Pval_combined_Holm

42 6.502089e-04 0.060268433

182 7.106655e-05 0.004682697

211 3.928729e-04 0.033180943

305 8.095373e-04 0.082371642

334 2.155476e-04 0.015612487

399 5.741137e-05 0.003567209

pathwayName
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42 Ectoderm Differentiation

182 Amino Acid metabolism

211 Oxidative phosphorylation

305 Metabolism of ingested SeMet, Sec, MeSec into H2Se

334 Condensation of Prophase Chromosomes

399 RUNX1 regulates transcription of genes involved in differentiation of HSCs

pathwaysourceId pathwaysource

42 WP2858 wiki

182 WP3925 wiki

211 WP623 wiki

305 R-HSA-2408508 reactome

334 R-HSA-2299718 reactome

399 R-HSA-8939236 reactome

> dim(myPathwaysSignificant$fishresults)

[1] 85 13

In this example, we identified 85 pathways with a Holm
adjusted p-value below 0.1.

To improve interpretation of our resulting list of pathways, and
because many pathways have a high degree of overlap in their gene-
metabolite composition, we implemented the findCluster() func-
tion. This pathway clustering function runs an unsupervised fuzzy
clustering algorithm, similar to the one implemented in DAVID
[43], which was designed to automatically identify and cluster
overlapping pathways [38]. The algorithm identifies “seeds,”
which are pathways that have a user-defined degree of overlap
(perc_analyte_overlap parameter) with a user-defined number of
other pathways (min_pathway_tocluster parameter). These path-
ways are used as “seeds” for new clusters. Pathways with a user-
specified degree of overlap with a seed (perc_analyte_overlap
parameter) are then placed into a cluster with the corresponding
seed. The overlap between two pathways is defined as the number
of analytes that are overlapping between the two pathways divided
by the total number of unique analytes among the pathways. Lastly,
similar clusters are themselves merged together if their contained
pathways overlap more than a user-defined threshold (perc_-
pathway_overlap). The findCluster() function takes four para-
meters as input:

(a) fishers_df: the raw output of runCombinedFisherTest or the
filtered output from FilterFishersResults.

(b) perc_analyte_overlap: cutoff value for the percent overlap
between pathways necessary to consider a pathway a neighbor
to a seed. This threshold is used to identify seeds for cluster
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establishment (default: 0.5). (This parameter is only used for
cluster establishment).

(c) min_pathway_tocluster: cutoff value for the minimum num-
ber of similar pathways a pathway needs to be considered a
seed for cluster establishment (default: 2). (This parameter is
only used for cluster establishment).

(d) perc_pathway_overlap: cutoff value for the minimum percent
overlap between clusters by pathway composition to merge
clusters. Lower values of this threshold will result in more
distinct clusters in the final output but will reduce the number
of clusters identified (default: 0.5).

Using the example data, findCluster() can be run like so:

> myPathwaysSignificantClustered=findCluster(fishers_df=myPathwaysSignificant,

perc_analyte_overlap=0.3, min_pathway_tocluster=2,

perc_pathway_overlap=0.75)

> length(myPathwaysSignificantClustered$cluster_list)

[1] 21

The output is a list containing three objects: the pathway
enrichment output with a cluster_assignment column added, the
analyte type, and the cluster output in list form, with each entry of
the list representing a cluster, containing a vector of pathways
contained in that cluster. In the example dataset, 22 clusters were
identified. To retrieve pathways for cluster 12, we use the grep
function to search for “12” in the cluster assignments:

>head(myPathwaysSignificantClustered$fishresults[grep("12",myPathwaysSignificant-

Clustered$fishresults$cluster_assignment),])

Pval.Metab Num_In_Path.Metab Total_In_Path.Metab Pval.Gene

867 4.678048e-05 5 33 0.003251840

1433 1.285221e-05 6 43 0.008199957

1825 2.132602e-06 6 32 0.160791585

Num_In_Path.Gene Total_In_Path.Gene Pval_combined Pval_combined_FDR

867 4 34 1.521227e-07 7.146458e-06

1433 6 96 1.053876e-07 5.554696e-06

1825 3 76 3.429045e-07 1.482033e-05

Pval_combined_Holm pathwayName pathwaysourceId pathwaysource

867 0.0003218916 Gluconeogenesis R-HSA-70263 reactome

1433 0.0002235270 Glucose metabolism R-HSA-70326 reactome

1825 0.0007242144 Glycolysis R-HSA-70171 reactome

cluster_assignment rampids

867 8, 12 RAMP_P_000049428

1433 8, 12, 17 RAMP_P_000049831
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1825 12, 17 RAMP_P_000050117

To write pathway enrichment analysis results (before or after
clustering) to a CSV file for filtering and viewing in Excel:

> write_FishersResults(myPathwaysSignificantClustered,

outputfile=“myfile.csv”)

3.2.5 Identifying Analytes

that Catalyze Reactions

Involving Analytes in a List

of User Analytes

and Generating Network

Visuals Based on the Result

The function rampFastCata() retrieves a list of analytes that partici-
pate in reactions involving an analyte or analytes of interest. This
function takes three parameters as input:

(a) analytes: a string with a single analyte or vector of multiple
analytes to be queried,

(b) conpass: the database password for the “root” user,

(c) NameOrIds: a string specifying if the input is common names
(“names”) or source IDs (“IDs,” default).

For example:

> glucoseReactions <- rampFastCata(analytes = "glucose", conpass = "", NameOrIds =

"names")

[1] "Get Compound ..."

[1] 1

[1] "Getting gene Id from Compound Id ..."

[1] "Getting names from gene Id ..."

[1] "Done ..."

[1] "timing ..."

user system elapsed

0.021 0.000 0.764

# Only print the first two columns since the third column
contains ID names and can be lengthy.

> head(glucoseReactions[,1:2])

Input_Analyte Input_CatalyzedBy_CommonName

1 Glucose HK1;hexokinase1

2 Glucose HK1

3 Glucose LALBA

4 Glucose LALBA;lactalbuminalpha

5 Glucose G6PC

6 Glucose G6PC;glucose-6-phosphatasecata

> batchReactions <- rampFastCata(analytes = c("glucose", "glycogen", "cholesterol",

"creatine", "MDM2", "TP53"),

conpass="",NameOrIds="names")

[1] "Get Compound ..."
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[1] 5

[1] "Geting gene Id from Compound Id ..."

[1] "Getting names from gene Id ..."

[1] "Also find gene inside"

[1] "Get gene ..."

[1] "rampId" "type1" "InputAnalyte" "rampCompoundId"

[5] "rampGeneId" "sourceId" "rampId2" "IDtype"

[9] "geneOrCompound" "commonName"

[1] "Done ..."

[1] "timing ..."

user system elapsed

0.079 0.013 1.613

> head(batchReactions[,1:2])

Input_Analyte Input_CatalyzedBy_CommonName

1 Glucose HK1;hexokinase1

2 Glucose HK1

3 Glucose LALBA

4 Glucose LALBA;lactalbuminalpha

5 Cholesterol LCAT;lecithin-cholesterolacylt

6 Cholesterol LCAT

Note that rampFastCata() can accept both genes and metabo-
lites as input for batch queries. If the input is a metabolite, the
function will output gene transcript common names and source
IDs that are known to catalyze reactions in the same pathway as that
metabolite. Conversely, if the input is a gene, the function will
return the common name and source id of metabolites known to
be catalyzed by that gene.

To visualize the reaction level as a network, use the plotCata-
Network() function:

> plotCataNetwork(batchReactions)

The output of this function is an interactive HTML plot that
allows the user to pan/zoom into regions of interest (Fig. 3). User
genes/metabolites are colored in blue, whereas analytes found by
the function are colored in orange.

3.2.6 Retrieve a List

of Ontologies Associated

with User Metabolite(s)

The last RaMP functionality is to query ontologies relating to
metabolites. Ontologies include biofluid location, cellular location,
origin, and tissue types. The function getOntoFromMeta() accepts
a list of genes or metabolites and returns a dataframe containing
ontological terms associated with input analytes, as well as biofluid
or cellular location. Conversely, the function getMetaFromOnto()
accepts ontological terms and returns metabolites associated with
those terms. Both functions require the conpass parameter, and the
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getOntoFromMeta() function requires the NameOrIds parameter,
to interpret the input list. To run the function:

> ontoDF <- getOntoFromMeta(analytes=c("creatine","glucagon","cholesterol"),

conpass="",NameOrIds="name")

> head(ontoDF)

Metabolites sourceId IDtype Ontology

1 Cholesterol-ester-pool chebi:16113 chebi Bile

2 Cholesterol-ester-pool CAS:57-88-5 CAS Bile

3 Cholesterol chebi:1307929 chebi Bile

4 Cholesterol chemspider:9200676 chemspider Bile

5 Cholesterol LIPIDMAPS:LMST01010093 LIPIDMAPS Bile

6 Cholesterol-ester-pool hmdb:HMDB0062453 hmdb Bile

biofluidORcellular

1 biofluid

2 biofluid

3 biofluid

Fig. 3 Network visualization of gene-metabolite reactions
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4 biofluid

5 biofluid

6 biofluid

> foodDF <- getMetaFromOnto(ontology="food",conpass="")

[1] "rampOntologyIdLocation" "commonName" "biofluidORcellular"

[1] "rampCompoundId" "rampOntologyIdLocation"

[1] "sourceId" "rampId" "IDtype" "geneOrCompound"

[5] "commonName"

[1] "Merging 1..."

[1] "Merging 2..."

> head(foodDF)

Metabolites sourceId IDtype Ontology

1 TG(24:1(15Z)/18:4(6Z,9Z,12Z,15 hmdb:HMDB0052301 hmdb Food

2 TG(15:0/18:2(9Z,12Z)/22:5(4Z,7 hmdb:HMDB0043416 hmdb Food

3 TG(18:3(6Z,9Z,12Z)/14:1(9Z)/18 hmdb:HMDB0052950 hmdb Food

4 Annuolide G hmdb:HMDB0034605 hmdb Food

5 TG(15:0/20:4(8Z,11Z,14Z,17Z)/2 hmdb:HMDB0043696 hmdb Food

6 TG(16:1(9Z)/16:0/20:2n6) hmdb:HMDB0048466 hmdb Food

biofluidORcellular

1 origins

2 origins

3 origins

4 origins

5 origins

6 origins
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Chapter 24

Biclustering Analysis of Co-regulation Patterns
in Nuclear-Encoded Mitochondrial Genes
and Metabolic Pathways

Robert B. Bentham, Kevin Bryson, and Gyorgy Szabadkai

Abstract

Transcription of a large set of nuclear-encoded genes underlies biogenesis of mitochondria, regulated by a
complex network of transcription factors and co-regulators. A remarkable heterogeneity can be detected in
the expression of these genes in different cell types and tissues, and the recent availability of large gene
expression compendiums allows the quantification of specific mitochondrial biogenesis patterns. We have
developed a method to effectively perform this task. Massively correlated biclustering (MCbiclust) is a novel
bioinformatics method that has been successfully applied to identify co-regulation patterns in large
genesets, underlying essential cellular functions and determining cell types. The method has been recently
evaluated and made available as a package in Bioconductor for R. One of the potential applications of the
method is to compare expression of nuclear-encoded mitochondrial genes or larger sets of metabolism-
related genes between different cell types or cellular metabolic states. Here we describe the essential steps to
use MCbiclust as a tool to investigate co-regulation of mitochondrial genes and metabolic pathways.

Key words Biclustering, MCbiclust, Mitochondria, Metabolism, Gene expression

1 Introduction

Mammalian mitochondria are estimated to be composed of as many
as 1500 genes [1] encoded in the nucleus along with the 13
protein-coding genes of the mitochondrial genome (mtDNA). To
maintain proper mitochondrial function, the expression of the two
genomes must be both coordinated and able to adapt to highly
variable energetic demands. This results in a remarkable heteroge-
neity of mitochondrial composition, as detailed in numerous recent
studies exploring the startling variety of mitochondrial function,
physiology, and proteome makeup across different tissues and cell
types [2–4].

Accordingly, the transcriptional regulation of mitochondrial
biogenesis has been shown to be a highly complex process (see,
e.g., [5, 6]), involving numerous transcription factors and
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co-regulators, forming a complex interaction network, which is also
highly adaptable via posttranscriptional modifications. While phys-
iological regulation of mitochondrial biogenesis and composition
vary enormously across healthy tissues, it is also known to contrib-
ute to major disease states. Mitochondrial dysfunction due to
defects in the mitochondrial biogenesis pathway is known to be
an important factor in cancer, neuromuscular degenerative disease,
and cardiomyopathies [7, 8]. Whether these changes are the pri-
mary cause of the disease or the result of adaptation or maladapta-
tion is an important open question in many cases. For these reasons
bioinformatics tools to investigate the co-regulation of nuclear-
encoded mitochondrial genes not only have the potential to exam-
ine how physiological regulation works but also to reveal underly-
ing factors that contribute to the disease.

While the direct examination of the total mitochondrial prote-
ome affected by the transcription factor network is often technically
unfeasible, the availability of good-quality, high-coverage gene
expression (microarray or RNAseq) data makes it realistic to study
the output of this network at the mRNA level. However, the
success of this analysis relies on the ability of the applied methods
to identify gene-sample “biclusters” of similar mitochondrial
co-regulation, since a single dataset often contains multiple
modes of control in diverse mitochondrial gene groups. Here we
discuss how a recently developed novel method MCbiclust [9] can
be used for this task.

2 Materials

In the following sections, we will refer to these software/manuals/
datasets:

1. MCbiclust (doi:10.18129/B9.bioc.MCbiclust, current ver-
sion 1.2.1), an R package available in Bioconductor [10], an
open source platform for software in bioinformatics.

2. The MCbiclust package introductory manual (IM) accessed on
the Bioconductor website (https://bioconductor.org/
packages/release/bioc/vignettes/MCbiclust/inst/doc/
MCbiclust_vignette.html).

3. The MCbiclust reference manual (RM) providing documenta-
tion to the R functions involved, accessed on the Bioconductor
website (https://bioconductor.org/packages/release/bioc/
manuals/MCbiclust/man/MCbiclust.pdf).

4. The MitoCarta 1.0 [2] mitochondrial geneset used in the IM.

5. The microarray dataset from the Cancer Cell Line Encyclope-
dia [11] also used in the IM.
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3 Methods

In this section we will discuss in detail only the implications for
applying the methodology to the analysis of mitochondrial biogen-
esis patterns. For complete understanding of the method, the
theoretical considerations, and the benchmarking against other
algorithms, please refer to Bentham et al. [9].

3.1 Choosing a

Geneset

Once a dataset has been chosen (for details on choosing your
dataset and judging whether it is suitable, see Note 1), the first
step of using MCbiclust is to select a suitable geneset representing
mitochondrial function with the scope of discovering co-regulation
patterns in nuclear-encoded mitochondrial genes. This is not a
trivial problem as there are genes with different confidence levels
of evidence relating them to mitochondria, as well as genes that
while not being mitochondrial are highly co-regulated with mito-
chondrial processes. We consider two alternative methods for gen-
eset selection.

3.1.1 Established

Databases with

Mitochondrial Genesets

1. MitoCarta [12] in its latest version (2.0) contains 1158 human
and mouse genes with strong support of mitochondrial
localization.

2. MitoMiner 4.0 [13] is an integrated web resource of mito-
chondrial localization evidence and phenotype data for mam-
mals, zebrafish, and yeast. The team behind MitoMiner
developed the Integrated Mitochondrial Protein Index
(IMPI), which in its current version (Q3 2017) includes
1550 genes.

3. Genes that are associated with the gene ontology [14] term
“mitochondrion,” which contains 1647 genes; genes in the
dataset, however, have varying evidence with many inferred
from in silico analysis.

The user can decide whether to use one of these datasets in
order to select the mitochondrial genes to be analyzed. Alterna-
tively, the intersection (985 genes) or union of all three datasets
(1997 genes) could be used. The size of the geneset is an important
factor for determining the speed at which MCbiclust completes the
analysis. However, an increased geneset size does not necessarily
bring any benefits (see Note 2).

3.1.2 Interaction

Networks of Mitochondrial

Genes

An alternative strategy to using public lists of known or predicted
mitochondrial genes is to compose a list by using a single well-
established mitochondrial gene and determine its interactions from
the existing correlation structure in the dataset of interest. By
taking a single, well-established mitochondrial gene, e.g., a com-
ponent of the electron transport chain or the mitochondrial
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ribosome, the remaining genes can be ordered by the strength of
the Pearson’s correlation coefficient to the expression of this gene
across all of the samples (see Note 3 for details). The geneset, used
by MCbiclust to initiate the analysis, can then be selected as the top
genes correlated with the mitochondrial gene of interest. The
advantages of this method are that (1) it is more likely to include
genes that are strongly co-regulated with mitochondrial processes,
thus representing a specific function, (2) it is more likely to identify
biclusters that are associated with a single mitochondrial gene of
interest, and (3) the geneset can be specifically tailored for each
dataset. The disadvantage of using this strategy is that the geneset
will differ in each user case; thus comparison of results will become
more complex or even unfeasible.

Overall, there is no “correct” way to choose a geneset, and the
appropriate way should be decided on a case-by-case basis, accord-
ing to the precise biclusters that are being sought. Nor should an
investigator be limited to running a single geneset as the results of
MCbiclust using multiple genesets can be compared (see Note 4).

3.2 Running

MCbiclust to Identify

Co-regulation of

Nuclear-Encoded

Mitochondrial Genes

Following the selection and loading the sample set and initial
geneset(s) (IM 3.1), “FindSeed” is used to identify a “seed” of
samples with high Pearson correlations between the genes in the
geneset (IM 3.2; 3.3). Importantly, this method is stochastic and
identifies the samples by a greedy search. Thus, in order to find an
exhaustive and representative sample set, it is required to run
“FindSeed” multiple times. The different strategies to perform
this task are discussed in see Note 5.

Multiple runs of “FindSeed” result in a number of sample
seeds. Once a suitable number of sample seeds have been found,
the next step is to identify how many distinct modes of regulation
of the geneset have been found, i.e., which samples are included
and how genes are correlated in these sample seeds. Clearly, if the
samples are identical in different seeds, they represent the same
pattern, but it is not clear if different samples between seeds repre-
sent fundamental differences in regulation or the seed has selected
different samples that are representative of the same pattern. For
this reason, the different outputs of MCbiclust must be compared
at the gene level using a parameter that is called the correlation
vector (CV) (see IM 3.4). The CV is a vector that quantifies the
correlation of each gene measured in the dataset to the average
expression of a group of genes in the chosen geneset that are
selected as “highly representative” of the bicluster. The CV for
each run can then be compared to one another, after which the
runs are clustered and then the Silhouette method [15] is used to
identify the number of distinct biclusters found in the analysis
(IM 4. and RM: SilhouetteClustGroups). The CVs can be averaged
across each distinct bicluster, and consequently the samples can be
ranked by how well they preserve the correlation within the
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geneset. The final output of MCbiclust for each bicluster found is a
correlation vector describing the strength of the correlation of each
gene to the bicluster and an ordered list of samples (IM 4). Accord-
ingly, the biclusters can be visualized with a distinctive “fork plot”
with the ranked samples on the x-axis plotted against the PC1 value
from a PCA analysis of the samples within the seed, with the PC1
value being fitted to the remaining samples (IM 3.10). At the
beginning of the ranking, the samples separate into an upper and
lower fork. By convention, the sign of the PC1 value being chosen
is such that the upper fork samples will have genes with a positive
correlation vector that are upregulated and genes with a negative
correlation vector value that are downregulated. The lower fork
samples have the opposite phenotype.

3.3 Analyzing the

Resulting Biclusters

The analysis of the resulting biclusters involves the separate analysis
of genes and samples. Sample analysis is dataset-specific and
involves associating samples in the distribution plot with the differ-
ent properties (metadata) of sample groups made available for the
dataset (for previous examples, see Figs. 5, 6, 7, and 8 from Ben-
tham et al. [9]). In patient-derived gene expression samples, this
typically includes clinical outcome and genetic and histological
subtypes of the disease. Thus, biclusters are the basis of stratifica-
tion, that is, classification of disease states according to mitochon-
drial gene expression patterns.

On the other hand, the methods for the analysis of genes can be
generalized for different biological applications and are listed
below.

3.3.1 Geneset

Enrichment Analysis

The simplest analysis is a geneset enrichment analysis on the values
of the correlation vector (IM 3.5). The correlation vector can be
viewed as a ranked list of genes with values between +1 and�1, and
thus geneset enrichment analysis can be run on the entire ranked
list, or on selected genesets, e.g., the top positive or negative
correlation vector values. At this point, any geneset enrichment
method can be used (e.g., DAVID [16], GSEA [17], g:Profiler
[18]). The MCbiclust package comes with a specifically designed
method that uses the entire correlation vector and applies the
Mann-Whitney test to identify gene ontology terms that have
significantly different distributions (either more positive or nega-
tive) as compared to the entire distribution of values. The output
gives the average CV value for each significant term; thus terms that
are positive in average (i.e., upregulated in the upper fork, down-
regulated in the lower fork) can be distinguished from those that
are negative in average (i.e., downregulated in the upper fork and
upregulated in the lower fork). Interpretation of the significant
terms can be challenging, since standard terms often give no
other detail than the list of genes that are generally related to
“mitochondria.” For fine-grain understanding of the differences
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in pathways, the individual genes involved must be examined.
Different mitochondrial pathways of interest, such as the metabolic
enzymes, can each be examined individually. For these metabolic
pathways, it is also possible to build diagrams of the pathways to
show which parts have been regulated in different ways, e.g., with
the pathview R package [19]. On the other hand, geneset enrich-
ment analysis can be useful for identifying non-mitochondrial path-
ways that are also being simultaneously co-regulated with
mitochondria, providing further insight into the biology behind
the underlying process.

3.3.2 Comparison of

Genesets Across Biclusters

In cases where two or more biclusters are found, it is appropriate to
compare the differences in the co-regulation of the genes in the
biclusters. In order to identify a module of genes that are regulated
in the same way across different biclusters, different visualization
techniques can be applied. First, co-regulation of genes in different
biclusters can be compared using the CVplot function inMCbiclust
(IM 4, RM/CVplot). This function plots the values of the correla-
tion vectors against each other for all the genes, as well as genes in
any chosen geneset (e.g., mitochondrial genes). In this way, mod-
ules of co-regulated genes across different biclusters can be identi-
fied. Alternatively, these groups can be identified through
examining the intersection of genesets (e.g., upregulated in biclus-
ter 1, upregulated in bicluster 2, etc.), using Venn diagrams for a
small number of groups. If the number of different biclusters is
large, a different technique such as UpSet plot [18] can also be
used. Examples of these visualization techniques are shown in
Fig. 1.

3.4 Identification of

Samples in Other

Datasets Matching the

Bicluster

Once a bicluster has been identified and associated with a particular
type of mitochondrial function, a further aim is to determine
whether this type of gene expression pattern can be identified in
additional datasets. Theoretically this could be achieved by running
the entire MCbiclust pipeline on this new dataset and comparing
the resulting correlation vectors to understand whether a similar
bicluster is present. However, this approach might be time-
consuming, and often datasets are not large enough for MCbiclust
to reliably identify biclusters (see discussion on the required dataset
size in Bentham et al. [9]). Thus, ideally a method is required that
can take a small dataset or single sample and determine whether
these samples fall into a particular bicluster and whether they
belong to a particular branch in the fork distribution.

3.4.1 PointScore

Algorithm

A method of choice included in the MCbiclust package to achieve
the classification of single samples is the PointScore algorithm (RM:
PointScore). This method uses the two genesets (A and B) deter-
mining the distribution of samples in the fork pattern (see Note 6
for how these genesets are chosen). Geneset A includes genes
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upregulated in the upper fork and downregulated in the lower fork,
and geneset B contains genes downregulated in the upper fork and
upregulated in the lower fork. “PointScore” scores samples based
on how well they match this regulation by comparing the genes in
the genesets to the median value across the entire dataset. Impor-
tantly, this method requires that the dataset contains samples that
are representative of all types of regulation seen in the original
dataset (where the bicluster was identified), so that the median of
the genes can be used as a dividing line for resolving up- or down-
regulation in samples. For this reason, the PointScore algorithm
cannot be used for single or too few samples.

For single samples or datasets with very few samples, there are
two further solutions detailed in Subheadings 3.4.2 and 3.4.3.

3.4.2 Single-Sample

GSEA (ssGSEA)

Single-sample GSEA [20], from the Bioconductor package GSVA
[21], can be applied by taking the same genesets as used in the
PointScore method and calculating the ssGSEA score, based on

Fig. 1 Comparison of genesets across biclusters using CVplot and UpSet plots Plots produced from a RNASeq
dataset from CoMMpass (Relating Clinical Outcomes in MM to Personal Assessment of Genetic Profile) IA9
study (NCT01454297) produced by the Multiple Myeloma Research Foundation (MMRF) containing transcrip-
tomics from 734 patient samples. (a) Shows an output of CVplot comparing the correlation vectors from three
different runs of MCbiclust with mitochondrial genes from MitoCarta (Mito), a geneset based on the most
correlated genes to mitochondrial gene MRPL58 (ICT1) and random (Rand) genesets. The lower diagonal plots
(cyan) represent values of the non-mitochondrial genes in the correlation vector, while the upper diagonal
plots (red) represent the mitochondrial genes in the correlation vector. In this case a very similar bicluster
(in terms of the genes which are most strongly correlated to it) is found from all three initial genesets used.
Plots in the diagonal axis show the frequency distribution of mitochondrial (red traces) and non-mitochondrial
(cyan traces) genes across the correlation values in the three biclusters. (b) Shows the output from the UpSet R
package to determine the intersections of the significant genes identified in each of these correlation vectors
from MCbiclust’s custom geneset enrichment method (see Subheading 3.3.1). The significant genesets found
in each bicluster have been split into two groups (pos and neg) depending on whether they are associated with
genes with positive or negative correlation vector values. The majority of significant terms are shared between
all three biclusters, again indicating that these three biclusters are close to identical
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how the genes in each geneset are up- or downregulated, compared
to other genes in the samples. Therefore, for an upper fork sample,
the ssGSEA score for geneset A will be positive, and the score for
geneset B will be negative.

3.4.3 First Principal

Component Values

It is possible to calculate the PC1 value of the sample (using the R
function lsfit from the known PC1 loadings) and compare it
directly to the initial bicluster. This technique requires that this
sample (or small dataset) is normalized to the original dataset.
This is only reliable when the datasets are all measured on the
same platform, quantile normalization is performed, and any possi-
ble batch effects are removed between experiments (e.g., by using
ComBat [22]).

4 Notes

1. As a method MCbiclust is agnostic toward the data platform
and can be run on both microarray and RNASeq data. How-
ever, for a successful run, the data must meet one important
requirement, which the dataset contains enough samples. As a
rule of thumb, at an absolute minimum, there should be at least
100 samples in the sample set. In general, the more samples are
in a dataset, the more likely MCbiclust is able to find significant
biclusters. If the dataset contains few samples, it can be ana-
lyzed by comparing to previously analyzed larger sets, as
described in Subheading 3.4.

2. MCbiclust calculates the correlation matrices of the chosen
geneset repeatedly. Thus, the larger the geneset chosen, the
more computation time is needed to perform MCbiclust. In
general, a geneset containing more than 1000 genes is
sub-optimal and significantly slows down the computation.
There is also little advantage to augment the size of the geneset
past a certain point, since the biclusters we seek to find are
large; as long as a significant number of genes in the geneset are
contained in them, they will be found. Additionally, genes
outside the geneset can easily be found to be associated with
the bicluster in the correlation vector stage of the method (see
Subheading 3.2). Thus in general, there is no need for genesets
to be significantly larger than 1000.

3. This can be achieved simply using base functions such as the
apply and cor function in R, e.g., vec1  apply(data, MAR-
GIN ¼ 1, FUN ¼ function(x) cor(x, as.numeric(data[gene.
loc,])), and then selecting the genes that have the highest
correlation, e.g., hicor.loc  order(abs(vec1), decreas-
ing ¼ TRUE)[seq_len(1000)].
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4. Since the choice of the initial geneset is an important factor in
determining the results of MCbiclust, running MCbiclust on
different initial genesets, e.g., a general mitochondrial one
from MitoCarta, as well as different genesets made up of
genes that are strongly correlated with mitochondrial genes of
interest is a good and recommended strategy.

5. FindSeed should be run enough times to identify all significant
biclusters present in the dataset. Typically, this number should
be at least 100. However, some biclusters are only identified
rarely by random search, and to find these, it is necessary to run
FindSeed a very large number of times. In these cases, it is of
help to use high-performance computing to run the FindSeed
algorithm. An alternative way to find these rare biclusters is to
run FindSeed on different initial genesets or run FindSeed on
the dataset after removing the most commonly selected sam-
ples in the final seed. This way the final seed is forced to include
samples not yet chosen.

6. Genesets that represent the upper and lower fork can be created
directly from the correlation vector selecting genes with a value
greater than a certain threshold, e.g., > 0.9 for upper fork and
�0.9 for lower fork.
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Chapter 25

Using the Human Genome-Scale Metabolic Model
Recon 2 for Steady-State Flux Analysis of Cancer
Cell Metabolism

Lake-Ee Quek and Nigel Turner

Abstract

Flux analysis is performed to infer intracellular metabolic activity using measured rates. By applying the
highly curated human metabolic reconstruction Recon 2 as the reference model, the investigation of cancer
cell metabolic fluxes can encompass the full metabolic potential of a human cell. But in its full form, Recon
2 is unsuitable for conventional metabolic flux analysis due to a large number of redundant elements. Here,
we describe a procedure to reduce Recon 2 to an appropriate scale for cancer cell flux analysis such that
calculated flux intervals are still informative, without compromising the opportunity to explore alternative
pathways encoded in Recon 2 that may reveal novel metabolic features.

Key words Flux analysis, Genome-scale model, Constraint-based, MATLAB, COBRA Toolbox,
Cancer metabolism, Model reduction

1 Introduction

Metabolic processes convert material (e.g., nutrients, cofactors)
into energy and biomass to achieve cell growth and maintenance.
Quantifying these processes is particularly relevant to cancer cell
metabolism because metabolic pathways (e.g., aerobic glycolysis)
are often implicated in a tumor’s adaptation for survival, prolifera-
tion, and aggressiveness [1, 2]. Metabolic experiments are generally
designed with contrast in mind to induce changes in these path-
ways, and thus it is imperative to be able to determine the activity of
these pathways, either directly or by inferring from relevant models.
The latter approach is effective when many independent but indi-
rect measurements support the same conclusion. Steady-state met-
abolic flux analysis (MFA), while conventionally viewed as a tool to
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estimate absolute cellular fluxes, is a simple yet versatile technique
to integrate a variety of cellular measurements to achieve this
[3]. The required measurements are primarily growth and extracel-
lular rates but can include rates estimated from stable isotopic
tracing (e.g., 13C-MFA) and accumulation of radiolabelled pro-
ducts and enzyme capacity and directionality determined from
kinetics, thermodynamics, and gene/protein expression [4–9]. A
persistent challenge, however, is deploying a model that fits the
investigation purpose and scope.

Because of the diversity of cancer metabolism and the asso-
ciated context of investigations [10], it is difficult to find a one-size-
fits-all metabolic model for flux analysis. We risk prematurely elim-
inating pathways that may transpire to become novel cancer metab-
olism features [11]. But with modifications, Recon 2 can serve this
purpose. Recon 2 is reconstructed from genes in the human
genome [12]. It embodies years of effort in prescribing accurate
gene-protein-reaction mappings for each metabolic enzyme, such
as enzyme complexes, atom and charge balancing, cofactor usage
(e.g., NADP vs. NAD), and compartmentalization. Recon
2 encodes the full capacity of human metabolism, and conceivably
cancer metabolism is well-described within this metabolic space
[13]. There is a difficult balance in tuning the dimension of the
model between a narrowly scoped model with coerced flux results
and a loose model with non-informative flux intervals. Rather than
building one metabolic model, manually, we closed this gap by
dynamically extracting a representative subset of reactions from
Recon 2 based on the context of the metabolic investigation and
the information/data available (Table 1).

Here, we describe a method to perform MFA of cancer cell
metabolism using reactions from Recon 2 (Fig. 1). The extraction
process is facilitated by metabolic data and a core reaction template
that reflects investigator’s preference (see Note 1). By “activating”
and “deactivating” individual reactions using data (e.g., rates) and

Table 1
Recon 2.2 network size before and after the reduction

Recon 2.2 Reduced model

Total reactions 7785 339

Exchange reactions 746 31

Infeasible reactionsa 1872 0

Metabolites 5324 334

Degrees of freedomb 2840 23

aAfter performing modifications described in Subheading 3.2
bNumber of reactions minus rank of stoichiometric matrix
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manual specifications, associated pathways in Recon 2 are autono-
mously assembled into a complete functional network, with prefer-
ence for core reactions. Classical mainstream reactions tend to be
selected according to the template, but the choices are superseded
by the data and the manual specifications. Pathway rerouting is thus
readily accomplished, and efforts can focus on picking active reac-
tions that precipitate the desired metabolic pathways. Rates and
directionality information are derived from metabolite and expres-
sion data. Hypothetical information can be incorporated as well.
Computation takes less than a minute; thus the model extraction
and flux analysis can be performed in rapid explorative cycles. This
method requires considerable coding, but we have provided
MATLAB scripts to help exemplify the method, as well as to serve
as a functional application.

Recon 2

Reduced model

>7000 reactions

<400 reactions

- reaction direction

- exchanges allowed

- measured rates

- core template
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Fig. 1 Workflow for reducing Recon 2. (a) Starting from the full human reconstruction, (b) reaction
directionalities are revised to restrict ATP and NADPH production. (c) Cell culture conditions and measured
rates are used to constrain allowable exchange reactions and magnitude of network inputs/outputs. (d)
Manual flux specifications are applied before maximizing the elimination of reactions not contained in the core
template. (e) The reduced model is used for flux analysis. A Monte-Carlo approach is used to generate flux
distributions
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Flux analysis is a technique to extrapolate intracellular meta-
bolic activity from experimental data using a model. The method
described provides a simple and reproducible approach to manipu-
late content of Recon 2 for flux analysis of cancer cell metabolism.

2 Materials

The method described will follow closely the development of the
MATLAB application (provided in the Supplementary Materials)
but is not limited as a MATLAB implementation. The minimum
computational requirements are software packages that can read
SBML files and perform mathematical programming and optimiza-
tions (see Note 2).

2.1 Software 1. Install latest MATLAB (MathWorks) (seeNote 3). The version
used here is R2015a.

2. Install latest Gurobi Optimizer (Gurobi Optimization) (see
Note 4). The version used here is Gurobi-7.5.2.

3. Install COBRA Toolbox (CT) for reading SBML files (see
Note 5) [14].

2.2 Model and Inputs 1. Download Recon 2.2 (MODEL1603150001) as the reference
model (see Note 6) [15].

2. Use Microsoft Excel or equivalent for model specification, as
shown in modelSpecs.xlsx (see Note 7).

3. As guidance, use the list of Recon 2 core template reactions and
allowable exchange reactions provided in the Supplementary
Materials (see Note 8).

4. As guidance, use rates for cell growth and extracellular
exchanges provided in the Supplementary Materials (see
Note 8).

3 Methods

3.1 Prepare MATLAB

Environment

1. Check that Gurobi and CT in MATLAB paths are set correctly
(see Note 9).

2. Change MATLAB working directory to project folder.

3. Read Recon 2 SBML using CT function readCbModel().
Save Recon 2 workspace variable to file (see Note 10). Repeat
this step when the SBML file is altered.

3.2 Load Recon

2 and Modify Model

1. Load Recon 2 from MATLAB file.

2. Update the directionality of the reactions by changing flux
lower and upper boundaries. The focus of these changes is to
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restrict reactions that can produce ATP and NADPH to a few
conventional ones (see Note 11).

3. Restrict exchange reactions by changing the respective flux
lower and upper boundaries to zero. The focus of these
changes is to eliminate uptake of trivial substrates, i.e., not
present in cell culture media (see Note 11).

4. Update coefficients of the biomass equation if required (see
Note 8).

3.3 Test Feasibility

with and Without

Measured Rates

1. Perform linear programming (LP) to check that modifications
made in Subheading 3.2, steps 2–4 did not render the model
infeasible, i.e., the biomass equation “biomass_reaction” still
carries flux. If solver returns an infeasible status, revise modifi-
cations made in Subheading 3.2 until a feasible solution can be
achieved before proceeding (see Note 12).

2. Perform quadratic programming (QP) to adjust measured
exchange rates and growth rates such that they are balanced.
Check residuals of the adjusted rates to make sure they are
acceptable (see Note 13).

3.4 Reduce Recon

2 and Generate

Submodel

1. Apply adjusted rates to Recon 2 by fixing the lower and upper
boundaries of the exchange flux to the adjusted value. The
constraints are relaxed slightly using a small slack value (1e-6)
to improve model feasibility (see Note 14).

2. Perform mixed-integer linear programming (MILP) to mini-
mize use of reactions that are not listed in the core reaction
template (seeNote 15). Repeat this step in caseMILP produces
nonunique solutions. The MATLAB script (see modelReduc-
tion.m) will generate three solutions, and choose the first solu-
tion as the reduced model by default.

3. Using LP, perform randomized elimination of reactions that
have non-zero flux in the MILP flux solution (see Note 16).
This step is optional.

4. Reactions that have non-zero flux are exported as the reduced
model for flux analysis. Combining two or more reduced mod-
els is possible. Remove adjusted rates applied in Subheading
3.4, step 1, but keep modifications made in Subheading 3.2.

5. Save reduced model as MATLAB file and as a CT model (see
Note 5).

3.5 Monte-Carlo Flux

Analysis

1. Load reduced model from MATLAB file.

2. Apply measured rates and perform QP. This step is the same as
Subheading 3.3, step 2, but the reduced model is used instead
of Recon 2. Save adjusted rates, intracellular fluxes, and resi-
duals as “optimum” set.
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3. Calculate the value of underdetermined fluxes by randomized
uniform sampling. This is achieved by performing flux varia-
bility analysis (FVA) on a randomly chosen reaction and fixing
the chosen reaction’s flux to a value sampled from the FVA
interval randomly with a uniform distribution. This step is
performed to all reactions in a randomized order (seeNote 17).

4. Generate flux distributions by a Monte-Carlo approach by
repeating Subheading 3.5, steps 1–3 (>100 iterations). With
this procedure, however, measured rates are corrupted first
with normally distributed noise before performing QP (see
Note 17). Save adjusted rates, intracellular fluxes, and residuals
as “corrupted” set.

5. Compile and plot flux results from the corrupted set (Fig. 2)
(see Note 18).

4 Notes

1. The method is an abridged version of an existing approach of
reducing Recon 2 for steady-state flux analysis of HEK cell
culture [4]. The published method involves complicated
handling of raw gene expression data and numerous subjective
steps, which are now summarized into a single editable “core
reaction template.” This simplifies manipulation of reactions
contained in Recon 2.

2. The optimization approaches required are linear programming
(LP), mixed-integer linear programming (MILP), and qua-
dratic programming (QP). The generalized formulation for
these approaches is shown as Eq. 1. QP and LP are similar,
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Fig. 2 Flux distributions generated by a Monte-Carlo approach. Histograms are shown from a bird’s-eye view,
with density represented by shading
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except that the matrix Q and the constant k are zero in LP. For
steady-state flux analysis, the inequality constraint is reformu-
lated as the metabolite balance equation shown as Eq. 2, where
S and v are the stoichiometric matrix and flux vector, respec-
tively [3]. In MILP, the vector x contains both continuous and
binary [0,1] values.

Minimize c
0
ñx þ x

0
ñQ ñx þ k

such that :

lb � x � ub

A � x � b

ð1Þ

S � v � 0 ð2Þ
3. MATLAB is preferred because both Gurobi and CT installa-

tions come with MATLAB interface. MATLAB script model-
Reduction.m contains the steps performed in Subheadings
3.1–3.4. MATLAB script monteCarloMFA.m contains the
steps performed in Subheading 3.5.

4. Gurobi has all three LP, QP, and MILP solvers. Academic free
licensing is available.

5. COBRAToolbox (CT) is currently being updated (version 3.0
in the pipeline) (https://opencobra.github.io/). The recom-
mended installation procedure is via GitHub, but the required
MATLAB function files can also be downloaded as a ZIP file.
Running initCobraToolbox.m will run an update proce-
dure. CT contains a large number of functions for constraint-
based modelling and model editing that may be useful. The
description of these functions can be found in OpenCOBRA’s
website, under “Analysis” and “Reconstruction”--
> “Refinement.” The website also has very detailed tutorials.
Typical analysis functions include FBA and FVA, which are
useful for flux simulations and checking.

6. The method described is based on Recon 2.2 [15], which is a
2016 version of the human reconstruction. The SBML model
(MODEL1603150001) can be downloaded from EMBL-EBI
BioModels Database. This version supersedes Recon 2.04
(2015), which can be browsed and downloaded from the Vir-
tual Metabolic Human (VMH) website (https://vmh.uni.lu).
Recon 3D currently is in the pipeline.

7. A spreadsheet interface is used to control and modify the con-
tents of Recon 2. The file (modelSpecs.xlsx) is provided in the
Supplementary Materials. Recon 2.2’s reactions are tabulated
in this file. Excel’s filter is a useful way to visualize specific
groups of reactions.

Reducing Recon 2 for Cancer Cell Flux Analysis 485

https://opencobra.github.io
https://vmh.uni.lu


8. Information used to modify and reduce Recon 2 is listed in the
spreadsheet, instead of being scripted in MATLAB. This pro-
vides traceability and opportunity for version control. The
information includes (1) core template reactions, (2) allowable
exchange reactions, (3) measured rates and errors, (4) reaction
directions, (5) flux constraints, and (6) biomass composition.
The core template provided has 363 reactions. The original
biomass coefficients reflect the makeup of a generic mammalian
cell (in mmol/gDW), and not for any specific cell type. See
“Instructions” tab for more detailed explanation of the spread-
sheet. Model specification can be equally accomplished in plain
text files as well.

9. Run initCobraToolbox.m after installing Gurobi and speci-
fying Gurobi path in MATLAB; otherwise COBRA Toolbox
may not assign the correct solver. Add Gurobi routines to
MATLAB path using gurobi_setup.m. This file is located
in Gurobi’s MATLAB interface directory. Add CT scripts to
MATLAB path using initCobraToolbox.m. This file is
located in OpenCOBRA’s root directory. Rerun these func-
tions if MATLAB path was reset or when Gurobi or CT func-
tions are no longer detected.

10. CT takes about 15 min to load the Recon 2.2 SBML file. To
save time, save the model variable as a local MATLAB file, and
reload this file at the start of eachMATLAB session, or reset the
variable.

11. Controlling the sources of ATP and NADPH is important
because energy and redox balance can alter flux outcomes
[4, 16]. For cancer metabolism, one can restrict the production
of ATP to mainstream pathways like glycolysis, TCA cycle, and
oxidative phosphorylation and NADPH to oxidative pentose
phosphate pathway and malic enzymes. Restriction is accom-
plished by altering the directionality of reactions, i.e., ATP and
NAPDH are consumed by reactions unless allowed intention-
ally. Controlling the network inputs and outputs is also impor-
tant to properly balance the measured rates (when performing
QP). Inputs and outputs should be restricted to nontrivial
substrates and products and essential nutrients required by
the biomass equation. Cell culture dataset tends to be amino
acid-centric [4]; allowable exchanges are thus the 20 amino
acids, glucose, lactate, and small molecules H+, H2O, Pi, O2,
CO2, NH3, SO4, and urea. To incorporate other substrates or
by-products (e.g., fatty acids, acetate) [6], simply allow the
exchange of these metabolites of interests.

12. When the lower boundary of “biomass_reaction” flux is fixed
to 1, an infeasible outcome means that biomass cannot be
produced. This is caused by the deactivation of an essential
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source, sink, and/or pathway route. To troubleshoot, modifi-
cations are toggled ON/OFF until a feasible solution is
achieved. Conditionally essential metabolic features may
require special annotation for future references.

13. While experimental measurements are acquired independently,
the model inputs and outputs are occasionally coupled, for
example, essential amino acid uptakes to the growth rate and
glucose consumption to lactate production. QP is performed
to adjust measure rates in a weighted least square fashion
(Eq. 3) such that they become consistent according to the
model [3]. Equation 3 can be reformulated as a QP problem,
with measurement errors σ converted into the weight matrix
Q. Calculated residuals show the “movement” of the rates and
can be manipulated by tuning σ. For example, reduce error
term of growth rate to induce greater adjustments of amino
acid rates. Terms with zero residuals are free (uncoupled)
fluxes.

Minimize
vmeasured � vsimulated

σ

� �2
ð3Þ

14. Measured rates do not necessarily need to belong to the con-
trol or treatment set per se. It is important to use rates that
represent average activity and directionality of exchange reac-
tions. If rates are opposite between conditions, then model
reduction may be performed more than once, with the final
model produced by overlaying two or more reduced models.

15. For the MATLAB application, the binary values 0 and 1 were
formulated to represent activation and deactivation of reac-
tions, respectively. Hence the objective of the MILP problem
is set to maximize “1”s among reactions that are not listed as
core reactions.

16. MILP does not produce a minimum model, i.e., all reactions
are essential. Further model reduction can be accomplished by
randomly eliminating active reactions, one at a time, and
checking for feasibility by LP. The objective function can be
used to bias the choice of reactions eliminated, e.g., keep
reactions that maximize ATP production.

17. Determining flux distribution by a Monte-Carlo approach
allows propagation of measurements errors to the flux of all
other reactions. Measured rates are corrupted using Eq. 4
before being adjusted and used as flux constraints. Although
underdetermined fluxes have uniform distributions within the
flux interval, they also have complex couplings to other under-
determined fluxes. Hence, a greedy sampling approach was
used. Underdetermined fluxes were constrained in a
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randomized order, each to a random flux uniformly sampled
from that instance of flux interval.

vcorrupt ¼ vmeasured þ σ �N 0; 1ð Þ ð4Þ
18. Figure 2 is an example of a bird’s-eye view plot of histograms

for all reactions. MATLAB’s zoom function can be used to
inspect individual histograms and to produce a more legible
y-axis (reaction ID).
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