Nuclear deterrence theory






Nuclear deterrence theory
The search for credibility

ROBERT POWELL

The right of the
University of Cambridge
1o print and sell
all manner of books
was granted by
Henry VIII in 1534.
The University has printed
and published continuously
since 1584.

~L-
CAMBRIDGE UNIVERSITY PRESS

Cambridge
New York Port Chester Melbourne Sydney



Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

40 West 20th Street, New York, NY 10011, USA

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

www.cambridge.org
Information on this title: www.cambridge.org/9780521375276

© Cambridge University Press 1990
First published 1990

Library of Congress Cataloging-in-Publication Data
Powell, Robert.

Nuclear deterrence theory: the search for credibility / Robert
Powell.

p. cm.
ISBN 0-521-37527-4

1. Deterrence (Strategy). 2. Nuclear warfare. 1. Title.
U162.6.P69 1990
355.02'17—dc20 89-17462

CIP

British Library Cataloguing in Publication Data
Powell, Robert
Nuclear deterrence theory : the search for credibility.

1. Nuclear power. Political aspects.
I. Title
333.79'24

ISBN-13 978-0-521-37527-6 hardback
ISBN-10 0-521-37527-4 hardback

Transferred to digital printing 2005



Contents

Preface page vii
1 Introduction 1
2 The nuclear revolution and the problem of credibility 6
3 The dynamics of nuclear brinkmanship 33
4 Stability and longer brinkmanship crises 85
5 Crisis stability in the nuclear age 110
6 Stability and the lack of control 131
7 The strategy of limited retaliation 148
8 An appraisal 174
Appendix: Some introductory notes on game theory 187
References 221

Index 226






Preface

The first atomic attack, on August 6, 1945, killed more than seventy
thousand people. In Hiroshima, John Hersey described some of the horror
of that day: the terrible burns; the soldiers who apparently had been
looking up when the bomb exploded, “their faces were wholly burned, their
eyesockets hollow, the fluid from their melted eyes had run down their
cheeks”; the haunting silhouettes of people etched in stone by the nuclear
flash. That was one bomb on one city. A general nuclear war today would
be unimaginably worse.

This book is about the relation between force and states’ efforts to further
their ends in the nuclear age. It uses abstractions and mathematical models
to try to understand this relation better. These tools may help to bring the
essence of this relation into sharper focus, but these clean abstractions may
also make it easier to forget what they represent. Should the event that, it
may seem, is too casually referred to in the coming chapters as “disaster”
actually occur, hundreds of millions will be dead. Thinking about these
issues requires a certain amount of detachment, but we must guard against
becoming too detached.

In 1780, John Adams wrote to his wife, Abigail, “I must study politics
and war that my sons may have liberty to study mathematics and
philosophy. My sons ought to study mathematics and philosophy, geog-
raphy, natural history, naval architecture, navigation, commerce, and
agriculture, in order to give their children a right to study painting, poetry,
music, architecture, statuary, tapestry, and porcelain.” Written more than
two centuries after Adams’s letter, this book is about war and politics and is
a sad measure of how far short of the mark we have fallen.

I have incurred many debts in writing this book that I cannot possibly
repay. The best I can do is to acknowledge them and offer my thanks. Many
read and commented on the separate essays from which this book draws,
and I appreciate all of those comments. Vinod Aggarwal, James Fearon,
Albert Fishlow, Chaim Kaufmann, Robert Keohane, Barry O’Neill,
Thomas Schelling, Leo Simon, Marc Trachtenberg, Harrison Wagner, and
Steven Weber read the manuscript in draft. I have benefited greatly from
their comments and criticisms. I am especially grateful to James Alt for
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viii Preface

having the courage to look at more than one draft and to James Morrow
for reading the manuscript and for many discussions about international
politics and modeling. In a more general way, I am deeply indebted to
Kenneth Waltz, who as my teacher showed me how to begin to think about
international politics.

I have also enjoyed the generous support of several institutions. A
Fulbright Scholarship permitted me to spend a year at Cambridge
University, where I first began to try to explain nuclear deterrence theory to
myself. A Social Science Research Council-MacArthur Post-Doctoral
Fellowship in International Peace and Security, a grant from the National
Science Foundation, and a John M. Olin Research Associateship freed me
from teaching and administrative responsibilities for an inordinate amount
of time so that I could write. The MacArthur Interdisciplinary Group in
Strategic Studies and the Institute of International Studies at the
University of California, Berkeley, gave me an opportunity to present my
work at their seminar and offered a stimulating place to revise the
manuscript. Finally, Samuel Huntington and the Center for International
Affairs at Harvard University under his directorship have provided a
challenging and intellectually exciting place to work. [ am pleased that this
book appears under the auspices of the Center for International Affairs.



CHAPTER 1

Introduction

Even after the advent of secure second-strike capabilities marked the
nuclear revolution by rendering defense impossible, force remained the
final arbiter of disputes among states in the anarchy of international
politics. A state could still try to use force or threaten to use it if that seemed
to be in its best interest. Of course, one state might do this in an effort to
prevent another state from resorting to violence. But that only underscores
the point that states could use force if such use seemed to them to further
their ends. The nuclear revolution did, however, undercut the relation that
had previously existed between the use or threatened use of force and states’
attempts to secure their interests, for this relation implicitly depended on
defense. How has the nuclear revolution changed the relation between force
or the threat of it and states’ political objectives? Explaining this change is
the central problem for nuclear deterrence theory.

This book examines the ways in which nuclear deterrence theory has
tried to solve this problem. The book aims at two ends. The firstis to extend
the existing formal analyses of some aspects of deterrence theory’s
attempted solutions. These include the strategy that leaves something to
chance, crisis stability, and the strategy of limited retaliation. Formal-
ization often comes at a high price, and that is certainly the case with the
models developed here. Much must be sacrificed in the name of
simplification and tractability. But these sacrifices bring compensating
advantages. They bring the essence of these issues into sharper focus and in
this way make it possible to see connections among them that were
formerly obscure. The second, more important end of this work is to try to
describe a general and unifying analytic perspective that will draw out and
clarify the relations among these issues. This perspective should provide a
context in which questions about nuclear deterrence may be asked more
precisely and related more carefully and clearly to other questions and
issues. Ironically, the closer this work comes to meeting this second end of
elaborating this perspective, the less important the first end will become, for
one of the uses of this perspective will be to point the way toward richer,
better, and more useful models that will demand fewer sacrifices than do the
models examined here.

This unifying perspective emerges when nuclear deterrence theory is seen
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2 Nuclear deterrence theory

as a search for credibility. Once both the United States and the Soviet
Union acquired secure second-strike capabilities, each state could destroy
the other even after absorbing a first strike. Mutually assured destruction
had become the technological state of affairs. In this condition, each state’s
ability to impose costs on the other sufficient to outweigh the potential
gains from altering the status quo was no longer at issue. But could a state
use this capability to protect its interests? Could a state make the threat to
use this capability credible when the state was vulnerable to its adversary’s
retaliatory second strike? This was the credibility problem facing nuclear
deterrence, and it has motivated and guided the conceptual evolution of
nuclear deterrence theory’s attempts to explain the relation between the use
or threatened use of force and states’ efforts to further their interests after
the nuclear revolution.

The method used to elaborate this general perspective is to begin with
simple formulations and then expand their scope in order to bring out the
underlying connections linking the issues. This is done in three steps. The
first is to describe a stylization of the environment in which states must act.
This kind of stylization is ideally a historically or experientially informed
simplification. History and experience do not enter into a stylization in the
more rigorous and systematic ways that come into play when claims based
on stylizations are evaluated empirically. Rather, history and experience
enter a stylization in a less formal, more intuitive way. They suggest what
the essence of a situation is. Then, by abstracting away from the over-
whelming complexities of the actual situation, a stylization tries to bring
this essence into sharper focus. Stylizations anchor models. They constrain
the set of potential models by defining some idealized conditions to which
an acceptable model must conform.

The second step is to examine models that conform to the stylizations in
nuclear deterrence theory. For example, the nuclear revolution will be
stylized as having made defense impossible. The brinkmanship and limited-
retaliation models that are subsequently used to examine the relation
between force and political objectives after the nuclear revolution will then
have to be consistent with the assumption that defense is impossible.

A good model clarifies how certain conclusions follow from the model’s
specific assumptions and the stylization’s more general assumptions. But
this poses a question: How would changing the assumptions affect the
conclusions? The third step in tracing the search for credibility is to show
how the assumptions underlying one model and set of issues raise questions
that are then examined with models and stylizations based on a related but
different set of assumptions and how these assumptions in turn raise still
other questions.

The next chapter describes the classical logic of war; the way that the
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nuclear revolution undercut that logic; the two approaches nuclear
deterrence theory has taken toward explaining the relation between force
and states’ political ends after the revolution; and, finally, how these two
approaches, although appearing to be quite different, are fundamentally
alike. The classical logic of war was based on two assumptions. First, a
state’s ability to defend itself and its ability to threaten an adversary were
conflated in the same military forces. The army used to repel an invasion
could also be used to launch one. Second, should a profound conflict of
interests divide adversaries, then a state in this extreme could still hope to
defend itself by destroying its enemy’s military forces. The nuclear
revolution made these assumptions problematic. In a condition of mutually
assured destruction, defense is impossible. Given this new and seemingly
more appropriate assumption, nuclear deterrence theory has generally
linked force or the threat of it to states’ attempts to further their ends in one
of two ways. The first appeals to what Thomas Schelling (1960, 1966) called
a “threat that leaves something to chance.” States in the strategy based on
this type of threat bring coercive pressure to bear by taking steps that raise
the risk that the crisis will go out of control and end in a general nuclear
exchange. Deterrence in this approach ultimately appeals to the fear of
suffering the unlimited sanction of a general nuclear attack. The second
approach to the credibility problem does not rest on an unlimited sanction,
but on limited sanctions. In the strategy of limited retaliation, a state brings
coercive pressure to bear on an adversary by carrying out limited attacks in
order to make the threat of future attacks more credible. These two
approaches seem quite different, but at a more general level they are
essentially alike. Each tries to solve the credibility problem and relate force
to states’ political interests in the same way. Each approach uses limited
options to bridge the gap between doing too much in response to limited
aggression or too little, that is, between retaliating with a massive nuclear
attack or simply acquiescing to an adversary.

Although these two approaches are equivalent at a high level of
generality, different issues and concerns motivate these approaches at a
somewhat lower level of generality. Chapters 3 through 7 use several game-
theoretic models to illuminate these issues and the connections among
them. Many of the basic models have appeared elsewhere in separate
essays.! The following chapters extend the formal analysis of these models
and in this way contribute to meeting the first end of this work. But, more
important, bringing these models together in a single place makes it
possible to discuss the relations between them, to show how one model

! Chapter 2 draws on Powell (1985), Chapter 3 on Powell (1987, 1988), Chapter 4 on Powell
(1989c), Chapter 5 on Powell (1989a), and Chapter 7 on Powell (1989b).



4 Nuclear deterrence theory

addresses questions posed by previous models and then poses new
questions for subsequent models. It is this broader discussion of the models,
the stylizations underlying them, and the relations among them that
further the second end of this work.

Chapters 3 and 4 examine more closely the strategy that leaves
something to chance. Schelling (1960, pp. 199-201; 1962b; 1966, pp. 92—-125)
offered brinkmanship as a useful analogy for understanding the dynamics
of crises in which states use this strategy to exert coercive pressure. These
chapters formalize this analogy by modeling it as a game of sequential
bargaining with incomplete information. The game is sufficiently simple
that its equilibria may be characterized explicitly and then used to study the
roles of resolve, misperception, the value of the status quo, and uncertainty
in crisis bargaining.

The defining concern of the strategy that leaves something to chance is to
explain how a state can exert coercive pressure with a sanction that it would
never impose deliberately on an adversary. Accordingly, the brinkmanship
analogy and the game-theoretic models of it also assume that there is no
situation in which a state would deliberately launch a massive, society-
destroying nuclear first strike. That, in turn, means that there is no
advantage to striking first rather than second, for if there were a first-strike
advantage, then there would be at least one situation in which a state would
deliberately impose the sanction of a general nuclear attack. Preemption
would become the best of a terrible set of alternatives if there were an
advantage to striking first and a state became sufficiently confident that its
adversary was about to attack. Chapters 5 and 6 explore the consequences
of relaxing the assumption that there is no advantage to striking first. These
chapters, in effect, reconsider the problem of crisis stability and first-strike
advantages. This reexamination shows that deterrence theory’s analysis of
this problem previously has focused too narrowly on the size of the
advantage to striking first. Stability results from a more subtle interaction
of several factors.

The strategy that leaves something to chance and the problem of crisis
stability center on the unlimited sanction of a massive nuclear attack. This
leads naturally to a question about the effects of broadening the scope to
include limited sanctions. What happens if the sanction is no longer
unlimited? Chapter 7 takes up this question. It examines the strategy of
limited retaliation and the problems surrounding the use of limited
sanctions. One of these problems is the effect of having smaller, less
destructive limited options. Do these options make war more likely
because, being less destructive, they are more likely to be used? Or do these
options make war less likely because a potential aggressor, appreciating
that aggression is more likely to be resisted, is less likely to challenge the
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status quo? Different views on the answers to these questions have played
important roles in the debate about American nuclear doctrine at least
since the Kennedy administration began to move toward the doctrine of
flexible response in the early 1960s. The analysis in Chapter 7 of the
dynamics of crisis bargaining, in which states use the strategy of limited
retaliation, sheds some light on these questions.

Chapter 8 offers a concluding appraisal. It summarizes some of the
specific results derived from the models examined here and discusses some
of the strengths, weaknesses, and limits of the models and, more generally,
of nuclear deterrence theory.

A game-theoretic Appendix follows Chapter 8. It introduces the game-
theoretic vocabulary and concepts used here to study nuclear deterrence
theory. The mathematical formulations in the following chapters are for
the most part quite simple, generally requiring nothing more than algebra.
Unfortunately, the derivations tend to be long and tedious. That and the
fact that they employ some special game-theoretic terms and concepts may
make them and their discussion difficult to follow. The Appendix describes
these concepts in order to make these discussions easier to follow.



CHAPTER 2

The nuclear revolution and the problem of
credibility

This chapter elaborates a framework within which to place the more
detailed and narrowly focused analyses of the subsequent chapters. That
framework encompasses the broader themes that will connect the more
specific issues examined in later chapters. This chapter develops the
framework in three steps. The first step summarizes what will be called the
classical logic of war: the stylized relation that existed between the use or
threatened use of force and states’ attempts to further their interests before
the nuclear revolution. The nuclear revolution undercut the classical logic
and made the problem of credibility the paramount theoretical concern.
The second step then reviews the two apparently quite different ways in
which nuclear deterrence theory has tried to solve this problem by
explaining how the use or threatened use of force is related to states’
political objectives after the nuclear revolution. The first is based on
Schelling’s “threats that leave something to chance” (1960, 1966). In this
approach to the credibility problem, states take steps during a crisis that
raise the risk that the crisis will go out of control and escalate to a general
nuclear war. The second approach is not based on the risk of losing control.
Instead, a state deliberately imposes severe but nevertheless limited sanc-
tions on an adversary in order to make the threat of future punishment
sufficiently credible that the adversary will come to terms. After outlining
these two approaches, the third step is to show that despite their apparent
differences, the two approaches are fundamentally alike. Each attempts to
solve the credibility problem in essentially the same way. Each uses an array
of limited options to bridge the gap between doing too much by launching a
massive nuclear attack and doing too little by acquiescing to an adversary.
The idea behind these limited options is that a state may be able to make the
threat to use them more credible than the threat to launch a massive nuclear
attack and in this way avoid having to submit to its adversary.

The classical logic of war

What is the nuclear revolution, and what are its consequences? How has it
changed the logic of war? How, that is, has the nuclear revolution changed
the relation between the use or threatened use of force and states’ attempts

6



Nuclear revolution and the problem of credibility 7

to secure their political ends? To address these questions, one must first
have some notion of what the logic of war was before the nuclear
revolution.!

Carl von Clausewitz, writing in the aftsrmath of the Napoleonic Wars,
described the logic of war that existed before the nuclear revolution: “If the
enemy is to be coerced you must put him in a situation that is even more
unpleasant that the sacrifice you call on him to make” (Clausewitz 1976,
p-77). As it stands, this formulation of coercion is timeless. If an adversary
is to make the political sacrifices demanded of it, then the cost of refusing to
make them must appear to be still greater. What bounds this formulation
and gives it meaning is the way that force or the threat of it can be used to
make an adversary’s situation unpleasant. Indeed, what will distinguish the
relations between the use and threatened use of force and states’ attempts to
further their interests before and after the nuclear revolution are the
different ways that force can be used to bring coercive pressure to bear.

Deterrence and the distinction between punitive and defensive
capabilities are crucial to describing the different ways that coercive
pressure may be exerted. Deterrence is a form of coercion. A state deters an
adversary from doing something like attacking by convincing it that the
cost of doing so would be greater than the potential gain.>2 A state’s
defensive capability is the state’s physical ability to limit the costs an
adversary can impose on it (Snyder 1961, p.3). The greater a state’s
defensive capability, the less an adversary can hurt it. In addition to being
able to limit the costs an adversary can impose on it, a state may be able to
inflict costs on an adversary. These costs may include the invasion and
occupation of some of its territory, the destruction of its military forces, the
devastation of some of its industrial capability, or, more simply and
gruesomely, the killing of some of its people. A state’s punitive capability is
its ability to inflict costs on an adversary. The greater a state’s punitive
capability, the more punishment it can impose.

The adjective “physical” in the definition of defensive capability is
important. If a state deters an adversary from invading it by threatening to

! This discussion of the logic of war and the nature of the nuclear revolution draws heavily
on the important contributions of Brodie (1959), Snyder (1961, pp. 3-51), and Schelling
(1966, pp.1-34).

In some contexts it may be useful to distinguish between deterring an adversary from doing
something and compelling an adversary to do something; see Schelling (1966, pp. 69-91) for
a discussion of the difference between deterrence and compellence. This distinction is,
however, conceptually elusive. The difference between deterring an adversary from
attacking and compelling it not to attack is unclear. At a more general level, deterrence and
compellence are alike: In each, a state is trying to coerce its adversary into acting in certain
ways and not in others by shaping the adversary’s estimates of the costs and benefits. No
distinction will be made here between deterrence and compellence.



8 Nuclear deterrence theory

impose grave punishment, then the state will have succeeded in limiting its
costs. But this does not imply that the state has a strong defense, for the
state might have been physically unable to limit the cost of being invaded
had its adversary actually decided to invade. Instead, the state, although
physically unable to repel an invasion had it occurred, was able to coerce its
adversary into not attacking by making the prospect of unacceptable
punishment sufficiently likely that the adversary did not invade because the
expected cost of doing so seemed greater than the expected gain.

Three aspects of the distinction between punitive and defensive
capabilities should be emphasized. First, as just suggested, both capabilities
may contribute to deterrence. Whether a state is trying to deter an
adversary from invading or convince an adversary not to mount further
resistance after it has been invaded, both capabilities are related to a state’s
ability to influence its adversary’s actions. To make the cost of failing to
comply greater than the cost of doing so, a state must have, or at least
appear to have, the ability actually to impose sufficiently high costs on an
adversary. This is the role of a state’s punitive capabilities. But deterrence
requires more than the ability to impose costs. An adversary must be
sufficiently convinced that the state will use its punitive capabilities. This
judgment would seem to be affected by the state’s ability to limit the costs
that an adversary can impose on it in retaliation. The greater a state’s
defensive capability, the less its adversary can hurt it, and the more likely it
may be to use its punitive capabilities on its adversary. Accordingly, the
ability to place an adversary in a situation the continuation of which will be
more costly than the sacrifice it is being asked to make is related to both
punitive and defensive capabilities.?

3 Snyder (1961, pp. 14-16) and others, such as Schelling (1966) and Jervis (1984), point out
that both capabilities may contribute to deterrence. However, trying to identify a separate
form of deterrence with each type of capability, as Snyder does with his distinction between
deterrence by denial and deterrence by punishment, is quite problematic.

In Snyder’s formulation, a state deters an adversary from invading by demial by being
physically able to “deny territorial gains to the enemy” (Snyder 1961, p. 14), or at least to
make a successful invasion less likely. More generally, a state deters by denial by being
physically able to deny an adversary its goal or, as Snyder puts it, by affecting “the
probability of gaining his [the adversary’s] objective” (1961, p.15). Deterrence by
punishment is different. Here, a state deters an adversary from invading not by being
physically able to stop an invasion but by credibly threatening to impose enough
punishment so that the costs of invading will seem greater than the potential gains. In this
formulation, an army that would fight the invaders primarily contributes to deterrence by
denial. A strategic nuclear force only capable of inflicting punishment by destroying an
adversary’s cities contributes mostly to deterrence by punishment.

The difficulty with this formulation is that it is more natural to think of a potential
invader’s objective not as simply to invade and occupy some territory but to do so at some
acceptable cost. But then, as soon as a state’s strategic nuclear arsenal can impose still
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The second point is that a state’s punitive capability is related to its
adversary’s defensive capability. The greater a state’s punitive capabilities,
the higher the costs it can impose on an adversary, and thus the less
physically able an adversary is to limit the costs that can be imposed on it.
There is an inverse relation between a state’s punitive capability and its
adversary’s defensive capability.

Finally, it is important to emphasize that although these two capabilities
are conceptually separate, actual military forces may combine both of these
capabilities. An army capable of repelling an invasion and thereby limiting
the costs an adversary can impose may also be used to launch an invasion
and inflict costs on an adversary by taking some of its territory. By helping
to limit costs, the army contributes to the state’s defensive capabilities. By
being able to take what an adversary values, the army contributes to a
state’s punitive capabilities.

Much turns on whether or not punitive and defensive capabilities are
generally conflated in the same forces. Indeed, this crucially affects the
relation between the use and threatened use of force and states’ attempts to
secure their ends. The classical logic of war assumed that these capabilities
were conflated. As will be seen, the separation of these capabilities and the
development of states’ punitive capabilities undercut the classical logic and
marked the nuclear revolution (Snyder 1961, pp.8-9; Schelling 1966,
pp. 1-34; Jervis 1984, p.26).

When these two capabilities were conflated, the same forces that limited
the costs an adversary could impose also increased a state’s ability to
impose costs on its adversary, especially by taking its territory. Two
consequences follow from the conflation of these two capabilities in the
same forces. First, being militarily stronger could enhance deterrence by
raising the expected cost an adversary would have to bear if it attacked. The
state’s greater punitive capability would mean that the adversary would
have to pay a higher price if the state actually used its capability. Second,
this state, because it would be less vulnerable to its adversary, might be
more willing to use its capability. To the extent that raising the expected

higher costs, the state becomes physically able to deny its adversary its objective. Thus,
what is perhaps the clearest example of a punitive capability (i.e., a state’s strategic nuclear
force capable only of destroying an adversary’s cities) appears now to be deterring by
denial, because this force is physically able to deny an adversary its broader political
objective of occupying some of this state’s territory at some acceptable cost. Identifying
types of deterrence with types of capabilities is problematic. Snyder may be closer to the
mark when he suggests that the difference between deterrence by denial and deterrence by
punishment may have less to do with a formal distinction between the means of deterring
and more to do with beliefs (which are perhaps based on historical experience) about the
types of reactions that various actions, such as invasions, are likely to provoke (Snyder
1961, pp. 14-16).
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cost of attacking for the adversary enhanced deterrence by reducing the
chances of an attack, military strength was the key to security in the
classical logic of war.*

The conflation of punitive and defensive capabilities also defined a
reasonably clear relation between the use or threatened use of force and
states’ political ends, at least in the case in which a profound conflict of
interest divided the states. If a supremely important political objective
required an adversary to give up something of great value, then in this
extreme a state might want to try to put its adversary in the worst of all
possible positions. For Clausewitz, “the worst of all conditions in which a
belligerent can find himself is to be utterly defenseless. Consequently, if you
are to force the enemy, by making war on him, to do your bidding, you must
either make him literally defenseless or at least put him in a position that
makes this danger probable” (1976, p.77).

Because punitive and defensive capabilities were conflated, rendering an
adversary defenseless would also destroy its punitive capabilities. The
destruction of both of these capabilities would give a state political control
over its adversary. But that control would not be absolute. Even after
becoming defenseless, a state still could refuse to do the victor’s bidding.
But in doing so, this state would have to suffer whatever punishment the
victor decided to inflict and would be unable to retaliate against the victor in
any meaningful way.® Before the nuclear revolution, “military victory was
the price of admission,” to use Schelling’s apt description (Schelling 1966,
p.17). That is, the victor, after having already destroyed its adversary’s
military forces, might have to inflict still more punishment on the defeated
state in order to convince it to do the victor’s bidding. Its defeat did not
assure that the adversary would do this automatically. But because the
defenseless adversary could no longer pose a significant threat to hurt the
victor in retaliation, the cost to the victor of carrying out its threats to hurt
its adversary if the adversary refused to do the victor’s bidding was as low
as possible. In this way, the victor’s being able to protect itself from

4 Strengthening the state may make an adversary less likely to attack, but it may not. By
becoming stronger, a state may raise the expected cost of attacking for an adversary. But
because the strengthened state will have greater punitive capabilities, its adversary will be
more vulnerable and, fearing still greater vulnerability, may find that the expected cost of
not attacking is also rising. On balance, this may leave the adversary more likely to attack.
This is the essence of the security dilemma, in which one state’s effort to increase its own
security by reducing its vulnerability reduces another state’s security by increasing its
vulnerability. For a discussion of this, see Jervis (1978).

The assumed conflation of punitive and defensive capabilities is, of course, a simplification
and a stylization. Even after losing its military forces, an adversary may still retain some
punitive capabilities in the form of guerrilla resistance, for example. The assumption here is
that any residual punitive capabilities are insignificant.
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any retaliation made its threats to punish its adversary as believable as
possible.

In the stylization of the classical logic of war, a great war fought over a
profound conflict of interest could be thought of as a two-stage process.
The first was a contest of relative military strength. During this stage each
state still tried to coerce the other by making the cost of resistance seem
greater than the cost of compliance. But these costs were primarily affected
by course of the military struggle. Once the military struggle had been
decided, then if the threat inherent in having been defeated had not already
done so, the victor could use the “power to hurt” (Schelling 1966, p. 3) to
raise the expected cost of further resistance to such a level that it would
exceed the expected cost of coming to terms (Snyder 1961, p. 11; Schelling
1966, pp. 12-18; Jervis 1984, p.27).

The assumption that the punitive and defensive capabilities were
conflated in the same forces was crucial to the stylized relation between the
use and threatened use of force and states’ aims that existed before the
nuclear revolution. This assumption meant that a state that had rendered
its adversary defenseless would be able to defend itself. If, therefore, the
victor chose to try to coerce a defeated yet defiant adversary into doing its
bidding by punishing it, the victor could be confident of defending itself
from any attempted retaliation. This is critical, for if the victor were unable
to protect itself, it would not have control. “So long as I have not
overthrown my opponent [i.e., rendered him defenseless] I am bound to
fear that he may overthrow me. Thus I am not in control: he dictates to me
as much as I dictate to him” (Clausewitz 1976, p. 77). The essence of the
classical logic of war was that defense, at least for the victor, was possible
(Brodie 1959, pp. 147-222; Schelling 1966, pp. 1-34). That defined the aim
of warfare, at least in the extreme in which a profound conflict of interest
divided two states. By rendering an adversary defenseless, a state, because it
still could protect itself, would have put its adversary in the worst of all
possible positions (Clausewitz 1976, p.77).

The rise of strategic air power, the development of intercontinental
ballistic missiles, and the advent of atomic and then thermonuclear
weapons separated the ability to punish from the ability to limit the
punishment one might have to suffer.® This growing separation cast doubt

¢ These two capabilities had in reality always been separate in varying degrees. The English
forces used to carry out the chevauchées during the Hundred Years War, the British naval
forces used to blockade Germany during World War I, the German submarines that
attempted to biockade Great Britain, and the strategic air forces employed during Worid
War II were more effective in punishing an adversary than in limiting the costs an
adversary could impose. The classical logic of war and the assumption that punitive and
defensive capabilities are conflated are at best useful stylizations and simplifications.
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on the classical logic.” The nuclear revolution, that is, the advent of a
technological condition of mutually assured destruction, completely
undercut this logic. Rendering an adversary defenseless no longer meant
that a state could also effectively limit the cost that its adversary could
impose on it. Once two superpowers acquired secure second-strike capa-
bilities, each state in effect had already rendered its adversary defense-
less. Neither had the physical ability to limit the damage that the other
could impose on it should the other decide to do so. But because the ability
to punish was no longer conflated with the physical ability to limit
punishment to oneself, rendering an adversary defenseless no longer
brought political control. How did deterrence work when punitive and
defensive capabilities were no longer reinforcing each other?

Coercion still required a state to be able to put its adversary in a situation
the continuation of which would seem more costly than would complying
with the state’s demands. That, in turn, depended, first, on a state’s being
able to inflict a sufficient amount of punishment on an adversary and,
second, on a state’s being able to make the threat to use that capability
sufficiently credible. In a condition of mutually assured destruction in
which each state could destroy the other even after absorbing a first strike,
the first condition certainly seemed to be satisfied. But what of the second?
What of the credibility problem? Could a state convince its adversary that it
would use its capability to punish when it was vulnerable to its adversary’s
retaliation? Could the threat to use these capabilities be credible? Once the
rise of air power and then ballistic missiles had separated punitive and
defensive capabilities, and once the nuclear revolution had made defense
impossible, what was the relation between the use and threatened use of
force and states’ attempts to secure their interests?

The arrays of risk and punishment

The debate over the doctrine of massive retaliation brought the problem of
credibility to the fore. In January 1954, Secretary of State Dulles, in a major
speech on American foreign policy, reemphasized some of the themes of
President Eisenhower’s state-of-the-union address. Dulles’s speech was
ambiguous, but when seen in the context of the administration’s efforts to
limit military spending and its emphasis on nuclear weapons, the speech
was interpreted by some to imply that the United States had adopted a
strategy of massive retaliation: “in the event of another proxy or brushfire
war in Korea, Indochina, Iran or anywhere else, the United States might
retaliate instantly with atomic weapons against the U.S.S.R. or Red China”

7 For discussions of the effects of the rise of air power and the advent of nuclear weapons, see
Brodie (1959, pp. 3-222), Quester (1966), and Freedman (1989, pp. 3—44).
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(Reston 1954). That is, the United States would rely on the threat of massive
nuclear retaliation to protect the entire spectrum of American interests,
ranging from the most peripheral to the most vital.8

Almost immediately the doctrine of massive retaliation was barshly
criticized as being incredible and therefore ineffective.® This, however, was
a debate about how best to protect less important American interests. As
long as the United States was relatively invulnerable to a Soviet nuclear
attack, massive retaliation seemed to be a credible means of protecting vital
American interests like Western Europe (Brodie 1966, pp. 27-8). But once
the United States became vulnerable to a devastating Soviet attack, the
credibility of an American threat to launch a massive nuclear attack even in
an attempt to protect vital interests became problematic.!® How could a
state credibly threaten to launch a massive nuclear attack when carrying
out the threat would bring its own destruction? The policy debate focused
on the problem of extended deterrence. How, that is, could the United
States extend its ability to deter the Soviet Union from attacking the United
States to deterring the Soviet Union from attacking Western Europe?!!
The more general issue was to understand how a state might credibly
threaten to do what seemed to be inherently incredible.!?

As technical and political circumstances and conditions changed after
the demise of the doctrine of massive retaliation, many nuclear strategies
and policies were devised. The 1960s saw Secretary of Defence McNamara
propose the “no cities” doctrine, in which American strategic nuclear forces
would not be aimed at Soviet cities but at Soviet military capabilities. The

For a more detailed discussion of massive retaliation, see Gaddis (1981) and, especially,
Wells (1981). Rosenberg (1983) offers an illuminating discussion of the Eisenhower
administration’s attitudes toward nuclear weapons and attempts to control them.
Kaufmann (1956) has provided the classical criticism.

Betts (1987, pp. 144-72) has traced the evolution of American assessments of American
vulnerability to a Soviet nuclear attack.

The problem of extending deterrence to cover vital American interests such as Western
Europe has greatly influenced the evolution of American nuclear strategy. Freedman
(1989) has provided a summary of this work and an extensive bibliography.

There is an important implicit assumption here that should be made explicit. The
credibility problem arises because it is assumed that the chances that a state will see any
political objective as being worth the cost of bringing about its own destruction by
launching a massive nuclear attack against an adversary are too small to deter this
adversary. This assumption implies that the threat to order this attack and thereby bring a
devastating counterattack in return is incredible, because sacrificing the political objective
is less costly than launching a massive nuclear attack. This makes carrying out the threat
inherent in the doctrine of massive retaliation irrational. If, however, some political
objectives are worth certain destruction, then implementing the threat may be rational,
and the doctrine of massive retaliation may be credible. In order to focus on the credibility
problem, it will be assumed that no political objective is worth certain destruction.
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United States would, in effect, try to hold Soviet cities hostage in order to
give the Soviet Union the “strongest imaginable incentive to refrain from
striking our own [i.e., American] cities” (McNamara 1962, p.62). That
strategy was quickly forsaken for the doctrine of assured destruction,
which emphasized being able to destroy 20 to 25 percent of the Soviet
population and 50 percent of its industrial capacity after absorbing a first
strike (Enthoven and Smith 1971, p.175). The North Atlantic Treaty
Organization (NATO) debated and then in 1967 adopted the doctrine of
flexible response, which, at least from the American perspective, was
designed to enhance deterrence by raising the nuclear threshold by re-
ducing NATO’s dependence on the early use of nuclear weapons. The call
for greater flexibility continued in the early 1970s with the Schlesinger
doctrine, which tried to find implementable limited nuclear options that
might be used to strike Soviet military targets or to demonstrate resolve. At
the same time, President Nixon spoke of the strategy of “sufficiency,” which
meant “the maintenance of forces adequate to prevent us and our allies
from being coerced” (Nixon 1971, p. 170). Later in the decade and into the
early 1980s, nuclear policy centered on the countervailing strategy and the
importance of having escalation dominance. In 1983, strategic defenses
returned to center stage.!®

The connections linking these policies and strategies to nuclear de-
terrence theory often were loose and rather tenuous. There were at least
two reasons for this. First, nuclear policies and strategies have been the
outcomes of bureaucratic and political processes that have reflected more
than national security concerns.'* A second and perhaps more important
reason has to do with the weakness of deterrence theory itself. A powerful
theory of nuclear deterrence would specify in more or less detail the likely
consequences of various strategies and policies. If there were such a
powerful theory, a state might then be expected to take it into account in
formulating its nuclear strategies and policies. There would be a close
connection between theory and policy. But when the theory is weak and
often provides little insight into the detailed and pressing problems of
policy, there is little reason to expect a state’s strategies and policies to be
anything more than vaguely related to nuclear deterrence theory’s account
of the relation between the use of force or the threat of it and states’
attempts to further their ends.

Although there have been many nuclear policies and strategies, nuclear

13 For discussions of these policies and strategies, see Enthoven and Smith (1971), Kahan
(1975), Ball (1980), Freedman (1989), Schilling (1981), Slocombe (1981), Jervis (1984), and
Sagan (1989b).

14 Steinbruner (1974), Ball (1980), and Rosenberg (1983) have described examples of these
processes.
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deterrence theory has generally approached the credibility problem from
one of two perspectives. Both approaches try to link the possible use of
force to states’ political objectives in what would seem to be the most
difficult and demanding case. This is the stylization in which the condition
of mutually assured destruction is interpreted in its strictest sense. In this
stylization, there is no advantage to launching an unlimited nuclear attack
first rather than second. In the event of a general exchange, it makes no
difference if a state strikes first or is struck first. This is the strictest
interpretation, because if there is no advantage to striking first, then as long
as a state believes that there is the slightest chance that early warnings are
erroneous and an adversary has not attacked, this state will not launch a
general attack. It is always better to do something else. In this strictest
interpretation, there is no situation in which it is rational for a state
deliberately to launch an unlimited nuclear attack first.

The first approach to understanding the credibility problem is a direct
conceptual descendant of the doctrine of massive retaliation, in that both
appeal to the same sanction. In this approach, a state would still try to
secure its interests by relying on the sanction of a massive nuclear attack.
Schelling (1960, 1962b, 1966) provided the insight that explains how, at least
in principle, this sanction might be linked to states’ attempts to secure their
ends after the nuclear revolution. Although in the strictest interpretation of
mutually assured destruction the threat to launch a first strike deliberately
would never be credible, deterrence could still be based on the fear of
“things getting out of hand,” on the fear that the crisis would go out of
control and escalate to a general nuclear exchange (Schelling 1960, 1962b,
1966). It was unnecessary to rely on anincredible threat to launch a massive
nuclear attack deliberately. Rather, a state could threaten to take steps that
would increase the likelihood of uncontrolled escalation to an unlimited
nuclear exchange. A state could make “threats that leave something to
chance” (Schelling 1960). Credibility, then, was to be found in having a set
of limited options, each of which, if exercised, would raise the risk of the
crisis going out of control. Because exercising an option was not certain to
trigger a general nuclear war, but only created the risk of it, the expected
cost of exercising an option would be less than the expected cost of
deliberately imposing the sanction of launching an unlimited attack. If,
moreover, a state’s stake in the crisis were high, the expected cost of
escalating by exercising a limited option might be less than the expected
cost of giving in to an adversary’s demands. In that case, the threat to
escalate would be credible. As Schelling put it, “a response that carries some
risk of war can be plausible, even reasonable at a time when a final, ultimate
decision to have a general war would be implausible or unreasonable”
(1966, p.98).
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The set of limited options links the sanction of a massive nuclear attack
to states’ attempts to secure their interests. By being able to vary the risk of
the crisis going out of control, the strategy that leaves something to chance
offers a state a means of exerting coercive pressure on its adversary even in a
condition of mutually assured destruction. Whether a state exercises a
limited option in order to raise the risk or despite the greater risk, raising
the risk of a general nuclear exchange increases the expected cost to its
adversary of continuing the crisis. If this cost is greater than the cost of
submitting, an adversary will quit the crisis. Of course, both states might
take steps that would raise the risk. In the strategy that leaves something to
chance, the crisis continues until one of the states finds the risk intolerable
or until the crisis goes out of control and there is a general nuclear
exchange.!®

In this approach, limited options manipulate the risk of the crisis going
out of control and escalating to an unlimited nuclear exchange.
Accordingly, these options are not to be judged primarily in terms of their
effects on the battlefield of a limited war. Relative military strength and
superiority would seem to be unimportant. What matters would seem to be
the ability and willingness to create risks. Limited options are to be judged
by their effects on the risk of uncontrolled escalation to a general nuclear
war (Schelling 1960, 1962b, 1966; Jervis 1979-80, 1984). In this way, the set
of limited options, each of which carries a different risk of escalation,
constitutes an array of risk.

The array of risk and a strategy based on threats that leave something to
chance offered one means of coping with a situation in which mutually
assured destruction was the technological state of affairs. Even if there were
no advantage to striking first and no situation in which a state could

15 Therearereally two variants of this approach. In the first, states exercise a limited optionin
order to raise the risk of disaster. A crisis becomes a “competition in risk-taking” (Schelling
1966, p. 166) in which each state tries to demonstrate that its resolve, i.., its willingness to
run the risk that the crisis will go out of control, is greater than its adversary’s resolve. In
the second variant, the effect of exercising a limited option is to raise the risk, and it is this
greater risk that actually exerts the coercive pressure, but the state exercises the option
because it appears to further its ends in some other way. The greater risk is seen as an
undesirable but unavoidable consequence of acting.

Historical evidence generally does not support the first variant. Leaders do not seem to
take steps because they raise the risk of war (Snyder and Diesing 1977, p. 242; Trachtenberg
1985, p. 146). The second variant seems more viable: States do not act in order to increase
the risk of war, but act in ways that do raise the risk, and this risk is the source of coercive
pressure. This formulation, however, begs an important question: If states are not
exercising limited options in order to raise the risk but because they appear to further their
ends in some other way, what are these other ways, and what is the evidence for concluding
that it is the greater risk and not these other ways that may coerce an adversary into
submitting?
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rationally and deliberately launch what it knew to be an unlimited first
strike, a state might still be able to use the sanction of a massive nuclear
attack coercively to protect its interests by manipulating the risk that a
crisis would go out of control and escalate to a general nuclear exchange.
This is one of the ways that deterrence theory has addressed the problem of
credibility.

There is also a second approach, in which deterrence is not based on an
unlimited attack but on limited attacks or limited retaliation.!® A state
would no longer threaten the complete destruction of its adversary through
a massive nuclear attack. Rather, a state would attempt to deter its
adversary by threatening to extract a toll in pain and destruction that,
although sufficiently large to outweigh any potential gains, would still be
limited. Should this threat initially prove insufficiently credible to dissuade
an adversary, then a state might try to make it more credible by actually
carrying out a limited option and inflicting some punishment.

If limited options were to be used in this way, they had to satisfy two
criteria. First, a state at least had to appear to be able to impose high
enough costs on an adversary that it would rather back down than endure
the punishment that could be inflicted. But, second, the options had to be
sufficiently limited that even if they had been exercised, the adversary still
would be left with something more to lose. That was the key to the
credibility problem. If a state had been completely destroyed by an
unlimited attack, so that it had nothing left to lose, it would have no
incentive to limit its retaliation. If, however, a state had suffered a limited
attack and was left with something more to lose, that state might be
deterred from retaliating in order not to lose what was left. A state might,
for example, threaten to destroy one of its adversary’s cities in order to
coerce that adversary into backing down during a severe confrontation in
which vital national interests were at stake. If, during the course of that
confrontation, that threat were carried out, then, despite the horrendous
loss of a city, the adversary still would have much left that could be lost.
Moreover, the fact that it had already lost one city might make the threat
that it was about to lose another very credible. That, in turn, might convince
it not to retaliate and to back down.

Clearly, whatever coercive pressure the exercise of a limited option
creates in this approach arises only by increasing the credibility of the
threat of future destruction. Coming to terms after a city has been
destroyed does not rebuild the city or bring the dead back to life or alleviate
the survivors’ suffering. At most, it preserves what remains. “The hurting

18 For early studies of the strategy of limited retaliation, see Snyder (1961), Kaplan (1962),
Kahn (1962), Knorr (1962), Schelling (1962a, 1965, 1966), and Halperin (1963).
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does no good directly; it can only work indirectly. Coercion depends more
on the threat of what is yet to come than on the damage already done”
(Schelling 1966, p.172). In sum, by exercising a limited option, a state
attempts to demonstrate that its resolve is greater than that of its adversary,
in the sense that it is more willing than is its adversary to inflict and endure
future punishment in order to secure its ends.

In the strategy based on threats that leave something to chance, limited
options raised the risk of the crisis going out of control and escalating to an
unlimited nuclear exchange. The set of limited options thus constituted an
array of risk. In the second approach to deterrence, limited options inflict
limited amounts of punishment to make the threat of future punishment
more credible. These options now form an array of punishment.!’

Uncertainty and the struggle to control events play crucial roles in
escalation and crisis bargaining. “The essence of the crisis is its
unpredictability. The ‘crisis’ that involves no risk of things getting out of
hand is no crisis. ... It is the essence of a crisis that the participants are not
fully in control of events” (Schelling 1966, p. 97). But “not [being] fully in
control of events” has two interpretations, and the distinction between
them is crucial to understanding the relations between the use or threatened
use of force and states’ attempts to secure their political objectives that
underlie the strategies of leaving something to chance and of limited
retaliation.

The first interpretation of the participants not being fully in control of
events is that the participants do not have complete collective control. Even
if the participants agree on a certain outcome and jointly act to effect this
outcome, they cannot guarantee that this particular outcome will be
realized. There is, to use Snyder and Diesing’s phrase (1977, p.210), some
“autonomous risk” that some other outcome will eventuate.

Schelling (1966, pp. 99-105) offered a modified game of chess as an anal-
ogy for the strategy that leaves something to chance. This analogy also
helps to clarify the first interpretation of events not being fully under
control. To the three possible outcomes of the standard game of chess, win,
lose, or draw, Schelling added a fourth, disaster, which is the analogue of a
general nuclear exchange. If the game ends in disaster, each side will be
worse off than if it had simply lost. The game may end in disaster in only one
way: If a knight and queen of opposite colors cross the center line, then “the

17 In an earlier essay (Powell 1985), these arrays were called the “spectrum of risk” and the
“spectrum of violence.” The word “spectrum” was a poor choice, for it connotes a
continuum of limited options. That connotation was unintended and is inappropriate, for
nuclear weapons may be very blunt, and there may be few limited options. For this reason,
“array” is a better description of the set of limited options.
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referee rolls a die. If an ace comes up the game is over and both sides are
scored with a disaster, but if any other number comes up play goes on. If
after the next move the queen and knight are still across the center line the
[dieis] rolled again, and so on” (Schelling 1966, p. 102). The addition of the
referee and the die means that black and white are not in complete
collective control of the game. Once a knight and queen of opposite colors
cross the center line, the players can no longer guarantee that the game will
not end in disaster. Although neither player would ever deliberately end the
game in disaster, there is some chance of its ending that way. In moving a
knight and queen across the center line, the players lose collective control of
the outcome of the game. Their fate passes to the autonomous risk involved
in the referee’s throw of the die.

In the second interpretation of events not being fully under control, the
participants are in complete collective control. If they agree on a particular
outcome, the participants can effect any agreed outcome. Control is not
something that can be lost. Events, however, are not fully under control, in
the sense that no participant can control the actions and reactions of
another.

The standard game of chess offers a good example of events not being
fully under control in this second sense. If the players agree to a particular
series of moves, then as long as this series is consistent with the rules of
chess, the players, who collectively control all of the pieces, can effect this
series of moves. If the players agree to a series of moves ending in white
being checkmated, then the players can follow this series. But, of course,
white does not want to be checkmated. White has no interest in following
this series of moves and, not being under black’s control, need not. This is
the essence of the second interpretation of events not being fully under
control.!8

Failing to distinguish between these two interpretations can lead to
apparently paradoxical conclusions about escalation in both nuclear and
nonnuclear contexts. For example, concerning the crisis preceding World
War I, the historian F. H. Hinsley wrote that if historians had gone as far as
the evidence was trying to take them,

they would have recognised that the dice had been set rolling for all the
Powers before Russia mobilised — and not by any of the Powers but by a
Balkan assassination. They would have seen that what makes some
governments appear more responsible than others, or some governments
more responsible at some stages and other governments more responsible
at others, is not the fact that some governments were more instrumental
than others in affecting the course of events. It is the fact that the positions

18 The second interpretation of events not being fully under control is the permissive cause of
war underlying Waltz’s third image of international relations (Waltz 1959, p. 232).
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of the different governments varied with the course of events over which
they had lost control. They would have recognised that, although it is
theoretically possible to say that war would have been avoided if this or
that government had acted otherwise, it was not possible for them to have
acted otherwise. All the evidence goes to show that the beginning of the
crisis which has been studied so largely with a view to discovering and
distributing human responsibility, was one of those moments in history
when events passed beyond men’s control. [1963, p. 296]

According to Hinsley, people lost control of events after Sarajevo, and that
resulted in war. But of the causes of World War Il Hinsley said that “a war is
always an alternative to some other course and is known to be so” (1963,
p- 331). Juxtaposed, these comments seem paradoxical. How is it possible
for one not to have control over war and peace and at the same time claim
that war is always an alternative to some other course of action? If this
other course is to have any meaning, it must be possible to follow it and
thereby avoid war. But if one can avoid war by following another course,
then one has control over war and peace.

The difficulty here is that the two interpretations of events not being fully
under control have been conflated. The Balkan assassination that set the
dice rolling was an example of the first interpretation. The shooting of the
archduke was akin to the referee’s throw of the die in Schelling’s modified
game of chess. It was an event beyond the collective control of the Great
Powers. In that sense, the Great Powers lost control. But this did not lead
directly to war. States acted and reacted to the actions of other states. The
war, in Hinsley’s account, was the result of the interaction of these
reactions. The Great Powers did not lose collective control over whether or
not there would be a world war. Had all of them agreed on a resolution of
the crisis and acted jointly, they could have effected it. The war resulted
from events not being fully under control in the second sense: No state
could control the reactions of the other states.!®

Distinguishing between these two interpretations resolves the apparent
paradox. If a state can avoid war by submitting to its adversary, war is an
alternative to some other course of action. But if a state does not believe
that pursuing that course is in its best interest, given what is at stake in the
confrontation, then because no state can control the actions of another,
there will be war.

The distinction between the two interpretations of events not being fully
under control is crucial to understanding the strategy of leaving something

19 For nuclear deterrence theory, the July 1914 crisis is the archetypal crisis that goes out of
control. See Trachtenberg (1989) for an historical reexamination of this thesis that casts
doubt on this interpretation of the crisis.
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to chance and the strategy of limited retaliation. If events are not fully
under control only in the sense that no state can control the actions and
reactions of other states, there is still risk and uncertainty. An adversary
may escalate when it was expected to submit. But unless events are not fully
under control in the first sense, the logic of the strategy that leaves
something to chance will generally not be coherent. This dependence
follows from the strategy’s reliance on a sanction that would be so costly to
impose that it would never be imposed deliberately. If the fear of suffering a
sanction is to exert any coercive pressure, there must be some possibility of
suffering it. If, therefore, no state would deliberately impose the sanction,
there must be some other way for it to happen. Indeed, the something that is
left to chance in the strategy of leaving something to chance is precisely that
the sanction can arise in one of these other ways. Consequently, the states
cannot be in complete collective control. There must be some autonomous
risk underlying the strategy that leaves something to chance. The risk “must
come from somewhere outside of the threatener’s control” (Schelling 1960,
p. 188). If the states always were in control in the first sense, there would be
nothing to be left to chance. There would be no risk that could be
manipulated in order to exert coercive pressure. There would no longer be
an array of risk.

Two aspects of this dependence should be emphasized. First, the
assumption that there is an autonomous risk is at once more and less
demanding than it may initially seem. It may not appear to be very
demanding at first because there are always events that are beyond
collective control. There is always some autonomous risk of something,
Some events are never fully under control in the first sense. But that is not
sufficient for the strategy that leaves something to chance. A very specific
event, the imposition of the sanction, must be imposed autonomously, and
that is more demanding. At the height of the Cuban missile crisis, an
American U-2 strayed into Soviet airspace. Soviet fighters were launched,
and American interceptors, which because of the crisis and nuclear alert
were armed with nuclear air-to-air missiles, were also scrambled. The
interceptors did not make contact, and the U-2 found its way back to
Alaska. Even so, President Kennedy was reported to have been concerned
that Khrushchev might have thought that the U-2 was on a last-minute
reconnaissance mission before an American nuclear attack (Sagan 1989a;
1989b, pp. 147-8). And the situation might have been much worse had one
of the American fighters used a nuclear weapon.

The existence of an autonomous risk for events of this kind, serious and
frightening as they may be, is not enough to ensure coherence for the logic
of the strategy that leaves something to chance. The U-2 incident was akin
to the Balkan assassination in Hinsley’s account of the July 1914 crisis: It
might have set the dice rolling. But just as the assassination did not lead
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directly to war, but did so only indirectly through a series of actions and
reactions, the U-2 incident could have led to the sanction’s imposition only
indirectly. It would have had to have been followed by a series of interacting
decisions. But if, as is assumed in the strategy that leaves something to
chance, the sanction would not have been imposed deliberately, the
decision to launch a general nuclear war would not have been made, and
the incident would not in the end have led to a general nuclear attack unless
there had subsequently been a loss of collective control that had imposed
the sanction directly. Describing the strategy of leaving something to
chance as manipulating the risk that the crisis will go out of control
obscures the fact that a very specific type of accident is required if there is to
be a chance of losing control. The logic of this strategy generally depends
on the autonomous risk of an event that will lead directly to the sanction
without the participants having to make a series of decisions that ultimately
will end in a deliberate decision to impose the sanction. The failure of, say,a
computer chip would be required to launch a general nuclear attack
directly. If there is no autonomous risk that the sanction will be imposed
directly, there is nothing for the strategy that leaves something to chance to
leave to chance.??

The fact that the sanction must be imposed directly makes the
dependence on autonomous risks more demanding than it may initially
appear. But another aspect of this dependence makes this requirement less
demanding. Although it will be convenient to refer to the participants in a
crisis as states, it is more reasonable to conceive of the participants as the
leader of each state and the group of advisors who will be trying to deal with
the crisis. This distinction is important because the source of the
autonomous risk must lie beyond the participants’ control; therefore,
which sources are beyond the participants’ collective control clearly
depends on how one defines the participants. When, for example, the
participants are taken to be a small group of advisors, risks that lie within
the collective control of the state and its institutions and organizations, but
beyond the control of the national command authorities, are still
autonomous. For example, the risk that an order to carry out a limited
option will result in a general nuclear attack because of organizational

20 There is an exception to this strategy’s general dependence on events not being fully under
control in the first sense. That is, there is a way in which the sanction might be imposed
without the states losing collective control. Suppose a state launches a limited attack
deliberately, but because of poor attack assessment the adversary is absolutely convinced
that it suffered an unlimited attack and then retaliates in kind. In retaliating, the adversary,
believing itself to be launching an unlimited second strike, deliberately attacks and thereby
intentionally launches what is actually a first strike. The problems of false alarms and their
effects on escalation are examined in more detail in Chapters 5 and 6.
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rigidities and routines is an autonomous risk.?! Thus, this narrower
description of the participants expands the scope of possible sources of
autonomous risk, and that makes the logical dependence of the strategy
that leaves something to chance on this risk empirically less demanding.

The second aspect of this strategy’s dependence on autonomous risk that
should be emphasized has to do with rationality. The credibility problem in
the strategy that leaves something to chance arises because this strategy
relies on a sanction that no rational actor would knowingly be the first to
impose. Aslong as rationality is assumed, the logic of this strategy generally
requires that it be physically possible for the states to lose collective control
(e.g., because of technical failure). But if the rationality assumption is
relaxed, there is another way in which the states may “lose” collective
control: If there is some chance that under the stress of a crisis a state might
act irrationally by imposing the sanction, then this possibility may exert
coercive pressure during the confrontation. Recognizing this, a state might,
at least in principle, pursue what has been called the strategy of the
rationality of the irrational (Snyder 1961, pp.24-7; Kahn 1965, pp. 57-8;
Maxwell 1968) by trying to convince its adversary that it might act
irrationally. In any case, allowing for irrationality does not fundamentally
change the understanding of the credibility problem in the approach based
on the strategy that leaves something to chance. If the stakes are high
enough, then taking a step that leaves something to chance, when that
something includes the possibility of an adversary acting irrationally, may
still be rational, and so the threat to take the step may be credible. Indeed,
models based on the assumption that a state believes that its adversary may
actirrationally will be used in subsequent chapters to study the dynamics of
strategies based on manipulation of risk and on limited retaliation.

The general dependence of the strategy of leaving something to chance
on there being an autonomous risk of the sanction being imposed offers one
means of assessing the empirical significance of this approach. Suppose that
there is negligible risk from the narrow range of accidental or irrational acts
that would impose the sanction directly. Then, although the array of risk
might link the use or threatened use of force to states” political ends in
principle, it would not seem to do so in practice. Although logically
consistent, this approach would not seem adequate to account for the
dynamics of escalation.??

21 Sagan (1985, 1989a, 1989b) has described some of the accidents and problems of control
that the United States has actually experienced during nuclear crises and alerts.

22 Although not motivated by this issue, studies of the command and control systems of
nuclear forces (Ball 1981, 1985-6; Bracken 1983; Blair 1985; Carter 1987), studies of
previous accidents (Sagan 1985, 1989a, 1989b), and psychologically oriented studies of
crises (Jervis 1977; Lebow 1981; Jervis et al. 1985) may shed some light on the size of this
autonomous risk and, potentially, on the suitability of this description.
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In sum, nuclear deterrence theory has approached the problem of
credibility in two ways. It has generally linked force or the threat of it to
states’ political objectives after the nuclear revolution through arrays of
risk and punishment. By raising the risk of unlimited destruction to an
intolerably high level through the array of risk, or by posing too great a
danger of limited but nevertheless terrible damage through the array of
punishment, a state might be able to coerce its adversary into coming to
terms and in that way be able to secure its interests. This, of course, is not to
say that a state will exert coercive pressure in these ways. A state may not
believe that doing so is in its best interest. The chance that an adversary will
actually submit may seem too remote, and therefore the cost of pursuing
these strategies may seem greater than the benefits. But whether or not a
state actually uses or threatens to use force, these two approaches are
solutions to the credibility problem facing nuclear deterrence theory, for
they describe, at least in principle, the relation between the use or
threatened use of force and states’ attempts to achieve their ends within a
stylized environment in which defense is impossible.

By limiting its focus to these two approaches, nuclear deterrence theory
may seem much too narrow and entirely unrelated to many of the debates
about counterforce strategies that have shaped American nuclear policy.??
A more careful examination of the implicit assumptions that seem to
underlie these strategies will show, however, that these approaches are more
relevant than they may at first seem. Indeed, a better understanding of these
approaches would seem to be a prerequisite to understanding these
strategies.

In the counterforce strategy based on having escalation dominance,?*
for example, a state uses its counterforce capability and escalation
dominance to force its adversary to bear the onus of escalation. Thus, it
would seem that the closer a state can come to achieving escalation
dominance at all levels, the more an adversary will have to bear the burden
of escalation and the less likely it will be to escalate or to provoke a
confrontation in the first place. Believing that to be the relation between
force and states’ political objectives after the nuclear revolution, a state may
attempt to further its ends by trying to attain escalation dominance at as
many levels as it can.

But if, because of relatively invulnerable strategic forces, a state has the
ability to destroy its adversary, then even when faced with a military defeat

23 For an overview of these debates, see Freedman (1989).

24 A state has escalation dominance at a certain level of conflict because of its superior
counterforce capabilities if that state’s military capabilities are such that it can force its
adversary to choose between accepting defeat at that level or escalating to another level of
violence (Kahn 1965, p.290).



Nuclear revolution and the problem of credibility 25

at a given level of violence, that state does not have to accept defeat or
escalate to a higher level of military conflict. The state may try to exert
coercive pressure on its adversary through the arrays of risk and
punishment. Exerting pressure in these ways does not, moreover, require
significant counterforce capabilities. Accordingly, the assumption that
escalation dominance will significantly enhance deterrence implicitly
discounts the possibility that a state will turn to these other means of
bringing coercive pressure to bear. That is, when facing defeat at a given
level, a state will accept defeat and be deterred from turning to the arrays of
risk and punishment. But is this implicit assumption well founded? What
factors affect a state’s decision whether or not to try to coerce an adversary
in these ways? A better understanding of the two approaches to deterrence
based on the arrays of risk and punishment and, especially, of the
conditions in which a state will or will not turn to these coercive means will
shed some light on these questions. In this way, a better appreciation of
these two strategies will provide a deeper understanding of counterforce
strategies.?’

Limited options and the problem of credibility

Nuclear deterrence theory has linked force and states’ political ends in two
ways. The strategy that leaves something to chance works through an array
of risk and ultimately appeals to the sanction of an unlimited nuclear attack
or, more generally, to a sanction that no state would ever deliberately be the
first to impose. The strategy of limited retaliation, however, never appeals
to the possibility of an unlimited attack. The array of punishment is used to
impose limited sanctions in order to make the threat of future destruction
sufficiently credible that an adversary will be coerced into coming to terms.
Although these two approaches seem quite different, they are at a general
level fundamentally alike. Each attempts to solve the credibility problem in
the same way. Each uses an array of limited options to bridge the gap
between doing too much by launching an unlimited nuclear attack, as in the
doctrine of massive retaliation, and doing too little by acquiescing. Because
these options are limited, a state may be able to make the threat to use them
more credible. The remainder of this chapter is devoted to bringing out the
essential similarities underlying these approaches.

25 Schelling (1965; 1966, pp. 190-204) has made a similar point. A counterforce contest as
envisioned in McNamara’s “no cities” doctrine, for example, would eventually confront
the losing state with a choice between continuing to lose the counterforce struggle or
turning to a strategy of limited retaliation. Accordingly, a better appreciation of this
strategy and, especially, of the circumstances in which a state is likely to adopt it would also

seem to be relevant to a deeper understanding of this counterforce doctrine.
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A useful way to begin is to formalize the doctrine of massive retaliation
and the criticisms made of it. The formalization furthers two ends. First,
redescribing the doctrine of massive retaliation and its criticisms in
different and more formal terms makes the fundamental similarities of the
two approaches to the credibility problem easier to see. The second end is to
build confidence in the formal tools that will be used in subsequent chapters
to examine these two approaches in more detail. The doctrine of massive
retaliation and its weaknesses are relatively straightforward. Formal
analytic tools are not needed for adequate explication of the issues. If,
however, the formal analysis corresponds well with a nonformal analysis of
a given situation, like massive retaliation, in which one can be relatively
confident of the nonformal analysis, then one may place more confidence in
applying the formal analysis to more complicated situations in which,
because of the greater complexity, a nonformal analysis would be much
more problematic.

In its simplest form, the doctrine of massive retaliation relies on a threat
to launch a massive nuclear attack in response to any challenge to any
American interest, ranging from the most peripheral to the most vital.
Recall further that the credibility and therefore the efficacy of this doctrine
were initially criticized only when this doctrine was used as a means of
protecting less important interests. As long as the United States was
perceived to be relatively invulnerable to a Soviet nuclear attack, the threat
to launch a massive nuclear attack in order to protect vital American
interests like Western Europe seemed credible. But once the United States
became vulnerable to a devastating Soviet retaliatory attack, the credibility
of this threat, even if made only in the context of attempting to protect vital
American interests, became problematic.

The game in Figure 2.1 illustrates the doctrine of massive retaliation. The
game tree shows what the sequence of play is and what alternatives each
state has when it must decide what to do. The Soviet Union begins the game
by deciding whether or not to exploit a situation by challenging the status
quo. These alternatives are denoted by E and ~ E, respectively. If the Soviet
Union accepts the status quo by playing ~ E, the game ends. If the Soviet
Union exploits an opportunity to challenge the status quo, then the United
States must choose between two options.28 It can launch a massive nuclear
attack, 4, or it can quit the confrontation, @, by acquiescing to the Soviet
challenge.

To complete the specification of the game, the payoffs must be defined.
There are three different sets of payoffs, each corresponding to a different
26 Although this simple version of the doctrine of massive retaliation may seem to be a

caricature of what this doctrine actually was, it is the version of the doctrine that the critics
seemed to have in mind. See, for example, Kaufmann (1956).
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Figure 2.1. The credibility of massive retaliation.

I II 11
Peripheral interest Vital interest Vital interest
Relatively invulnerable Relatively invulnerable Vulnerable
(-3,-10) (-3,-10) (-10,-10)
USSR (-2,2) (-8,8) (-8,8)
(0,0 0,0 0,0)

situation in which the United States might try to rely on the doctrine of
massive retaliation. Column I illustrates the situation in which the United
States is relatively invulnerable and a peripheral American interest is
involved. The United States is still assumed to be invulnerable in column I1,
but now a vital American interest is at issue. Finally, in column III, the
United States is vulnerable to a Soviet nuclear counterattack, and a vital
American interest is at stake.

To specify the payoffs in column I, where the United States is vulnerable
and a peripheral interest is at risk, normalize the status quo payoffs to be
(0, 0), where the first number is the American payoff and the second is the
Soviet payoff. If the Soviet Union challenges the status quo in this situation
and the United States replies with a massive nuclear attack, the Soviet
Union will be completely destroyed. The United States will also suffer, but
less so, because the United States is assumed to be relatively invulnerable.
Let the payoffs to this outcome be, say, (—3, —10).27 If the Soviet Union
challenges the status quo and the United States acquiesces, the Soviet
Union improves its position compared with the status quo. The United
States loses, but not much, for only a peripheral interest is assumed to be at
stake. The payoffs corresponding to this outcome will be taken to be (—2,2).

Now consider the situation in which the United States remains relatively

27 The specific numerical values of these payoffs are, of course, rather arbitrary. They are
intended only to illustrate the differences between the three situations in a very simple way.
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invulnerable, but a vital American interest is at risk. The status quo payoffs
in column II are still (0, 0). The payoffs if there is a war are also the same: If
the Soviet Union challenges the status quo and the United States attacks,
they receive (— 3, —10). The only payoffs that change from column I to II
are those that obtain if the Soviet Union disputes the status quo and then
the United States acquiesces. This change reflects the assumption that a
vital American interest is at stake in column II. If the United States does not
act in this situation and thereby lets the Soviet Union have its way, the
United States will pay a high price. The payoffs depicting this condition are
taken to be (—8, 8).

Finally, if a vital American interest is at stake and the United States is
vulnerable to a devastating Soviet retaliatory attack, then the only
difference between the payoffs in columns II and III is that the payoffs
corresponding to a Soviet challenge followed by an American first strike
now reflect the greater American vulnerability. Aslong as the United States
was relatively invulnerable, its payoff to attacking and then having to
endure Soviet retaliation was — 3. Being more vulnerable, Soviet retaliation
will impose higher costs and leave the United States with —10.

With the game thus defined, its equilibria may now be described. The
doctrine of massive retaliation turns out to be a Nash equilibrium.?® To see
this, the states’ strategies must be formally specified. The American strategy
in the doctrine of massive retaliation is to attack the Soviet Union only if
the Soviet Union challenges the status quo (i.e., the United States plays 4 in
the game in Figure 2.1). The Soviet strategy is not to challenge the status
quo. To show that this combination of strategies constitutes a Nash
equilibrium, it need only be shown that no state has an incentive to deviate
from its strategy given its adversary’s strategy. Consider the situation in
column I, in which the United States is relatively invulnerable, and only a
peripheral American interest is at risk. Clearly, the Soviet Union has no
incentive to alter its strategy of not disputing the status quo. Given the
American strategy of responding to a challenge with an unlimited nuclear
attack, if the Soviet Union deviates from its strategy by challenging the
status quo its payoff will be —10, whereas following the strategy of
accepting the status quo will assure the Soviet Union of 0. The United
States also has no incentive to deviate from the doctrine of massive
retaliation. Given that the Soviet Union is not challenging the status quo,
the American payoff is always 0 regardless of what it would do if
challenged. Because neither state has any incentive to deviate from its
strategy given the strategy of the other state, the doctrine of massive

28 See the Appendix following Chapter 8 for an introduction to the game-theoretic concepts,
such as Nash equilibria, that are used in this and subsequent chapters.
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retaliation in the game represented by the payoffs in column I is a Nash
equilibrium. Similar arguments show that this doctrine is also a Nash
equilibrium in the situations illustrated by columns II and IIL

Although the doctrine of massive retaliation is a Nash equilibrium, there
is a troubling feature about this equilibrium, and this goes to the heart of
the criticisms of this doctrine. Suppose that the Soviet Union does, for some
reason, challenge the status quo. The United States will then have to decide
between launching a massive nuclear attack, which will bring a payoff of
—3, or acquiescing, which, with only a peripheral interest involved, will
yield —2. Assuming that states act in ways that they believe to be in their
best interest, the United States will choose —2 when confronted with a
choice between —2 and — 3. The United States will not launch a massive
nuclear attack, for the cost of carrying out its threat would be greater than
the cost of not doing so. The Soviet Union, understanding this, will find the
doctrine of massive retaliation incredible and will not be deterred by it.
That is, in effect, the criticism William Kaufmann made in 1956: that even if
the United States were relatively invulnerable, the doctrine of massive
retaliation could not protect less important American interests.

This criticism can be stated more formally, and doing so helps to build
confidence in the ability of formal methods to contribute to the analysis of
more complicated situations. Although the doctrine of massive retaliation
is a Nash equilibrium, it is not a sequential equilibrium.2® In a sequential
equilibrium, agents are required to act in their best interest everywhere in
the game tree given their beliefs and the strategies of the other agents. Thus,
when confronted with a choice between —2 and —3, the United States
must choose the former. When the United States is relatively invulnerable,
but only a peripheral interest at stake, there is a unique sequential
equilibrium. In it, the Soviet Union challenges the status quo, and the
United States acquiesces.>® The doctrine of massive retaliation founders on
the credibility problem in the sense that it is not a sequential equilibrium.

Viewing the credibility problem from the perspective of sequential
equilibria also accounts for the other criticisms of the doctrine of massive

2% It would suffice at this point to look only to the more appealing and less demanding notion
of subgame perfection in order to eliminate this Nash equilibrium. Subgame perfection,
however, will be insufficient in subsequent chapters, where incomplete-information games
will be studied. For a discussion of the relation between subgame perfection and sequential
equilibria, see Kreps and Wilson (1982b) or the Appendix following Chapter 8.
Neither the Soviet Union nor the United States has any incentive to deviate from its
strategy given the other’s strategy. Challenging the status quo brings the Soviet Union 3,
whereas forgoing a challenge yields 0. Similarly, the United States will lower its payoff from
—2to —3ifit deviates from acquiescing by attacking. This combination of strategies thus
forms a Nash equilibrium. Moreover, no state has any incentive to deviate from its strategy
anywhere in the game tree given its beliefs.

30
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retaliation. That doctrine seemed to be credible as long as the United States
was relatively invulnerable and a vital American interest was at risk. That
situation corresponds to the payoffs in column II. With these payoffs, the
game also has a unique sequential equilibrium. But this time, the United
States will attack if challenged, for this brings — 3, whereas surrendering a
vital interest leaves the United States with —8. Given this American
strategy, the Soviet Union’s best response is not to dispute the status quo.
When the cost of acquiescing is so high, the threat to retaliate massively
rather than submit is credible, and the doctrine of massive retaliation is
effective in protecting vital interests. But, of course, once the United States
became vulnerable to a devastating Soviet retaliatory attack, this doctrine
seemed incredible even with vital interests at stake. Again, insisting that
equilibria be not only Nash but also sequential accounts for this. With the
payoffs of column III, the Soviet Union challenges the status quo, and the
United States acquiesces, preferring to suffer the large but limited loss
rather than the still larger loss that a Soviet retaliation would cause.

All of this indicates that focusing on sequential equilibria in games
modeling not only massive retaliation but also crises based on the arrays of
risk and punishment will do much to provide an understanding of the
credibility problem. Strategies that are part of a sequential equilibrium
cannot rely on threats that are inherently incredible, because carrying them
out would be more costly than not doing so. The close correspondence

Figure 2.2. The array of limited options.

USSR
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between the formal and less formal critiques of the doctrine of massive
retaliation suggests that these more formal tools will be useful in analyzing
the more complicated approaches to the credibility problem based on the
arrays of risk and punishment.

In addition to building confidence in the game-theoretic analysis of the
credibility problem, the game in Figure 2.1 may be used to bring out the
fundamental similarities underlying deterrence theory’s two approaches to
this problem. Intuitively, this problem arises because the two options in
Figure 2.1 of launching a massive nuclear attack and of quitting are too far
apart. One option does too much, the other too little. Credibility, then,
would seem to require the creation of an array of limited options in which
the distance between any two adjacent options in this array is less than the
distance between the option of launching a massive attack and that of
doing nothing. This array, in effect, bridges the gap between doing too much
and too little. Figure 2.2 illustrates this array by filling the gap between
these two extremes with a number of limited options. There are, however,
two different ways to measure the distance between adjacent options, and
each of these ways corresponds to one of the approaches deterrence theory
has taken to the credibility problem.

The first way of measuring the distance is in terms of the probability that
the crisis will end in an unlimited exchange. Measured in this way, the
distance between launching an unlimited attack, which would end the crisis
in a general nuclear exchange with probability 1, and quitting, which would
ensure that there would be no exchange, is 1. No two options could be
farther apart. The array of limited options fills this gap by making it
possible to create intermediate levels of risk. Associated with each limited
option is the level of risk that the exercise of this option will generate.
Indeed, what distinguishes any option from any other is that they generate
different levels of risk. In this way the set of limited options constitutes the
array of risk that underlies the strategy that leaves something to chance.

Damage is the second way of measuring the distance between the
extremes of launching a massive nuclear attack and submitting. The former
inflicts complete destruction, and the latter inflicts none. Again, these
options are very far apart, and, as before, limited options are used to bridge
this gap. But in this case what defines and distinguishes one limited option
from another is the amount of punishment it will impose if exercised. When
measured in terms of damage, the set of limited options now forms an array
of punishment.

So, when viewed from this more general perspective, the two seemingly
disparate approaches to linking force or the threat of it to states’ political
ends appear to be fundamentally alike. Each addresses the credibility
problem in essentially the same way, by creating an array of limited options
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to bridge the gap between doing too much and too little. This is not to say
that many options can be created such that there will be fine gradations in
the levels of risk or damage separating these options. Nuclear weapons may
be very blunt. It is only to say that what distinguishes these approaches is
not the general role or relative importance of limited options but the
particular way that this gap is measured.

The rise of strategic air power and the development of intercontinental
ballistic missiles and atomic and then thermonuclear weapons separated
the ability to defend from the ability to punish. These developments
culminated in the nuclear revolution, in which mutually assured de-
struction became the technological state of affairs. The separation of
these capabilities and the impossibility of defense undercut the classical
logic of war.

After the nuclear revolution, a state’s ability to impose costs that would
exceed an adversary’s gains was no longer at issue. But given that defense
was impossible, could a state make the threat to use its punitive capabilities
sufficiently credible? What was the relation between force or the threat of it
and states’ efforts to secure their ends after the nuclear revolution? That was
the credibility problem.

Nuclear deterrence theory has generally approached this problem in two
ways. Force or the threat of it is linked to states’ political objectives through
either an array of risk or an array of punishment. Although these two
approaches initially appear quite different, they are, at a more general level,
essentially alike. Each tries to solve the credibility problem in the same way.

But how far does this fundamental similarity extend? The following
chapters examine this in two ways. The first is a more detailed study of the
dynamics of crisis bargaining and escalation when force is related to
political ends through the arrays of risk and punishment. The second is to
elaborate the relation between these two approaches. Although both
approaches are, at a high level of generality, attempts to solve the credibility
problem, they are primarily concerned with different issues at somewhat
lower levels of generalization. But these lower-level issues are connected.
An analysis of the strategy that leaves something to chance leads naturally
to questions about crisis stability and first-strike advantages, and these in
turn raise questions about the role of limited sanctions and the strategy of
limited retaliation. The following chapters trace these connections and in
this way further clarify the relation between these two approaches to the
credibility problem.



CHAPTER 3

The dynamics of nuclear brinkmanship

The strategy that leaves something to chance and the array of risk link the
use or threatened use of force to states’ attempts to further their interests.
Even in a condition of mutually assured destruction, a state still might be
able to use the sanction of launching a massive nuclear attack coercively. A
state would no longer threaten to impose this sanction deliberately, but
rather to take steps that would raise the risk that the crisis would go out of
control and end in disaster. Because no state ever threatens to bring this
disaster about deliberately, but only to create some risk of it, then,
depending on the stakes involved in the crisis, the threat to take these steps
and generate these risks may be quite credible. Crises in this stylization
become contests of resolve in which the states compete by taking risks.
During a crisis, each state exerts coercive pressure on its adversary by acting
in ways that vary the risk of disaster. Eventually, one of the states finds the
risk too high and withdraws.

The preceding chapter discussed the general role the array of risk playsin
the approach to deterrence based on the strategy that leaves something to
chance. That approach attempted to link force or the threat of it to
states’ efforts to further their ends with a set of limited options that were
differentiated on the basis of the autonomous risk that exercising them
would generate. Those options filled the gap between doing too much by
launching a general nuclear attack and doing too little by acquiescing to a
challenge to the status quo. But what are the dynamics of a confrontation in
which the states are pursuing this strategy? I's a more resolute state more or
less likely to escalate, and does that make the crisis more or less likely to end
disastrously? Is a state more or less likely to escalate the greater the resolve
of its adversary? What are the effects of misperception on the dynamics of
escalation and on crisis stability? Does a state’s having a greater stake in the
status quo make it more or less likely to challenge the status quo? Suppose
that the grain of the array of risk is finer, in the sense that there are smaller,
more limited options that permit a state to raise the risk of losing control in
smaller steps. How does that affect the escalatory process and the
probability that the crisis will end in a general nuclear exchange? This
chapter and the next examine these questions.

The analysis to follow indicates that many arguments about the

33
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dynamics of escalation that at first seem quite compelling turn out to be
problematic. It may, for example, seem that a state would not escalate if it
were certain that its adversary’s resolve were greater than its own.
Escalation in that case would be dangerous and apparently pointless. Or it
might seem that the greater an adversary’s resolve, the more likely it would
be to stand firm in a crisis, and consequently the less likely a state would be
to resist that adversary by escalating. Similarly, it may appear that the
greater an adversary’s resolve, the more likely it would be to prevail in a
crisis. In the model to be presented, none of these arguments holds: A state
may escalate even though it is certain that its adversary’s resolve is greater
than its own. The greater an adversary’s resolve, the more likely a state may
be to escalate. And the greater an adversary’s resolve, the less likely it may
be to prevail. The model also helps to explain why these arguments do not
hold by showing that they generally fail to take into account important
interactions between the states’ strategies and their beliefs about their
adversaries.

The brinkmanship analogy and the game of chicken

The essence of the strategy that leaves something to chance is manipulation
of an autonomous risk of disaster. Schelling (1960, pp. 199-201; 1966,
pp. 92-125) offered the analogy of brinkmanship as an aid to understanding
the dynamics of crisis bargaining in which the states pursue this strategy.
The models that will be developed later will formalize this analogy. In the
analogy, two adversaries are tied together with a rope and are standing near
a brink. The rope binds their fates: If one goes over the brink, the other will
be dragged over too, and both will perish. The brinkmanship analogy thus
describes a situation in which imposing the sanction would always be more
costly to oneself than not imposing it. Deliberately pushing that linked
adversary into the abyss would be the analogue of launching a deliberate
first strike, and neither party can credibly threaten to do that.

Because neither would ever deliberately impose the sanction of pushing
its adversary over the brink, there is no danger of going over as long as the
adversaries have complete collective control. If, for example, the brink is a
sharp edge that can be approached without any risk of falling off
unintentionally, the fear of going over cannot exert any coercive pressure,
because there is no fear (Schelling 1966, p. 99). But suppose that the brink is
not a sharp edge that one can approach safely and then decide whether or
not to jump. The brink is, rather, “a curved slope that one can stand on with
some risk of slipping, the slope gets steeper and the risk of slipping greater
as one moves toward the chasm” (Schelling 1960, p. 199). Describing the
brink in this way means that the parties are no longer in complete collective
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control of whether or not they will fall into the abyss. One could go over
the brink despite both adversaries’ unwillingness to take any action that
would be certain to force them into the abyss. With gusty winds overhead
and loose gravel underfoot, the parties would not be fully in control of
events. Accordingly, each could exert coercive pressure on the other
by approaching the chasm. In the analogy, each step toward the brink
corresponds to the exercise of one of the limited options in the array of risk.
Each step raises the risk that despite one’s desire not to stip, one might do so
accidentally. Assuming that neither does slip, then, as both near the brink,
one of them will sooner or later find the risk intolerable and will submit. In
this way, the confrontation at the brink becomes a competition in taking
risks.

The game of “chicken” has been used to model brinkmanship and
deterrence (Kahn 1965; Schelling 1966; Snyder 1971; Jervis 1972, 1976,
1979; Snyder and Diesing 1977; Brams 1985; Brams and Kilgour 1985,
1987, 1988; Zagare 1985, 1987; O’Neill 1987). The simplest game of chicken,
whichisa 2 x 2 game, asillustrated in Figure 3.1, has often provided a point
of departure for these analyses, and it will do so here. A brief review of this
game will suggest that, at least in this simplest form, it can shed very little
light on the dynamics of escalation in brinkmanship crises.

There are two players in the game, I and 77, and they are usually taken to
be states. Each state must choose between standing firm or submitting to its
adversary. If both stand firm, the crisis ends in the disaster of a general
nuclear exchange. If one stands firm and the other submits, the former
prevails. The latter, although perhaps sacrificing an important national
interest by submitting, escapes the complete destruction that would have
been wrought had both stood firm. If both submit, the crisis ends in

Figure 3.1. The game of chicken.
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compromise. Letting w, ¢, s, and d denote the payoffs to prevailing,
compromise, submitting, and disaster, respectively, the payoffs satisfy the
relations w;>c¢;>s;>d; and wy; > ¢ > s >dp. These relations are
intended to formalize the stylization of the nuclear era as one in which no
state would deliberately launch a first strike. Prevailing is better than
submitting; w>s. Before the development of secure second-strike
capabilities, standing firm might have been preferred to submitting, even if
one’s adversary also stood firm. That would have implied that d > s. Butina
condition of mutually assured destruction, standing firm is no longer
preferred to submitting if one’s adversary also stands firm, for if a state
believes that its adversary is going to stand firm, then its decision to stand
firm is equivalent to initiating a general nuclear exchange deliberately.
Avoiding this outcome, albeit at the cost of submitting, is preferable (i.e.,
s>d).

The game has two equilibria in pure strategies. In the first, 7 stands firm
and IT submits. That is, given that I is standing firm, /T can attain s;; by
submitting and d;; by standing firm. 77, therefore, can do no better than to
submit; submitting is II’s best reply to I’s standing firm. And given that ITis
submitting, I’s best reply is to stand firm. Each state’s strategy is a best
response to the other’s strategy, and thus this combination of strategies
forms an equilibrium. In the second equilibrium, /7 stands firm and 7
submits. There is also one equilibrium in mixed strategies in which 7 stands
firm with probability ¢; = (w;; — c;)/L(wiy — cr1) + (11— dy )], and 1T stands
firm with probability ¢;; = (w; — c))/[(w;—¢;) + (s, — dp]

Two related characteristics of this model suggest that it will have little to
say about the dynamics of nuclear brinkmanship. First, the two pure-
strategy equilibria are unaffected by changes in the payoffs as long as w; >
¢y > sy > dyand wy; > ¢y > s;; > dp;. For example, the situation in which one
state stands firm and the other submits remains an equilibrium whenever
these relations hold, even if the payoff to the “cooperative” outcome of
mutual compromise is only slightly worse than the payoff to prevailing. As
long as w > ¢, an increase in the payoff to compromising does not make a
compromise more likely in these equilibria.

The insensitivity of these equilibria to changes in the payoffs is troubling.
Intuitively, it would seem that the level of a state’s resolve? in a crisis should
be affected by these payoffs and that changes in a state’s resolve would be
reflected in the outcome of the contest of resolve. Yet, if these pure-strategy
equilibria are taken to represent the potential outcomes of the crisis, then

! See the Appendix following Chapter 8 for the derivation of these probabilities, as well as a
discussion of mixed-strategy equilibria and some of the properties of the mixed-strategy
equilibrium of chicken.

2 This term will be defined formally later.
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resolve has no role. The balance of resolve plays no part in affecting the
outcome of a crisis. Worse, there is no way to decide which equilibrium
ought to be taken to represent the outcome of the crisis. There is no way to
determine if I or II will submit. These equilibria do nothing to illuminate
the process through which a state convinces its adversary that it will be the
one to stand firm.

Unlike the pure-strategy equilibria, the mixed equilibrium is sensitive
to changes in the payoffs. The probability that the crisis will end
in compromise is the product of the probabilities that each state
will compromise; that is, (1 — ¢;X1 — ¢;;). Moreover, the probability of
compromise varies with the payoffs as one would expect intuitively.
Compromise is more likely the greater the payoff to compromising, the
greater the cost of disaster, and the smaller the payoff to prevailing.*

But even if attention is restricted to the mixed equilibrium because of its
intuitively appealing sensitivity to changes in the payoffs, a second
characteristic of this model severely limits its usefulness in studying the
dynamics of brinkmanship. There simply are no real dynamics in the
model. Each state makes a single decision: It decides whether or not to
stand firm. There is no sequence of play, no series of interacting decisions,
no process in the model. There is no way that a state can take its adversary’s
past actions into account in assessing the likelihood that the adversary will
stand firm, for in the model there are no past actions. Whatever bargaining
process may have led to the point at which the states have to decide whether
or not to stand firm has been left out of the model.

The brinkmanship analogy is dynamic, but lacks formalization. In trying
to assess how much nearer the brink an adversary may be willing to go, for
example, a state can base its judgment on how many steps toward the brink
its adversary has already been willing to take. Conversely, the simplest
game of chicken is formally well defined, but lacks any dynamic process.
The model of nuclear brinkmanship developed next attempts to formalize
the bargaining process by explicitly modeling a series of interacting
decisions.

A model of nuclear brinkmanship

In many models there is a tension inherent in incorporating as many
important aspects of a problem as possible without making the model
intractable. If everything cannot be included, a model implicity reflects a

3 See Harsanyi and Selten (1988) for an analysis of the problem of selecting a single
equilibrium if more than one exists.

4 This follows by taking the partial derivatives of (1 — ¢;)(1 — ¢,,) with respect to the payoffs
¢, d, and w.
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judgment about what the essence of the problem is. Three elements seem
essential to brinkmanship. First, there is a series of decisions. Second, the
states involved in the crisis create risks that they will lose collective control
and that the crisis will end in disaster. Third, each state lacks complete
information, perhaps concerning its adversary’s payoffs or level of resolve.’
The difficulty with the 2 x 2 game of chicken is that it leaves out too much of
the essence of brinkmanship. Each state makes only one decision and does
so in ignorance of what the other is doing in the simple game of chicken.
There is no series of decisions. Moreover, each state knows its adversary’s
payoffs and level of resolve; there is complete information.

The model of brinkmanship developed here tries to formalize these three
elements in a more satisfying way. The series of decisions will be modeled by
letting one state, the potential challenger, decide whether or not it wants to
dispute the status quo. If it does, then the other state, the defender, decides
whether or not it will take a step toward the brink. If it takes a step, then the
challenger must choose between submitting or taking a step closer to the
abyss. These decisions alternate back and forth until one state submits or
until the states accidentally slip into the chasm. The model also explicitly
represents the way the states manipulate the autonomous risk of their
losing collective control. The closer a state is to the brink, the larger the risk
the next step entails. In the next section, incomplete information will be
added to the model. Each state will be uncertain of the payoffs and
therefore the level of resolve of its adversary. A state will be unsure whether
its adversary is resolute and willing to run high risks or irresolute and
willing to run only small risks.

Turning now to a more formal description of the model, the
confrontation at the brink, which is depicted in Figure 3.2, begins with the
potential challenger, C, having to accept the status quo, challenge it, or
launch a massive nuclear attack. These alternatives are labeled ~E, E, and
A, respectively. If C launches a massive attack, the game ends with payoffs
(d¢, dp)- If C accepts the status quo by playing ~ E, the game ends with
payoffs (g¢, qp). If C disputes the status quo, then the onus of escalation
shifts to the defender, D.

D has three options. It can quit the crisis by playing Q. That leaves C with
the payoff to prevailing, w¢, and gives D the payoff to submitting, s;,. D may
also decide to launch a massive nuclear attack. That is assumed to bring a
devastating nuclear reply from C, and the game ends in disaster, with

5 In the models in this volume, the states’ strategies are obtained by solving complicated
optimization problems. The states in this sense have unbounded rationality. Another
important element of brinkmanship and crisis bargaining more generally may be that
actors have bounded rationality. This issue lies beyond the scope of the models presented
here. See Langlois (1988) for a discussion of brinkmanship and bounded rationality.
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payoffs (dc, dp). Finally, D may escalate by taking a step toward the brink.
That generates an autonomous risk of disaster 8. That is, the probability
that the states will lose collective control at that point and that the crisis will
end in a general nuclear exchange is §.

D’s step toward the brink is modeled by letting Nature, N, move im-
mediately after D if D decides to escalate. Nature then plays disaster with
probability 4 and continues with probability 1 — §. If there is a disaster, the
game ends, and the payoffs are (dc, d). If the game continues, then D’s
escalation has not triggered a disaster, and the onus of escalation shifts
back to C.

Now the challenger faces the same three options that just confronted D.
Submission ends the game with (s¢, wp). Attacking, as always, brings an
attack in retaliation and ends the game with (d, d,,). C may also escalate by
taking a step toward the brink. But to do so, C must generate a larger risk of
disaster than D created when it escalated. Specifically, C must increase the
risk in an increment of §. That is, if C escalates, it must do so by generating a
risk of 20. If the game does not now end in disaster, the onus of escalation
shifts back to D. The game continues in this way, with the onus of escalation
shifting back and forth until one of the states quits or until there is a
disaster.

The game can end with one of four pairs of payoffs: (gc, qp), (We, 5p),
(5¢»wp), and (d¢,dp). Because prevailing is better than submitting, and
submitting is better than having to endure a nuclear attack, we > 5. > de
and wy, > s, > dj,. Because the status quo is better than submitting, g, > s¢
and g, > sp. For C, it must also be that prevailing is better than the status
quo: we > gc. Otherwise, C could obtain its highest payoff at its first move
by not exploiting the situation, and there would be no crisis. Hence, w. >
qc > sc>dc. The relation between wy, and g, is ambiguous, but also
inconsequential, because by the time D has to make its first decision, g, is
already in the past and no longer relevant to D’s decision.

The risks that escalation creates in the crisis follow the pattern J,26,
36,...,Kd, where Ko = 1. (For convenience, 1/8 is assumed to be an integer.)
When the defender escalates for the mth time, it does so by generating a risk

Figure 3.2. Brinkmanship with complete information.
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of (2m — 1)6, and the pattern of risks it creates is 8, 36, 54, . . .. The challenger
creates a risk of 2mé if it escalates for the mth time, and the pattern of risks
it generates is 28,46, 64,.... If K is even, C has the last move in the game,
because to escalate for the (K/2)th time, it must generate a probability of
disaster equal to 1. If K is odd, D’s [(K + 1)/2]th move is the last possible
move. Some analyses (Schelling 1966; Snyder and Diesing 1977; Wagner
1982) have suggested that a significant bargaining disadvantage accrues to
the side with the last possible chance to avoid disaster. But, as will be seen,
who actually has the last physical move in the game tree generally has no
effect on the solution to this game. Accordingly, K will merely be assumed to
be even, and therefore C has the last move.

It will prove convenient to adopt the following notation for the states’
information sets and behavioral strategies. Let Qp(m) be the information set
at which D must decide whether or not to escalate for the mth time, where
1<m<K/2. Thus, Qpy(m) presents D with the choice of submitting,
attacking, or escalating by creating an autonomous risk of (2m — 1)é. For C,
take Qq(m), for 1 <m < K/2, to be the information set at which C must
decide to submit, attack, or escalate with probability 2mé. Q(0) is the
information set at which C has to choose among attacking, exploiting the
situation, or not exploiting it. At each of its information sets, a state has to
choose from among three alternatives. Accordingly, a behavioral strategy
for any state at any information set is defined by two probabilities. At, say,
Qp(m), D’s strategy may be described by the probability of attacking at that
set, ap(m), and the probability of escalating, ep(m). The probability of
submission is given by 1 — ap(m)— ep(m).

The notion of a crisis equilibrium will play an important role in the
analysis of both brinkmanship and, later, the strategy of limited retaliation.
For Snyder and Diesing, “there is no crisis unless one state challenges
another and this challenge is resisted” (1977, p. 13). Formalizing this, a crisis
equilibrium in the game will be taken to be an equilibrium in which there is
some positive probability that the challenger will exploit the situation and
the defender will escalate or attack. The positive probability that C will
exploit the situation [i.e., that e-(0) > 0] means there is some chance that C
will challenge D. Similarly, the positive probability that D will resist by
escalating or attacking [i.e., that ep(1) >0 or ay(1) > 0] implies that there is
some chance that the challenge will be resisted. Crisis equilibria are also the
only equilibria in the game in which there is a positive probability that a
challenge will lead to disaster. This is in keeping with the work of Schelling
(1966, pp. 92-105) and Snyder and Diesing (1977, pp. 6-21), for whom there
must be some risk of war for there to be a crisis.

As in the previous discussion of the credibility of massive retaliation, the
notion of a sequential equilibrium also plays an essential role in the analysis
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of brinkmanship. This notion provides the formal key to solving the
credibility problem. In a sequential equilibrium, a state’s equilibrium
strategy starting from any place in the game tree is an optimal strategy for
the rest of the game, given that state’s information and beliefs at that stage
of the game and given the other state’s strategy. In a sequential equilibrium,
no state can improve its payoff by deviating from its equilibrium strategy
regardless of where it is in the game. Consequently, a state cannot rely on a
threat to impose a sanction when it believes that actually imposing the
sanction would be more costly than not doing so. In the previous context of
the model of massive retaliation, focusing on sequential equilibria
eliminated other equilibria that depended on inherently incredible threats.
Analyzing the brinkmanship model in terms of its sequential equilibria will
do the same.®

The analysis of the extensive game in Figure 3.2 begins by recalling that
the 2 x 2 game of chicken discussed earlier had two equilibria in pure
strategies in which one state or the other stood firm while its adversary
submitted. Those equilibria were insensitive to changes in the payoffs, and
that seemed to leave no role for resolve to play. In the extensive game, there
is an obvious parallel to the strategy of standing firm in the simple game of
chicken: the strategy of always escalating. That is, a state escalates at every
information set regardless of what its adversary does. Similarly, the parallel
to the strategy of submitting in the simple game of chicken is always to
submit in the extensive game of brinkmanship.

Given these definitions, the combination of strategies in which one state
stands firm and the other submits forms a Nash equilibrium. But, as will be
seen, these equilibria are not sequential, for like the doctrine of massive
retaliation, they rely on inherently incredible threats. If C stands firm by
always escalating [i.e., ec(m)=1 for all 0 <m < K/2], D can never prevail.
The best it can do is to avoid running any risk of disaster by submitting and
obtaining sp,. Submitting is D’s best reply to C’s strategy of standing firm.
Similarly, if D always submits, then standing firm is C’s best reply. Neither
state can gain by deviating from its strategy given its adversary’s strategy,
and the strategies constitute a Nash equilibrium. A similar argument shows
that C’s submission and D’s standing firm also compose a Nash
equilibrium.

These two equilibria, like their analogues in the simple game of chicken,
are insensitive to changes in the states’ payoffs. As long as we > g¢ > s¢ > dc
and wy, > s;, > dp, the situation of one state standing firm and the other
submitting remains an equilibrium regardless of the size of the difference

6 See the Appendix following Chapter 8 for an introduction to sequential equilibria, and see
Kreps and Wilson (1982b) and Kreps and Ramey (1987) for further discussion.
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between winning and losing. Whether w, — s¢ is large or small, the states
follow the same strategies. The balance of resolve does not affect these two
equilibria. So far, then, resolve plays no part in this model.

But these equilibria are not sequential. To see this, consider, for example,
the equilibrium in which C stands firm by always escalating, and D always
submits. The last move in the game belongs to C. At this point, C must
generate a risk of disaster of 1 if it decides to escalate. C, in effect, is relying
on the strategy of massive retaliation here. If C finds itself in this position, it
will take a step that is certain to lead to a massive nuclear attack. The
doctrine of massive retaliation is, however, inherently incredible in a
technological condition of mutually assured destruction, and because C is
implicitly appealing to this doctrine in its strategy of always standing firm,
this strategy should also be incredible. More formally, at the point in the
game where C must generate a certainty of disaster if it escalates, escalation
will bring a payoff of d., whereas submission, as always, will bring s. If,
therefore, the game somehow reaches this stage, escalating will not be in C’s
own interest. Thus, implicit in C’s strategy of always escalating is a threat
that is formally incredible, for if C ever finds itself in a position in which it
must decide whether or not to carry it out, implementing the threat will not
be in C’s own interest. This means that in at least one place in the tree,
namely, at the last decision node, C has an incentive to deviate from its
strategy of standing firm given D’s strategy. Accordingly, the combination
of strategies in which C stands firm and D submits is not a sequential
equilibrium.’

When the game is solved for its sequential equilibria, the states cannot
rely on inherently incredible threats. Moreover, resolve begins to play a role
Indeed, when, as has been assumed so far, information is complete, so that
each state knows its adversary’s level of resolve as well as its own, the state
with the greatest effective resolve prevails. To demonstrate this, resolve
must be defined formally. Critical-risk models of crisis bargaining often
define a state’s resolve to be the greatest risk of disaster that the state is
willing to run in a crisis in order to achieve its ends (Snyder and Diesing
1977, p. 190). In keeping with this, a state’s resolve will be taken to be the
probability of disaster that leaves this state indifferent between the payoffs
of quitting and of escalating, given that if this state escalates, its adversary
will then quit at its next opportunity. This implies that if a state must accept
arisk greater than its resolve in order to escalate, then the cost of escalating
will certainly be higher than the cost of submitting, and the state will quit.
To find an expression for the challenger’s resolve, R, note that if the

7 Technically, the combination of strategies in which D stands firm and C submits may be a

sequential equilibrium if D prefers running the large risk of disaster of 1 — 8 to submitting
and thereby obtaining sp,. For small §, this technicality may be disregarded.
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probability of disaster is R, then the expected payoff to escalating is
the probability of disaster times the payoff to disaster, Rcd., plus the
probability that there will not be a disaster, 1 — R, times the payoff to this.
By assumption, the challenger’s adversary (i.e., the defender) is certain to
quitifit has an opportunity to do so, and it will have an opportunity if there
is not a disaster. This means that the challenger’s payoff if there is no
disaster after it escalates will be wc. Thus, the expected payoff to
escalating is Rede + (1 — Re)we. Quitting will bring s¢; so indifference
implies Rod¢ + (1 — Ro)we = sc. Resolve is given by R = (we — s¢)/(we — de).
Similarly, the defender’s resolve is given by Ry = (wp — sp)/(wp — dp). Note
that a state’s resolve is actually only an upper bound on the risk that a state
is willing to run at any particular stage in the crisis, because a state generally
will be unsure whether or not its adversary will quit at its next opportunity.
If there is some chance that its adversary will not quit immediately, then
that reduces the expected payoff to the state of escalating, which in turn
reduces the level of risk required to make the state indifferent between
escalating and submitting.

A state’s resolve may be used to determine the last information set at
which a state might be willing to escalate. In terms of the brinkmanship
analogy, this information set is the last spot on the curved slope leading to
the abyss at which the inherent risk of taking another step is still less than
the state’s resolve. This, therefore, is the last point at which the state would
be willing to take another step toward the chasm even if it were sure that if it
stepped forward and there was not a disaster, then its adversary would
submit immediately. This place, this information set, turns out to be crucial
to finding the game’s sequential equilibria. By definition, a state clearly will
not escalate if to do so it must create a risk of disaster greater than its
resolve. Letting M denote the greatest integer m that satisfies 2mé < R,
then Q (M) is the last information set at which C could rationally decide to
escalate.® If m > M, then escalating at Q(m) would generate too great a
risk, and C prefers to submit. Similarly, let M;, be the largest m satisfying
(2m—1)é < Ry,. Then Qp(M)) is the last information set at which D might
escalate.

Now define the state with the greatest effective resolve to be the state that
can be closer to the brink before the inherent risk of taking another step
8 This statement is not strictly correct. In the special circumstances in which 2mé < R but

2(m+ 1) = R, then Qc(m + 1), not Q(m), is the last information set at which C might

escalate. This possibility will be disregarded because this work will focus throughout on

generic properties, and the statement that the largest m satisfying 2mé < R makes Q(m)

the last information set at which C might escalate is generically true. Informally, a

proposition is generically true if it holds except in a small set of circumstances. More

formally, a statement is generically true if the closure of the set of payoffs at which the
statement is false has measure zero (Kreps and Wilson 1982b, p.877).
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forward is too high. So C has the greatest effective resolve if M-> M, and
D has the greatest effective resolve if My, > M. Given these definitions, the
state with the greatest effective resolve prevails in the unique sequential
equilibrium. More formally:

Proposition 3.1: The extensive game with complete information has a
unique sequential equilibrium. If M.> My, C prevails in this
equilibrium, and if M, > M, D prevails in the sense that C does not
challenge the status quo.°

Proof: Given the simple information structure of the game (i.e., that all of
the information sets are singletons, so that there is perfect information),
finding the sequential equilibrium amounts to finding a strategy for each
state at each of its information sets, that is, specifying ac(m) and e(m) for
0 <m < K/2and ap(m) and ep(m) for 1 <m < K/2 such thatat no place in the
game tree can a state gain by deviating from its strategy given its
adversary’s strategy. The sequential equilibrium is found through
backward programming. Assume M > M. (The proof is identical if
Mp> M) By definition, Q(M,) is the last information set at which C
would escalate if it were certain that D would then submit. Accordingly, C
will quit at all information sets coming after Q{(M). C’s unique best
response at any of these information sets is to submit. The risk of escalation
is simply too high; so a¥(m)=0 and e¥(m)=0 for Mc<m<K/2. (An
asterisk denotes an equilibrium strategy.) Similarly, D’s best response at
Qp(m) for My, < m < K/2 is submission: af(m) = 0 and e}(m) = 0. C again has
a unique best reply at Q.(m) for Mp < m < M. The risk of escalating given
that D will quit immediately thereafter is now acceptable: a¥(m) =0 and
e¥(m) = 1. Given C’s strategy of escalating at Q(m) for M, <m< M, D’s
only best response at Q,(Mp) is to submit. Given that the defender is
submitting at Q,(Mp), C again has a unique best reply. At Q. (Mp—1), C
escalates: e}(M, —1)=1. Given that Cescalates at Q(m) for M, —1 <m <
M, D’s best response at Qp(Mp—1) is to quit. This process eventually
yields a combination of equilibrium strategies in which C escalates with
probability 1 for 0 <m < M and submits with probability 1 for M, <m < K/2
° The definition of effective resolve finesses a small point. Although the state with the
greatest effective resolve prevails, it is not quite the case that the state with the greatest
resolve prevails. To see this, recall that M. and M, must satisfy 2M6 < Rc < 2AMc+ 1)é
and (2Mp,—1)0<Rp<(2Mp+1)6. Hence, [2(Mp—M:)—3]6<Ry,— Rc<
[2(Mp— M) +1]0. Now, if M, — M equals 1 or 0, then both small positive and negative
values of Rp— R. can satisfy these inequalities. Thus, because of the discrete bidding
structure, if M. and M, are sufficiently close together, it may be that D will prevail even

though C’s resolve is greater. This occurs if, for example, M, — M- =1, so that M, > M,
and if R, — R; <0, so that R.> Rp,.
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and in which D quits with probability 1 for all m. Because all of the best
replies are unique and there is only one set of consistent beliefs, this
equilibrium is also the unique sequential equilibrium. [ ]

Thus, modeling the autonomous risk of disaster generated by escalation
explicitly as Nature’s move and requiring equilibria to be sequential in a
well-defined game will yield some of the conclusions suggested by previous
analyses of brinkmanship and deterrence. No state attaches any positive
probability to launching a massive nuclear attack: a¢(m)=0 and a}(m)=0
for all m. No state ever launches a first strike deliberately. Moreover, the
sequential equilibrium depends on the states’ payoffs. Indeed, the game is a
contest of resolve in which the state with the greatest effective resolve
prevails.

But note that there are no sequential crisis equilibria. That is, there are no
sequential equilibria that are also crisis equilibria. If the balance of effective
resolve favors the potential challenger, it will challenge the defender, and
the defender will quit. There will be no resisted challenge and no crisis. If,
conversely, the balance favors the defender, there is no challenge and still no
crisis. On reflection, the fact that with complete information there are no
crises is hardly surprising. If bargaining is costly, as it is when a state must
bargain by generating risks of disaster, and if because of complete
information one can foresee the outcome of the bargaining process, then it
would seem that one should immediately agree to this outcome and thereby
at least avoid the costs of bargaining.!® Incomplete information is an
essential aspect of crises.

Nuclear brinkmanship with incomplete information

The model just described formalizes two of the essential aspects of
brinkmanship. There is a series of decisions, and the role of autonomous
risk is represented explicitly. The third aspect of brinkmanship to be
modeled is that each state has incomplete information about what type of
adversary it is facing. In particular, each state is uncertain about the level of
resolve of its adversary. To simplify matters still further, there are only two
possible types of adversaries. The defender is unsure whether it is facing a
resolute challenger, which will be denoted by C’, or an irresolute challenger,
C. The resolve of the resolute challenger is sufficiently high that it would be
willing to take at least two steps toward the brink if that would ensure that

10 This is a familiar result from game-theoretic models of bargaining. See, for example,
Rubinstein (1982).



Figure 3.3. Nuclear brinkmanship with two-sided incomplete information.
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it would prevail. The irresolute challenger, however, would be willing to
take only one step toward the brink, and then only if it were confident
enough that the defender would subsequently quit.! Similarly, the
challenger is uncertain whether it is facing a resolute defender, D’, or an
irresolute defender, D. The resolute defender would be willing to take up to
two steps toward the brink if it were sufficiently confident that that would
coerce its adversary into submitting. The irresolute defender would, at
most, be willing to take one step toward the brink to coerce the challenger
into submitting.!? Finally, the probability of facing a resolute challenger is
&c, and the probability of confronting an irresolute challenger is &-=
1 — gc.. The chances of facing a resolute defender are ¢, and the likelihood
of confronting an irresolute defender is ¢, = 1 — ¢j,.. These probabilities are
assumed to be common knowledge.

The game’s extensive form is depicted in Figure 3.3. Nature begins the
game by selecting the types of the states. Starting the game this way with
Nature making a random move is a standard modeling technique used to
generate the uncertainty associated with the lack of complete informa-
tion.!3 If Nature plays the top branch, which it will do with probability c¢p
or, equivalently, (1 — e..)(1 —¢5), then the irresolute challenger C and the
irresolute defender D will actually be facing each other. If Nature takes the
branch below this, which will happen with probability &c¢p., then the
irresolute challenger will be confronting the resolute defender D’. If Nature
takes the next branch down, which will occur with probability ¢..¢;, the
resolute challenger C’ will be opposing the irresolute defender. Finally, if
Nature follows the lowest branch, which it will do with probability ¢c.¢p.,
the resolute challenger and resolute defender will be facing each other.
Letting Nature start the game with random alternatives that are played
with these probabilities formally induces each state’s uncertainty about the
resolve of its adversary. The challenger, for example, begins play believing
that the probability that it is facing the resolute defender D’ is ¢;.. When,
that is, the irresolute challenger is first deciding what to do at Qc(0), it
believes that the probability that it is facing the resolute defender D' is .14

More formally, the resolve of the resolute challenger will be taken to be greater than 49,
which implies M. > 2. The resolve of the irresolute challenger is less. It satisfies 20 <
R <46, which leaves M. =1.

12 The level of resolve of the resolute defender satisfies 36 < Rp, < 56, so that M, = 2. The
resolve of the irresolute defender is less: 0 < Rj <36, which leaves M, =1.

See the Appendix following Chapter 8 for an introduction to games with incomplete
information. For more detailed discussion and some examples, see Harsanyi (1967-8),
Kreps and Wilson (1982a), Milgrom and Roberts (1982), and Kreps et al. (1982).

This probability is given by Bayes’ rule, which describes how probabilities should be
revised in light of new information. According to this rule, the probability that C will be
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After the types of the states have been determined, play proceeds as
described earlier, with the onus of escalation shifting back and forth until
the game ends.

In Figure 3.3, a dashed line connecting two nodes in the tree indicates
that these nodes are in the same information set. That is, there is no way for
a state to determine if it is at one node or the other. At Q(1), for example,
there is no way for the defender to be certain if it is at the upper node in
Qp(1), in which case it is facing the irresolute challenger C, or if it is at the
lower node in this information set, in which case it is confronting the
resolute challenger C’. Because a state is unable to determine where it is in
any given information set, the state is assumed to have beliefs about where
it is in this set. A state’s beliefs are, moreover, shaped by its adversary’s
strategies. Suppose, for example, that the resolute challenger is quite likely
to challenge the status quo and that the irresolute challenger is very unlikely
to dispute the status quo. Then, if the status quo is challenged, so that the
defender finds itself having to decide what to do at Qp(1), it will tend to be
relatively more confident that it is facing the resolute challenger, who is
likely to have challenged the status quo, rather than the irresolute
challenger, who is unlikely to have done so. That is, D attaches a relatively
high probability to being at the lower node in Qp(1) and a relatively low
probability to being at the upper node. Let S,(m) denote the probability
with which D believes that it is facing an irresolute challenger at Qp(m). D
therefore believes that it is facing a resolute challenger, C’, with probability
1— Bp(m).

Uncertainty about the resolve of an adversary creates an incentive for
developing and maintaining a reputation for being resolute. That, in turn,
drives escalation, for to sustain a reputation for being resolute and to
derive the benefits of it, an irresolute state must be willing to escalate. To
appreciate the value of having a reputation for being resolute, suppose that
the states were certain that, say, the challenger’s effective resolve was greater
than the defender’s; then the challenger would challenge the status quo, and
the defender would submit. If, conversely, the states were certain that the
challenger’s effective resolve was less than the defender’s, the challenger
would not dispute the status quo. An irresolute defender, it would seem,
would like to appear resolute. Having a reputation for being resolute is

confronting D' at Q(0) is the same as the probability that C would face D’ that was
calculated before the game began, namely, &c¢p., updated in light of the fact that play has
reached the information set Q(0) instead of Qc.(0). This latter probability is equal to the
sum of the probabilities of reaching each node in Q(0) or the probability of reaching the
upper node, gc¢,, plus the probability of reaching the lower node, &cep.. The probability
that C is confronting D’ at QA0) is therefore ecep./[ecty + &cep] = &p- The Appendix
following Chapter 8 offers an introduction to Bayesian updating of beliefs.



The dynamics of nuclear brinkmanship 49

beneficial. But a price must be paid for these benefits, for to some extent an
irresolute defender must be willing to escalate, and that entails running
some risk of disaster. The sequential crisis equilibria balance these costs
and benefits.

Before describing the equilibria, two remarks are in order. First, note that
as with complete information, no state will ever place a positive probability
on attacking in a sequential equilibrium. That is, ag(m) = af(m) = 0 for all m.
If a state did attack with positive probability, then this state could always
improve its payoff by deviating from its strategy by quitting rather than
attacking. But if a state can always improve its payoff by deviating from its
strategy, then that strategy is not part of a sequential equilibrium. Because
the probability of deliberately attacking is zero, the state’s strategy at any
information set can be characterized by the single probability that the state
will escalate at that set.

The second remark simplifies the model further and facilitates the search
for the game’s equilibria. The simplification is to ensure that the resolve of
the resolute challenger C' is so great that it is certain to dispute the status
quo and, if necessary, take at least two steps toward the brink in order to
prevail. The resolve of the resolute challenger, R, is high enough so that
et (0)=1, e (1)=1, and eX(2)=1.!3 (As before, an asterisk denotes an
equilibrium strategy or belief))

The complete statements and derivations of the sequential crisis
equilibria are quite cumbersome and are presented in Appendix 3.1 at the
end of this chapter. Figure 3.4 summarizes some of the properties of the
equilibrium strategies. There are five regions in the (ec., £5) plane, where
each point in this plane corresponds to a different combination of initial or
prior beliefs about the probabilities of facing a resolute challenger, ¢.., and
a resolute defender, ¢5,.. In each of regions (i), (ii), (iii), and (iv) there exists a
unique set of sequential equilibrium strategies.'® (On the borders between
regions, multiple equilibria exist.) NSCE denotes the region in which no
sequential crisis equilibria exist. In the sequential noncrisis equilibrium that

!5 This assumption simplifies the analysis because it avoids some of the difficulties of deciding
what are “reasonable” conjectures or beliefs to hold off the equilibrium path by ensuring
that Bayes’ rule can be used to derive the states’ beliefs at the relevant information sets. See
the Appendix following Chapter 8 for a discussion of “reasonable” beliefs and Bayes’ rule.
This assumption further constrains R, which has already been assumed to satisfy
R..>44. This constraint is specified in Appendix 3.1, where the game’s equilibria are
derived.

Although the sequential crisis equilibrium strategies and beliefs at information sets that
are reached with positive probability are unique, the beliefs at unreached information sets
can be anything. These beliefs, however, do not affect the equilibrium strategies. See
Appendix 3.1 for a discussion of this issue.

16
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Figure 3.4. Types of equilibria.
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does exist, the challenger is certain to dispute the status quo, and neither
defender resists: €2(0)=1, and e}(1)=e¥(1)=0.""

The states’ initial strategies are summarized for each region. In region (i),
forexample, the irresolute challenger, C, is certain to dispute the status quo,
e&(0) =1, and there is some chance that it will then take a step toward the
brink if its challenge is resisted, 0 < e¥(1) < 1. The irresolute challenger,
however, will never take a second step toward the abyss in this or any other
equilibrium. Given the irresolute challenger’s resolve, the risk inherent in a

17 To see that these strategies must prevail in any sequential noncrisis equilibrium, note that
the probability that the irresolute challenger will dispute the status quo, e%0), must be
positive in a sequential equilibrium. To see this, assume €2%(0)=0; then both defenders
would be certain that the challenger was resolute if there was a challenge. This and the
fact that the resolute challenger’s strategy is to escalate imply that both defenders’ best
replies are to submit: e}(1) = 3,(1) = 0. But if the defenders are certain not to resist, then the
challenger’s best response is to dispute the status quo: e%(0)=1. This contradicts the
assumption that ¢2(0)=0, and this contradiction implies that ¢%(0)>0 in a sequential
equilibrium. But in a sequential noncrisis equilibrium there can be no chance of a resisted
challenge. This means that e}(1) = ¢}.(1) = 0, for if either were positive, there would be some
chance of a resisted challenge. Given that e}(1)=e}%(1)=0 in any sequential noncrisis
equilibrium, C’s best reply is to dispute the status quo: e2(0)=1.
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second step, 49, is too great; so €¥(2) =0. The chances that the irresolute
defender, D, will resist if challenged are between 0 and 1: 0 < e}(1)< 1. But
the inherent risk of its taking a second step is too large. D therefore will
never take this step; so e}(2) =0. The resolute defender in region (ii) is
certain to take two steps toward the chasm: e}.(1)=1 and e}.(2)=1. But
after that, the inherent risk of taking a third step is too high. In this
equilibrium and the equilibria in other regions, e%(3)=0. Finally, the
resolve of the resolute challenger is, by assumption, sufficiently high that it
is sure to dispute the status quo and then escalate twice in order to prevail:
et (0)=1, e (1)=1, and €£(2)=1.

To examine some of the relations among these equilibria, suppose that
the probability of facing a resolute challenger is relatively high [ie.,
&c- > &c-], and the risk of facing a resolute defender is relatively low [i.e.,
gp <é&p]. In these circumstances, both types of challengers are sure to
dispute the status quo: e}(0) = e%.(0) = 1. Because both types of challengers
would behave identically, the defender will learn nothing about the type of
the challenger from observing what it does. In particular, the fact that there
has actually been a challenge reveals nothing about the challenger. The
updated probability that the defender is facing a resolute challenger after a
challenge, which, recall, is denoted by 1— (1), is the same as the initial
probability of facing a resolute challenger: 1 — (1) = &... Thus, when the
prior probability of facing a resolute challenger is high, the updated
probability is also high. Indeed, the defender is so confident that the
challenger is actually resolute that it never resists the challenge: e}(1) =
e (1)=0.

Now imagine holding the prior probability of facing a resolute defender,
£y, constant and letting the initial probability of confronting a resolute
challenger, ¢.., fall. Graphically, this amounts to approaching region (i)
from the right, with &, <é&p.. As the prior probability of facing a resolute
challenger drops, the defender’s expected payoff to resisting a challenge
rises if the resolute and irresolute challengers’ strategies do not change. At
the border between region (i) and the region in which no sequential crisis
equilibrium exists, NSCE, the resolute defender may for the first time both
resist a challenge and credibly threaten to take a second step toward the
brink if the challenger replies to the defender’s initial resistance with
escalation. Indeed, in the unique sequential crisis equilibrium in region (i),
the resolute defender is certain to resist a challenge [e}.(1) = 1], and there is
some chance that it will then take a second step toward the brink:
O0<ep(2)< 1.

It may at first seem surprising that the resolute defender goes from being
unwilling to take a single step toward the abyss to being willing to take two
steps rather than only one. But the resolute defender can never be willing to
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take only one step toward the brink in a sequential crisis equilibrium. If D’
were willing to take only one step, then both the resolute challenger and
irresolute challenger would know that if they met the defender’s resistance
with escalation, which they would do at Q.(1) and Q..(1) in Figure 3.3, then
the resolute defender, by assumption, would be unwilling to take a second
step and would submit. Consequently, both C and C’ would escalate, for
even the irresolute challenger is sufficiently resolute that it would
escalate one step if it were sure that the defender would then quit. But it
would make no sense for the resolute defender to escalate one step if the
challenger, regardless of type, was then certain to escalate, after which the
resolute defender would submit. The best that escalating could bring D’
would be the payoff to submitting, s,., and there would be some chance that
it could bring the disastrous payoff of d;,.. But the resolute defender can
assure itself of s, and avoid any risk of disaster by simply not resisting a
challenge. If, therefore, the resolute defender is unwilling to take a second
step, then it strictly prefers to quit rather than resist a challenge. Thus, being
willing to escalate once, but not twice, cannot be part of a sequential crisis
equilibrium.

As the defender becomes less and less afraid of facing a resolute
challenger [i.e., as ¢ falls and graphically one moves across (i) to the left],
the resolute and irresolute challengers remain certain to dispute the status
quo. A challenge still reveals nothing about the actual resolve of the
challenger, and the updated probability of facing a resolute challenger after
a challenge is the same as the prior probability: 1 —fp(1)=¢c.. If the
challenge is resisted, the resolute challenger will be certain to escalate:
e¢.(1)=0. But there is some chance that the irresolute challenger will
not escalate if its challenge is resisted: 0 <e¥(1)< 1. If, therefore, the
challenger takes a step toward the brink after its challenge has been resisted,
the defender will update its probability of facing an irresolute challenger.
According to Bayes’ rule, this updated belief is S}%(2)= £}.(2) = eced(l)/
[ec +eced(1)]. As the defender’s prior probability of facing a resolute
challenger, ., falls in moving across (i), then for a fixed e¥(1), the defender is
increasingly confident of facing an irresolute challenger.'® But the more
confident the defender is of facing anirresolute challenger, the higher is the
defender’s expected payoff to taking a second step, for if the defender takes
a second step and the challenger really is irresolute, it will quit, and the
defender will prevail. In region (i), however, the resolute defender uses a
mixed strategy if the challenger takes a step toward the brink after there has
been a resisted challenge [i.e., D' uses a mixed strategy at Q,(2)]. Mixing
means that the resolute defender must be indifferent between acquiescing

18 Recalling that 1 — &¢ = &, then dB4(2)/dec. = A[(1 — ec)e2(D)/[ec: + (1 — ec)et(1)]1/Pec <O.
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and escalating at Q,.(2)."® Accordingly, the probability that the irresolute
challenger will take a step toward the abyss must change in order to offset
the falling ¢-. and maintain the resolute defender’s indifference. In
particular, the irresolute challenger must become less likely to escalate as
the prior probability of facing a resolute challenger falls (ie., as .
decreases). The probability eF(1) falls as one moves across region (i) toward
(ii).2°

Equilibrium (i) formally illustrates an important point. Sometimes states
may follow a strategy of bluffing. A state may escalate even if it is certain
that its adversary’s resolve is greater than its own. The irresolute defender D
is so confident that it is facing the resolute challenger C’ that it never
escalates: ef(m) =0 for all m. Because the resolute defender never escalates,
resistance unambiguously signals that the defender is resolute. Thus, the
challenger in equilibrium (i) is certain that it is facing the resolute defender if
its challenge is actually resisted. Surprisingly, however, C may not submit
although it is certain that its adversary is resolute. There is some chance
that the irresolute challenger will escalate: 0 < e#(1) < 1. The justification
for this seemingly irrational act is that the resolute defender D’ is uncertain
of the challenger’s resolve. In fact, the resolute defender is so confident that
it is facing the resolute challenger that the chances that the resolute
defender will submit are sufficiently large that it is worth it to the irresolute
challenger C to exploit the resolute defender’s uncertainty by escalating.
So the irresolute challenger escalates even though it is certain that its
adversary’s resolve is greater than its own. This underscores an important
point that is rarely mentioned in discussions about crisis bargaining and
escalation. Of course, a state’s beliefs about the resolve of its adversary are
important, but so are its beliefs about its adversary’s beliefs. If a state
believes that its adversary believes that the state is resolute, then the state
may escalate even if it is actually irresolute.

Both the probability of facing a resolute challenger and the probability
that an irresolute challenger will escalate, e(1), decrease as one moves to
the left across (i). This raises the defender’s expected payoff to resisting a
challenge. Eventually, the irresolute defender, which initially preferred
quitting to resisting, becomes indifferent to quitting and resisting. This
defines the border between (i) and (ii).

In region (ii), the irresolute challenger remains certain to dispute the
status quo. So updating the prior probability of facing an irresolute
challenger does not change this probability: p¥(1)= p}.(1) =¢c. Thus, in
moving across (ii) to the left, the probability of facing an irresolute
19 The Appendix following Chapter § explains this implication of mixed equilibrium

strategies.
20 That is, de¥(1)/dec. > 0 in region (i).
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challenger, given that there has been a challenge, $%(1), rises. This means
that if the chance that an irresolute challenger will escalate if it meets
resistance is fixed [i.e., if e¥(1) is fixed], then the defender’s expected payoff
to resisting a challenge will also rise as it becomes more confident of facing
an irresolute challenger. But in this equilibrium the irresolute defender D
uses a mixed strategy if there is a challenge; so it must be indifferent between
resisting and quitting at Qp(1). Thus, the chances that the irresolute
challenger will meet resistance with escalation must rise as the prior
probability of facing an irresolute challenger rises in region (ii) in order to
keep the irresolute defender indifferent.2! But if the irresolute defender is
indifferent to resisting or quitting, the more resolute defender must strictly
prefer resistance. This implies e}.(1)= 1.

Now consider the consequences of holding the probability of facing a
resolute challenger constant and letting the chances of facing a resolute
defender increase. Graphically, this amounts to moving upward from (ii)
toward (iv). If the prior probability of facing an irresolute defender, ¢, is
falling, and the chance that this defender will resist a challenge, ¢%(1), does
not change, then the challenger will become increasingly confident that the
defender is resolute if the defender does, in fact, resist a challenge.?2 This
drives down the challenger’s expected payoff to escalating, for if the
challenger escalates and is actually confronting an irresolute defender, this
defender will submit immediately: ¢%(2) =0. If, however, the defender is
resolute, it is sure to escalate: ¢%.(2) = 1. Thus, as the chances of facing a
resolute defender rise, the expected payoff to escalating at (1) falls as long
as the probability that the irresolute defender will resist is fixed. But in
equilibrium (ii), the challenger must be indifferent between escalating and
submitting if there has been a resisted challenge, because the challenger
employs a mixed strategy here: 0 < e¥(1) < 1. This means that as one moves
up across (ii) and the prior probability of facing a resolute defender rises,
the chances of the irresolute defender resisting a challenge, e}(1), must rise
in order to leave the updated probability of facing a resolute defender
unchanged if there has been a resisted challenge and thereby keep the
irresolute challenger indifferent between escalating and submitting.23

Eventually, the defender must be certain to resist if the irresolute
challenger is to remain indifferent to escalating or submitting after
a resisted challenge. Where this occurs defines the border between
regions (ii) and (iii). If the prior probability of facing a resolute defender
continues to rise and one moves into region (iii), the irresolute

21 Or, equivalently, de¥(1)/dec. <O in region (ii).

22 More formally, the chances of facing a resolute defender given a resisted challenge, 1 —
BE1) =¢p./[ep +eped(1)], are increasing in &p..

23 That is, de¥(1)/0ep > 0.
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defender can no longer sustain the irresolute challenger’s indifference. The
challenger is too confident that the defender is resolute and strictly prefers
to quit. But this cannot be an equilibrium, for if the irresolute challenger is
certain not to escalate after a resisted challenge, then the defender infers
from escalation that the challenger is resolute. In these circumstances, the
defender’s best strategy is to quit and not escalate as it would in equilibrium
(ii). Thus, if the prior probability of facing a resolute defender is too high,
equilibrium (ii) collapses, and (iii) emerges.

For the first time there is some chance that the irresolute challenger will
not dispute the status quo. As one moves up across (iii), the probability of
facing a resolute defender when the challenger is contemplating disputing
the status quo, 1 — B#(0)=¢,, rises. But in this equilibrium the irresolute
challenger must be indifferent between disputing and accepting the status
quo. Thus, as the irresolute challenger becomes more confident that the
defender is resolute and this tends to reduce the payoff to challenging the
status quo, the probability of resistance must fall to keep the irresolute
challenger indifferent. In particular, the irresolute defender becomes less
and less likely to resist: e}(1) declines as ¢ rises. The reason that the
resolute defender does not also become less likely to escalate is that because
it is more resolute, it strictly prefers to resist whenever the less resolute
defender is, as in region (iii), indifferent between resisting and acquiescing.
Because the irresolute defender uses a mixed strategy and must therefore be
indifferent between resisting and submitting if challenged, the combined
probability that the irresolute challenger will dispute the status quo, e£(0),
and the chances that it will subsequently escalate if its challenge is resisted,
e¢(1), must keep the irresolute defender indifferent. The former probability
contributes to this by affecting the irresolute defender’s beliefs about the
resolve of the challenger if there is actually a challenge. The less likely the
irresolute challenger is to mount a challenge, the more confident the
defender is that the challenger is resolute if there is really a challenge. The
chances that the irresolute defender will escalate if its challenge is resisted,
e#(1), influences the irresolute defender’s expected payoff to resisting by
affecting the payoff to escalating if the challenger is actually irresolute. The
more likely this challenger is to escalate, the lower the expected payoff to
resisting a challenge.

As the prior probability of confronting a resolute defender rises and one
moves upward across (iii), the chances that the irresolute defender will resist
fall. Finally, the irresolute defender must be certain to quit [i.e., e}(1)=0] in
order to keep the irresolute challenger indifferent between disputing and
accepting the status quo. This defines the border between (iii) and (iv). If the
initial chances of confronting a resolute defender rise still further, then in
region (iv) the irresolute challenger is too fearful of a resolute defender and
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now strictly prefers to quit. But this means that if there is a challenge, the
defenders are sure that the challenger is resolute and therefore prefer
quitting to resisting. Equilibrium (iii) collapses, and (iv) emerges. The
resolute defender in (iv) plays a role like the one that the irresolute defender
played in (iii). The resolute defender’s strategy keeps the irresolute
challenger indifferent between disputing and accepting the status quo and
between escalating and quitting if there is a resisted challenge.

Resolve, misperception, the status quo, and the dynamics of
escalation

How do changes in the level of resolve, in the degree of misperception, and
in the value of the status quo affect crisis stability and the dynamics of
escalation in the model? The equilibrium strategies just described and fully
specified in Appendix 3.1 make it possible to begin to study these effects.
For example, the consequences of the challenger’s having a greater stake in
the status quo may be determined by examining how the states’ strategies
change as g varies. To some extent, an analysis of changes in the level of
resolve, in the degree of misperception, and in the value of the status quo is
complicated by the existence of four equilibria that tend to be inversely
related. An increase in the irresolute challenger’s resolve due to a higher
return to prevailing (i.e., to an increase in w.) makes the irresolute defender
D less likely to resist a challenge in equilibrium (ii) but more likely to do so
in equilibrium (iii). Nevertheless, the four equilibria do support some
generalizations. The characterization of a brinkmanship crisis as a contest
of resolve can be misleading. Moreover, reducing the level of misperception
may reduce, not increase, crisis stability. Finally, an increase in the
irresolute potential challenger’s stake in the status quo does make a crisis
less likely, as one might intuitively expect, but not necessarily by making the
potential challenger less likely to dispute the status quo. Rather, stability
may increase because the defender is less likely to resist a challenge.
Before taking up this examination, two preliminary observations are in
order. First, the model is very simple, and the states use mixed strategies in
the sequential crisis equilibria. This makes the empirical significance of the
interactions that will be discussed difficult to assess.?* Are the interactions
artifacts of the model, or do they reflect an underlying empirical phe-
nomenon? Absent empirical evaluation, the development of richer,
better models may shed some light on this. If these interactions exist in a
wide variety of models, one may be more confident that the interactions are

24 For a discussion of some of the issues involved in interpreting mixed equilibria, see Luce
and Raiffa (1957), Harsanyi (1973), Harsanyi and Selten (1988), and the Appendix that
follows Chapter 8.
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not artifacts of a particular model. But for now, the empirical significance
of these interactions must remain tentative.?®

The second observation is that although each state is uncertain of its
adversary’s resolve, as modeled by letting Nature begin the game by
randomly selecting the levels of resolve, the phenomenon being modeled is
a crisis in which each state’s resolve, though unknown to its adversary, is
fixed. Viewed in this way, the equilibria describe the escalatory dynamics of
four different types of crises. These types are described by the types of states
that are actually facing each other in the crisis. For example, in a crisis in
which both states are actually irresolute, escalation follows the dynamic
specified by the strategies of C and D. If, however, the actual crisis involves
two resolute states, then the interaction of the strategies of C’ and D’ will
determine the pattern of escalation. Let (C, D), (C,D"), (C’, D), and (C’,D’)
denote these crises.

Although there are four distinct types of crises, and each has its own
escalatory dynamic, it is important to realize that these types of crises
cannot be separated completely. They are linked by the states’ beliefs. For
example, an actual crisis of type (C, D)is linked to (C, D') because the actual
challenger, C, is uncertain of the type of its adversary. C does not know if it
is facing the irresolute defender D or the resolute defender D'. That is, C
does not know ifitis in(C, D) or (C, D'). Indeed, C believes thatitisin (C, D)
with probability ¢, and in (C, D') with probability &;.. Similarly, the beliefs
of D link the actual crisis (C, D) to (C’, D). This linkage means that a crisis
cannot be described solely in terms of the resolve of the states actually in the
crisis. The states’ beliefs about the levels of resolve or, more generally, the
potential types of their adversaries are also integral parts of the description
of a crisis.

Crisis stability

The existence of different types of crises naturally leads to questions about
their relative stability. Intuition suggests that a crisis in which both states
are resolute should be more likely to end in war and hence should be less
stable than a crisis in which only one state is resolute. Furthermore, a crisis

25 Indeed, Nalebuff (1986) offers a model of brinkmanship in which each state’s adversary
may come from a continuum of types rather than just being one of two types as in the
current model. With a continuum of types, there is a pure-strategy equilibrium, and the
interactions in it are quite different from those in the model developed here. For example,
the state with the greatest resolve always prevails, and there is no bluffing. But in the model
about to be examined, the state with the greatest resolve does not always prevail, and, as
already shown, there is bluffing in that a state may escalate even though it is certain that its
adversary’s resolve is greater than its own.
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in which one state is resolute should be less stable than a crisis in which
neither state is resolute. As will be shown, the model supports this intuition.

Crisis stability usually is taken to be a measure of the likelihood that a
crisis will end in war. The more stable the crisis, the less likely is war. This
idea is easily formalized in the model. For example, the probability that a
crisis of, say, type (C, D’) will end in war is the probability that the first step
toward the brink will immediately lead to disaster, which is d, plus the
probability that after the first step does not lead immediately to disaster, a
second step will be taken, and it will lead directly to disaster, which is
(1 — 8)e¥(1)26, plus the probability that after the first and second steps do
not lead directly to disaster, a third step will be taken, and it will lead to
disaster, (1 — 8)e&(1)(1 — 25)e}(2)36. Because the crisis is of type (C, D'), no
one is willing to run the risk of a fourth step; so there is no additional risk.
Pulling all of this together and letting Py ((C, D')) denote the probability
that the crisis will end in disaster, then

Pyl(C, D) =6 + (1 — 8)eX(1)26 + (1 — S)eX(1)(1 — 26)e(2)30

The probability that a crisis will not end in disaster is 1 — Py, and this will
be taken as the measure of crisis stability.

Py, is calculated from the point in the game tree in Figure 3.2 at which
Nature first has a chance to play disaster. At this point, there is a crisis:
There has been a resisted challenge. Calculating Py, in this way raises an
issue that will become important later, but should be introduced here
because it affects the way that Py is calculated. The probability that a
situation of type (C, D’) will end in disaster will not be calculated from
where Nature first has a chance to impose disaster. Rather, this probability
will be calculated from the point in the game tree after Nature has chosen
the types to be C and D’, but before the states actually begin to play. Put
another way, situational stability is evaluated from the point at which a
potential challenger is deciding whether or not to exploit the situation by
challenging the status quo. It is the probability that a situation will not
escalate to disaster. For a (C,D’) situation, this probability will be
calculated from Q0). Letting S denote the probability e#(0)e¥ (1) Py, then
1 — Sy measures situational stability. In general, situational stability will
not equal crisis stability, and, more important, changes in the model’s
parameters that, for example, increase situational stability may not increase
crisis stability. Thus, the distinction between crisis stability and situational
stability or, more generally, the distinction between statements made about
a historical sample that includes only crises and statements about a
historical sample that includes situations that could have become crises, but
did not, is sometimes crucial. Indeed, this distinction will play an important
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role in the discussion of the effects of changes in the degree of misperception
on stability, as well as in the analysis of the distribution of crises. However,
the following conclusions about the relative stability of the four types of
crises hold for both crisis stability and situational stability.

The types of crises and situations may be ranked by noting that a resolute
state is always at least as likely to escalate as its irresolute counterpart, and
sometimes it is more likely to escalate. This implies that a severe crisis that
entails a grave conflict of interest because both sides are resolute is more
dangerous and less stable than a crisis in which only one state is resolute. A
minor crisis in which neither state is resolute is less dangerous and more
stable than one in which one or both states are resolute. Symbolically,
Py((C", D)) > Py((C', D)) > Py((C, D)), and Py((C’,D")> Py((C,D")>
Py ((C, D)).?® The model agrees with the intuitive ranking of these crises’
relative stability.

Resolve

Brinkmanship crises often are described as contests of resolve and
competitions in taking risks (Schelling 1966; Jervis 1979-80, 1984). The
effect of such description is that it shifts the emphasis away from a contest
of military strength, which was central to the classical logic of war, and
focuses it on each state’s resolve, that is, on each state’s willingness to run
the risk of disaster. In this way, the description of a crisis as a contest of
resolve captures much of the essence of brinkmanship and the approach to
nuclear deterrence based on the strategy that leaves something to chance
and the array of risk. But the model indicates that this description may also
be misleading if it is used to draw inferences about the dynamics of
brinkmanship crises. The description suggests many propositions that do
not hold in the model.

One of these propositions is that the state “willing to run the greatest
risks will prevail” (Jervis 1979-80, p.631). Recall that the irresolute
challenger C in equilibrium (i) is certain that it is facing a more resolute
adversary if its challenge is resisted. Nevertheless, C exploits the defender’s
uncertainty about the challenger’s resolve by escalating with probability
e&(1) > 0. The irresolute challenger, certain that its adversary’s resolve is

26 To see this, note that
Pyl(C D))= 5 +(1 — )e(1)26 + (1 — S)ex (1)1 — 28)el (2)36
+(1—d)eg (1)1 — 28)e(2)(1 — 38)et(2)40

and Py{((C’, D)) =& + (1 —6)e2(1)24. This implies P, {(C’, D)) > Py{(C", D). But Py{(C, D))=
4 (1—0)eg(1)28. So Py((C’, D))> Py((C, D)) because e2.(1) > eX(1).
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greater, is playing a strategy of pure bluff. But in a (C, D) crisis, C will
prevail with probability (1 —d)eZ(1)(1 —28)(1 —e}.(2)) in equilibrium (i).
Sometimes bluffing works, and the state with the least resolve prevails.?”

A second inference suggested by the notion of a contest of resolve and,
somewhat more formally, by critical-risk models of crisis bargaining is that
the greater the resolve of a state’s adversary, the less likely that state is to
escalate (Ellsberg 1959; Jervis 1972, 1978; Snyder and Diesing 1977). The
reasoning here is that the greater an adversary’s resolve, the more likely it is
to stand firm, and thus the greater the risk of disaster if the state also stands
firm. This greater risk of disaster then makes the state less likely to stand
firm. This argument does not hold in the brinkmanship model. An increase
in an adversary’s resolve may make a state more, not less, likely to escalate.
In equilibria (ii) and (iii), an increase in D’s resolve makes C more likely to
escalate.?®

This difference is troubling. The argument that the greater an adversary’s
resolve, the less likely a state should be to escalate seems to follow. Yet this
conclusion does not hold in the model. What accounts for the disparity
between this argument and its formal counterpart? The model makes it
possible to trace the various factors at work more clearly, and this shows
that the former argument, on closer examination, leaves out important
interactions. Suppose, as argued, that an increase in the irresolute de-
fender’s level of resolve R;, made it more likely to escalate, and therefore
the irresolute challenger C less likely to escalate at Q (1) in the face of
resistance. This, however, is not the end of the analysis of the effects of the
increase in R;,. Consider C’s original decision of whether or not to dispute
the status quo. With the irresolute defender more likely to resist, and C less
likely to meet resistance with escalation, the challenger’s payoff to disputing
the status quo decreases. This makes C less likely to dispute the status quo.
But the irresolute challenger’s being less likely to dispute the status quo
affects the defender’s beliefs about the challenger’s resolve. Because the
irresolute challenger is less likely to dispute the status quo, the irresolute
defender will be less confident that it is facing the irresolute challenger and
more confident that it is confronting the resolute challenger if there is a
challenge to the status quo. Being less confident of facing the irresolute
challenger reduces the irresolute defender’s expected payoff to resisting and
tends to make it less likely to resist. But if the irresolute defender is now less
likely to resist a challenge, the payoff to mounting a challenge rises, and the
irresolute challenger will have an incentive to alter its strategy. This, in turn,

27 See, however, Nalebuff (1986) for a model of brinkmanship in which the state with the
greatest resolve does prevail.
28 More formally, de%(1)/0R,>O0.
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will give the irresolute defender an incentive to change its strategy, and so
on and so forth. The argument that the greater an adversary’s resolve, the
less likely a state is to escalate leaves out the complicated interactions
between strategies and beliefs that are summarized in the equilibrium
strategies.

The effects of changes in an adversary’s resolve may also differ depending
on the stage of the crisis. In equilibrium (iii), an increase in D’s resolve in a
(C, D) crisis makes the irresolute challenger C initially less likely to exploit
the situation. But if the challenger overcomes its greater initial reluctance to
dispute the status quo, it will pursue its challenge more tenaciously in that it
is more likely to escalate if its reluctantly made challenge is resisted. That is,
an increase in Ry, reduces e%(0), but raises e(1).2°

Another proposition that might easily be thought to follow from the
description of a crisis as a contest of resolve is that a state should be more
likely to prevail the greater its resolve. The greater a state’s resolve, the
argument might go, the less likely its adversary is to stand firm, and
consequently the more likely the state is to prevail. Again, the model
indicates that this argument is problematic. It also leaves out many
complicating interactions between a state’s strategies and its adversary’s
beliefs. When, as has just been shown, these interactions are taken into
account, an increase in a state’s level of resolve may make an adversary
more likely to escalate in the model. But the more likely a state’s adversary
is to escalate, the less likely this state is to prevail. Having greater resolve
may not make prevailing more likely.3°

Perhaps the least demanding proposition suggested by the notion of a
contest of resolve is that the states’ levels of resolve summarize enough
information about the payoff structure of the situation to determine their
strategies.®! That is, the states’ strategies should depend on a combination
of payoffs that can be reduced to an expression involving only the states’
levels of resolve. But even that is not the case. In equilibrium (iii), for
example, ef(1) and e}.(2) depend on a combination of the payoffs of C that
cannot be reduced to an expression involving only the states’ levels of
resolve. In the contest of resolve, resolve does not even fully describe the
dynamics of the contest.

In sum, many propositions that seem to follow from the description of a
contest of resolve do not hold in the model. Describing a brinkmanship
crisis as a contest of resolve may obscure more than it clarifies.

2% 2e¥(0)/0R, <O, but deX(1)/dR, > 0.

3¢ More formally, the probability that D will prevail in equilibrium (i) is the probability of
facing the irresolute challenger times the probability of its submitting after a resisted
challenge. That is, ece(1)(1 — X1 —e(1)), and this decreases as R, increases.

31 In other words, the states’ levels of resolve are sufficient statistics for their payoffs.
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Misperception and crisis stability

The situation actually facing a state can be distinguished in the model from
the situation that the state believes itself to be facing. Indeed, the model
offers a natural measure of the degree to which a state misperceives its
situation. This measure, in turn, makes it possible to examine the effects of
changes in the level of misperception on crisis stability. To see how
misperception will be measured, suppose, for example, that the irresolute
challenger C and the irresolute defender D are actually facing each other.
At Qc(0), the irresolute challenger believes that it is facing the resolute de-
fender D’ with probability ¢;,. Because the challenger is actually facing the
irresolute defender D, the strength of its belief that it is facing the resolute
defender D’ (i.e., the value of ¢;) measures the degree of the challenger’s
misperception about the type of its adversary. Conversely, had the
challenger actually been facing the resolute defender D', then ¢, =1—¢p,
would have measured the degree of misperception. Given the types of
adversaries actually facing each other, the probabilities ¢.. and ¢, measure
their initial misperceptions. As the crisis escalates, each state revises its
beliefs about its adversary in light of its actions, and this affects the degree
of misperception.

Three important qualifications to this formulation of misperception
must be noted before the effects of misperception are examined. First,
although misperception may connote making a perceptual mistake, that is
not the case here. Misperception in this context means only that a state
attaches some positive probability to beingin a situation thatin fact it is not
in. Nevertheless, the probabilities representing the state’s beliefs are not
mistaken in that they fully incorporate the information the state has about
its situation.

The second qualification is that the probabilities ¢.. and ¢j, are assumed
to be common knowledge. That is, each state knows the values of these
probabilities, knows that the other state knows them, knows that the other
state knows that it knows them, and so forth. Consequently, each state
knows how badly its adversary misperceives it. For example, irresolute
challenger C, knowing its type, knows that its adversary’s degree of
misperception is &, because C knows that its adversary believes it is facing
the resolute challenger C’ with probability ¢... This assumed knowledge of
the other’s degree of misperception may be a serious limitation of this
formulation of misperception.

Third, recall that the model has been simplified by assuming that there
are only two possible types of adversaries. With only two possible types, itis
natural to measure misperception by the strength of a state’s belief that it is
facing one type when it is actually facing the other type of adversary. And
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because a single probability can be used to measure the level of
misperception in this simple case, it is also natural to say that the greater
this probability, the greater the level of misperception. But suppose one
wanted to examine the consequences of changes in the degree of
misperception in a more general context in which there were more than two
possible types of adversaries. As in the simpler case, this more general case
could be modeled by assuming that each state begins the game with an
initial probability distribution defining its initial beliefs about the
probability of its facing any particular type of adversary. The effects of
different initial beliefs could then be studied by beginning the game with a
different probability distribution defined over the possible types of
adversaries. But given two different initial probability distributions, what
does it mean to say that misperception is greater in one than in the other? If
the answer to this question is to be well defined, it must be possible to rank
probability distributions along a single dimension, that of a greater or lesser
degree of misperception. But probability distributions may differ in many
dimensions. Characterizing a normal probability distribution, for example,
requires two dimensions: a mean and variance. Whether or not the many
dimensions along which probability distributions may vary can be
condensed into a single dimension that might sensibly be said to represent
misperception is unclear. Assuming that there are only two possible types
of adversaries finesses this problem in the simple models studied here. In a
less restrictive setting, as in much of the existing work on the effects of
misperception (Jervis 1977, Lebow 1981; Jervis et al. 1985), a natural
measure of misperception is lacking, the precise meaning of a general
increase in the level of misperception is unclear, and consequently one
cannot study the effects of a general increase in misperception.

In the simpler case in which there is a well-defined measure of
misperception, the model indicates that there is no reason to believe that
crisis bargaining reduces misperception and that crises end when
perceptions are sufficiently clear. Indeed, misperception often will become
worse during a crisis. The equilibrium strategies and beliefs show that as the
crisis unfolds, the states usually become more confident that they are facing
resolute adversaries. Thus, if the crisis actually involves an irresolute state,
say the crisis is of type (C, D), then the longer the crisis lasts, the greater the
degree of misperception will become. C, for example, will become
increasingly confident that it is facing I, whereas it is actually facing D.

Turning to the effects of changes in the initial level of misperception,
there would be no crises if misperception could be completely eliminated.
Each state would know its adversary’s resolve, and with complete
information, Proposition 3.1 shows that there would be no crises. But what
if misperception is reduced but not eliminated? Table 3.1 summarizes the
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effects of small reductions in the degree of misperception on crisis and
situational stability. (Crisis stability, it will be recalled, is a measure of the
probability that the game will end in disaster once there has been a resisted
challenge, whereas situational stability is the probability of disaster once
Nature has selected the states’ types, but before the potential challenger
decides whether or not to dispute the status quo.) These effects are derived
by evaluating the signs of the partial derivatives of the probability of war
with respect to &.. and &5,.. Suppose, for example, the irresolute challenger C
and the irresolute defender D are facing each other. Py, is the probability
that a crisis of this type will end in war, and Py =6 + (1 — 6)ef(1)26. The
probability of the situation ending in war, Sy, is e(0)e}(1)Py. Now in
equilibrium (iii), Sy rises as the prior probability of facing a resolute
defender, ¢, falls: 0S,/0¢p <0. The situation becomes less stable as g,
decreases. But C, while actually facing D, believes that it is facing D’ with
probability &,.. As &, decreases, therefore, C’s misperception decreases.
The situation thus becomes less stable as misperception decreases, and a
minus sign appears in the cell in the column under equilibrium (iii) and
“Situation” and in row C in the (C, D) crisis rows. The other cells are
evaluated in the same way: A plus sign denotes an increase in stability due
to a decrease in misperception; a minus sign denotes a decrease in stability;
a zero denotes no effect. Table 3.1 shows that except for C’, which has been
constructed so that it plays the trivial strategy of always escalating,
reducing a state’s misperception can be destabilizing as well as stabilizing.
The effects of more accurate perceptions depend very much on the situation
that is perceived more clearly.

An overdrawn example will demonstrate that reducing misperceptions

Table 3.1. Effects of reducing misperception on crisis stability and situa-
tional stability

@ (i) (i) (iv)
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can reduce stability by making war more likely. Suppose that the defender is
actually facing an irresolute challenger. But the defender also misperceives
the resolve of the challenger and is very confident that the challenger is
resolute. Given this misperception, the defender, as in the NSCE region in
Figure 3.4, may not resist a challenge to the status quo. There will be no
crisis and no chance of war. If, however, the challenger more accurately
perceives the defender’s low level of resolve, so that & < & in Figure 3.4,
the defender may resist. This creates a crisis and some chance of war. More
accurate perceptions in this case will have reduced stability.

The status quo

Detente and linkage politics are based in part on the belief that the greater
the stake a potential challenger has in the status quo, the less likely this state
is to put this more valuable stake at risk by challenging the status quo
(Litwak 1984, pp. 89-96). Although this is an assertion about foreign policy,
not about crisis bargaining, it has an obvious parallel in crisis bargaining.
The greater the challenger’s stake in the status quo, the less likely it will be
to dispute the status quo. In the model, this parallel does not hold. An
increase in the value of the status quo to the potential challenger has a more
complicated effect on the escalatory dynamics. An increase in the
challenger’s stake in the status quo that is large enough to shift the
equilibrium from one type to another may make a challenge less likely. But
at least for small increases in the value of the status quo that do not affect
the type of the equilibrium, a potential challenger is not less likely to make a
challenge. Rather, the defender is less likely to resist.

To see formally that an increase in the value of the status quo that shifts
the type of equilibrium may make a challenge less likely, consider first the
effect of a large increase in the value of the status quo in equilibrium (ii). In
(ii), the challenger disputes the status quo with probability 1: ¢%(0) = 1. But
if gc rises, so that &, which in (ii) was less than ¢, in Figure 3.4, is now
between £p,- and gp, then (iii) will now exist. But e(0) < 1 in (iii). Thus, the
increase in the challenger’s stake has reduced the probability of a challenge
to the status quo.

Now consider the effects of an increase in the challenger’s stake that does
not shift the equilibrium. The strategies e%(0) and eZ(1) do not depend on
gc->? Changes in gc do not affect C’s strategy. An increase in the
challenger’s stake in the status quo does not leave the challenger less likely
to dispute the status quo. The strategies that may be affected by changes in
qc are e¥(1), e%(1), and e}.(2). When they are, an increase in gc makes D and

32 The Appendix following Chapter 8 discusses this property of mixed-strategy equilibria.
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D' less likely to escalate if challenged. Crises thus become less likely, but
only because resistance is less likely.

As with arguments assessing the effects of changes in the levels of resolve,
an apparently compelling argument about the effect of the potential
challenger’s having a greater stake in the status quo does not hold in the
model. A greater stake may not make a challenge less likely. As before, the
disparity between this argument and its formal counterpart seems to arise
at least in part because the former leaves out important interactions
between the states’ strategies and their adversaries’ beliefs that the model
illuminates. To trace these interactions, suppose the potential challenger’s
stake in the status quo g rises. Given the defender’s strategy, the irresolute
challenger Cis less likely to dispute the status quo.>3 But this is not the end
of the analysis. Because the irresolute challenger is less likely to dispute the
status quo, the defender is more confident that the challenger is resolute if
there is in fact a challenge. The higher probability of facing a resolute
challenger reduces the defender’s payoff to resisting a challenge, and this
makes resistance less likely.34 If, however, the defender is less likely to resist,
a challenge to the status quo offers a higher payoff and is more likely to be
made.3* The irresolute C is more likely to escalate. This makes the defender
more confident of facing the irresolute challenger and increases the
defender’s payoff to resisting. And so it goes, until in equilibrium neither
state wants to deviate from its strategy given its beliefs and its adversary’s
strategy. The simple argument that an increase in the challenger’s stake in the
status quo makes a challenge less likely leaves out all of these interactions.

The distribution of crises

One consequence of the nuclear revolution is that crises “should be in
peripheral areas where neither side’s stake is very high” (Jervis 1986, p. 695).
The model provides some weak support for the argument that the states’
stakes in a brinkmanship crisis will be small. In the model, the challenger in
a crisis is more likely to be irresolute than resolute. This immediately
implies that crises in which both states are resolute are less likely than crises
in which at least one state is irresolute. Crises entailing a severe conflict of
interest should be relatively less frequent.

33 More formally, if C is originally using a mixed strategy at Q0), then it is indifferent to

accepting the status quo or disputing it. An increase in ¢ therefore implies that C will

strictly prefer to accept the status quo. The strategy ec(0)=0 is now C’s best reply.

With e.(0) =0, the defender is certain that it is facing the resolute challenger C’ if there is a

challenge: f(1)=0. The defender’s best reply is therefore to submit: ey(1) =e,(0)=0.

35 If the defender is certain to submit, i.e., if €,(0) = e,.(1) =0, then the irresolute challenger’s
payoff to disputing the status quo is greater than the payoff to accepting it. C’s best reply is
ec(0)=1.

34
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To show this, suppose that the probabilities e, &¢/, £p, and &, measure the
distribution of interests in the international system. That is, there is a mild
conflict of interest underlying a situation of type (C, D), a relatively more
severe conflict underlying the situations (C, D') and (C’, D), in which one of
the states is resolute, and a severe conflict of interest underlying the
situation (C’, D’), in which both states are resolute. Then the probabilities
&c, Ec» Ep, and &y define the distribution of the underlying conflicts of
interest in the system. The probability of a situation of type (C, D) is &cep,
that for (C, D') is gc€p, that for (C’, D) is ec.¢p, and that for (C', D') is gc.&p-.

The demonstration that the challenger is more likely to be irresolute in a
crisis begins by letting IT denote the probability of a crisis (i.e., of a resisted
challenge). This is given by the probability that the irresolute challenger is
actually in the crisis, which is ., multiplied by the probability that it will
escalate, e#(0), multiplied by the probability that the resolute or irresolute
defender will escalate, which is gpef(1) + ep-€¥/(1), plus the probability that
the resolute challenger is actually in the crisis, multiplied by the probability
that it will escalate, and then multiplied by the probability that the
irresolute or resolute defender will escalate. Bringing all of this together
leaves

Il = ecet(0)epep(1) + ep-eh(1)] + ec-[epeB(1) + epef(1)]
The probability of an irresolute challenger given a crisis, according to
Bayes’ rule, is the probability of anirresolute challenger disputing the status

quo and the defender resisting divided by the probability of there being a
crisis. This is

(1= ec)et(O)[(1 — ep)ep(1) + epep(1)]/T1

Similarly, the probability of a resolute challenger is the probability of a
resolute challenger mounting a challenge that is resisted divided by the
probability of there being a crisis. This is

ec[(1—&p)ep(l) +&p-ef(1)]/I1
One can then show that (1 —e&c)ef(0)>ec, and this implies that the
challenger is more likely to be irresolute.>®

36 To see that (1—éc)e¥(0)>¢c., note that greatest lower bound for the expression
for (1 — &c.)e(0)/¢c. in equilibrium (iv) is obtained by evaluating this expression at the least
upper bound of Ry, which is 55. Substituting this value for R, in the inequality
(1 — &0 )ek(0)/ec. > 1 gives a relation in § that will be satisfied if d is restricted to be less than
0.10. This restriction on d merely means that the least resolute state, D, is not willing to
hazard a chance of disaster of more than 30 percent. Thus, if § < 0.10, a challenger is
more likely to be irresolute in equilibrium (iv). A similar argument shows that this
restriction on d ensures that the challenger is more likely to be irresolute in equilibrium (iii).
In equilibria (i) and (ii), e%(0)= 1; so it suffices to show .. <4. But the bounds on ¢.. ensure
that this also holds if & < 0.10.
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The fact that the challenger is more likely to be irresolute immediately
leads to the conclusion that crises entailing a severe conflict of interest will
be relatively less frequent. That is, the probability of a severe conflict of
interest underlying a situation that actually becomes a crisis will be less
than . To establish this, note that this probability will be less than 4 if and
only if the probability of a severe crisis, &c-ep-ep(1), is less than the
probability of the crisis not being severe, which is IT— ¢..e5.€}.(1). But

I —ecepep(1)=(1—ec)(1 — ep)et(0)ep(1)
+ep(1 —&c)et(0)ep (1) + ec(1 — epJep(l)
> el —eplef(l) + ecepep(l) +ec (1 —ep)ep(l)
>ec-epep(l)

where the first inequality follows because (1 — &c.)ed(0) > ... Thus, given a
crisis, the probability of its entailing a severe conflict of interest is less than
the probability of its not entailing a severe conflict.

The fact that a challenger is less likely to be resolute and that a crisis is
less likely to be severe may lead to a kind of selection bias, and this
illustrates the importance of distinguishing between statements about
crises and statements about situations. Suppose one wanted to assess the
underlying distribution of interests in the system. In effect, this amounts to
trying to determine the probability distribution of the points in the (¢¢., £p/)
plane in Figure 3.4. But, clearly, if one’s sample consists solely of crises,
perhaps because history naturally focuses attention on them and not on
situations that could have become crises but did not, then any situation in
the no-sequential-crisis-equilibrium (NSCE) region will not be included in
the sample. And those situations that will be excluded are those in which the
probability of facing a resolute challenger is high; that is, situations in
which &c. > &.. will be excluded from a sample consisting only of crises.
These excluded cases, moreover, are those in which a severe conflict of
interest is more likely.

The dynamics of brinkmanship escalation

The doctrine of massive retaliation foundered on the credibility problem
created by the nuclear revolution. If no state would ever deliberately launch
a massive nuclear attack first because the cost of doing so would be too
great, then the threat to do so would seem inherently incredible. The
strategy that leaves something to chance solved that problem, at least in
principle. It linked the use or threatened use of force to states’ attempts to
secure their interests through an array of risk. In this approach to
deterrence, states act in ways that raise the risk that they will lose collective
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control of the crisis and that the crisis will end in the utter devastation of a
general nuclear exchange. The brinkmanship analogy, in turn, offered some
insight into the dynamics of crisis bargaining when force and political ends
were related in this way. This chapter has sought to extend the insights
derived from this analogy by formalizing it.

The model supports some of the inferences that might be drawn from this
analogy and from the description of a brinkmanship crisis as a contest of
resolve. But the model also contradicts many of the conclusions suggested
by this analogy and description. The model agrees with the analogy that
crises involving a grave conflict of interest are the least stable and the most
dangerous, whereas crises in which there is only a minor conflict of interest
are the most stable and least dangerous. However, the model contradicts
the analogy’s suggestion that the state with the greatest resolve will prevail,
or that the greater an adversary’s resolve, the less likely a state is to escalate.
Indeed, an increase in the defender’s resolve in the model may make an
irresolute challenger more likely to escalate after resistance. Contrary
to what might be presumed to follow from the description of a
brinkmanship crisis as a contest of resolve, a state may be less, not more,
likely to prevail the greater its resolve. Describing a brinkmanship crisis as a
contest of resolve may obscure as much as it clarifies.

Because the situation actually facing a state may be distinguished from
the situation a state believes itself to be facing, certain aspects of the role of
misperception in crisis bargaining can be formalized. The formalization
indicates that misperception may become worse during a crisis. Although
there would be no crises if misperception could be completely eliminated,
reducing but not eliminating misperception can be stabilizing or
destabilizing.

Increasing a potential challenger’s stake in the status quo would seem to
enhance stability by reducing the likelihood of a challenge to the status quo,
for to do so would be to risk a more valuable stake. The model has shown
this assertion to be problematic. The challenger’s having a greater stake in
the status quo does make a crisis less likely, but not necessarily because the
potential challenger is less likely to challenge the status quo. Rather, the
challenged state may be more likely to submit.

Some weak statements about the distribution of crises may also be made.
Given a crisis, a challenger is, surprisingly, more likely to be irresolute than
resolute. A severe crisis, moreover, is less likely than a crisis that is not
severe.

What seems to account, at least in part, for the inconsistencies between
the arguments based on brinkmanship and the image of a contest of resolve
and the more formal counterparts of those arguments that are developed
here is that the former often leave out important interactions between the
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states’ strategies and their beliefs. The model, for example, illustrates that
an initial change in one state’s strategy could alter the other state’s beliefs.
Different beliefs may lead to a new strategy, and that, in turn, leads the first
state to change its strategy. Often these interacting factors point to opposite
directions. If an irresolute state becomes more likely to escalate, that tends
to reduce an adversary’s expected payoff to escalating and makes the
adversary less likely to escalate. But there is an opposing influence. By being
more likely to escalate, the irresolute state also affects its adversary’s beliefs.
The more likely an irresolute state is to escalate, the more confident an
adversary is of facing the irresolute state. This greater confidence increases
the adversary’s payoff to escalating and tends to make the adversary more
likely to escalate. The formal arguments keep track of these factors and
balance the opposing influences in ways that their less formal counterparts
cannot.

The point, however, is not that the conclusions derived from the formal
model developed here are better than other conclusions. Indeed, different
models are likely to keep track of and weigh the competing factors
differently.3” Whether the simple brinkmanship analogy, the model
examined here, or some other models offer better conclusions should
ultimately be judged with empirical evidence. The point is that the
dynamics of crisis bargaining are enormously complicated, and simple
generalizations that may at first seem quite compelling may in the end be
misleading.

In the approach to nuclear deterrence based on the strategy that leaves
something to chance, the use or threatened use of force is related to states’
attempts to further their ends through the array of risk. Limited options
that, if exercised, will create different levels of autonomous risk bridge the
gap between doing too much by launching a massive nuclear attack and
doing too little by acquiescing to an adversary’s challenge to the status quo.
The formal model of brinkmanship developed in this chapter is a step
toward understanding this approach. But some of the model’s simplifying
assumptions make it impossible to examine crucial aspects of this
approach.

In particular, it is natural to ask what the effects are of having to take
larger or more dangerous steps toward the brink when escalating. Does it
make any difference if a state can take relatively small steps that will
generate small incremental risks of losing collective control or if a state can
take only large steps that will entail greater incremental risks? Are smaller
incremental risks associated with greater stability or less?

The model studied in this chapter cannot address these questions
adequately. To simplify the analysis, the model presumed that regardless of

37 See Nalebuff (1986) for a contrasting model of brinkmanship.
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the size of the incremental risk 8, both the irresolute challenger and
defender would be willing to take at most one step toward the brink,
whereas the resolute defender would be willing to take no more than two
steps. This assumption means that 4 and the states’ levels of resolve are not
independent. As the incremental § varies, the states’ levels of resolve may
also have to change in order to keep the maximum number of steps that the
states might be willing to take constant.3® But to trace the effects of having
different incremental risks, one would like é to be independent of the states’
levels of resolve so that the former might be varied while the latter is held
constant. This cannot be done in the present model. Developing a model in
which this can be done is the task of the next chapter. In that model of
longer brinkmanship crises, the states may be willing to take several steps
toward the brink, and the size of the incremental risk will be independent of
the maximum number of steps the states are willing to take.

Appendix 3.1

This appendix derives the sequential crisis equilibria of the brinkmanship
game when there is two-sided incomplete information. In this game, there
are four generic types of potential sequential crisis equilibria: (i), (ii), (iii),
and (iv). Generically, only one of these equilibria can exist at a time, and
which one that will be, if any,3° will depend on the initial beliefs of the states
(i.e., on the values of ¢.- and ¢;,). The sequential crisis equilibrium strategies
in (i) are
eg0)=1

e (e \[[1=(1=35)1 =431 — Ry]
eh= <1 - 80)[ Rpy—36 ]

egm)=0 Vvmz=2
e}m=0 vmx=1
ey(l)=1

R-.—26
()= T 25)(1 = 30)Ro + 39]
e}(m=0 vm=3

et(m=1 VYm<M,.

efm)y=0 Vm> M,

38 More specifically, the model is based on the assumption that My, =1, M= 1, My, = 2,and
M. > 2. This then defines the following relations between  and the states’ levels of resolve:
0<Rp<30,20 < R-<46,30 < Ry < 58,and 46 < R... So as é varies, Ry, R, Rp.,and R,
may also have to change in order to continue to satisfy these relations.

3% If ¢c and gp do not satisfy the necessary constraints, then no sequential crisis equilibria
exist. Only sequential noncrisis equilibria exist.
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and they have these relevant*® beliefs:

Be0)=BE(0)=1—¢p

BE(1)=p2(1)=0
BE2)= L) =0
BS) =5 (D =1—sc

oo oo [1—(1—36)(1—48)](1- Ry)
P2 =B =" 55— 20)R,, + 0]

Equilibrium (i) exists only if
§C’ < £C’ < EC’ £D’ < EDI

where

3 Rp—96 Rp —36
S [T 208)Rp + 28] || (1—38)[(1—46)R), + 46]

o Rp —6 Rp —36
o= T=8)[(1=26)Ry +20] || 1=30)[(1—40)R, + 45]

E’=Wc—qc 1
P we—d \(1— )R-+ 6

The sequential crisis equilibrium strategies in (ii) are

1 \[1-(1—d)1-29)][1—Rp]
(1-8)[(1—20)Rp+25]

£p (1)
e;(l)=<1—sp'><1—ﬂ5(1)>
eym=0 vYm=2
ex()=1
ep(2)=1
ep(m=0 VYm>3
egm=1 VYm<M,
eg(m=0 Vm>M,

40 Because both C and C’ always submit for m > M., and both D and D’ always submit for
m> M, the beliefs off the equilibrium path at Q{m) and Q.(m) and at Q,(m) and Qp(m)
can be anything. These arbitrary beliefs, however, do not affect the states’ strategies, and in
that sense they are irrelevant.
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and they have these relevant beliefs:

BEOQ)=BE0)=1—¢,

wir owiqn [1—(1=28)(1—38)1[1—Rc]
pe(y=pe)= (1—28)[(1 - 38)R. + 35]
BEQ2)=BE(2)=0

B(1)=pp()=1—¢c
BE(2) = B5:(2) = (1 — ec)ed(1)/[ec: + (1 —ec)e(1)]
P5(3)=p5(3)=0

Equilibrium (ii) exists only if
e < ¢ ey <é&p

where

£ — We—{qc 1 RC - 25
=" we —de \(1 = 8)Rc + 8 J\ (1 = 28)[(1 - 36)R, + 35]
The sequential crisis equilibrium strategies in (iii) are

1 [1-(1-8)1—-28)][1— Rp]
<1 - ﬁg'(2)> Rp—d

B[Ry~ 5]
[1—-(1—8)(1—-28)J[1—- Ryl + B5(2)[Rp— 5]
et(m=0 Vm>=2

1 We—4c 1
*(1V— 1 — —
es)=1 1—8,,,[1 <wc—dc>(1-—5)RC+5]

exm=0 Vvm>2
ex(1)=1

* (N _ L We—dc 1
e5(2)= <s,,,><wc _ dc>[(1 — )R+ 5]

« R-—25
(1—26)[(1 —38)R; + 34]
ex(m=0 VYm>2
egm=1 Vm<M,.
et(m=0 VYm>M.

Ecr
20)=1=
.

+ ﬁE'(Z)]

et(l)=
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and they have these relevant beliefs:

pe©) =
pe(1) =
pe) =
p(1) =

PE(2)=

BEO)=1—¢p
BE()=1— ep(

pE(2)=0

B.(1) = [1—(1—68)(1—28)][1 — Rp] + B3 (A[Rp— 5]

” (1—O)[(1—20)Ry + 25]

[1—(1—38)(1-48)][1— Ry ]
(1—35)[(1—46)R,, +40]

we—dc
We—dc

)[(1 +0)R.+ 6]

P32) =

p5(3)=B5(3)=0

Equilibrium (iii) exists only if

BC'<§C' §D' <£D' <ED'

The sequential crisis equilibrium strategies in (iv) are

et(0)=

et(1)=

£ 1 [1—(1—8)1—28)]1[1—Ry]
1—¢c (1 —B5Q2) Ry — o

PE (D[R — 9]

+ BB'(Z)]

[1—(1—0)(1-29)][1—Rp ]+ B5(2)[Rp — 9]

eX(m)=0 vm>2
eX(m)=0 vm>1

1 \(we—4qc 1
* (=1
es() (a,,,><wc - dc> (1—8)Ro+ 0

e8(2)=

R.—25
(1—28)[(1 - 38)Rc+ 30]

ey(m=0 VYm=>3
etm=1 Vvm<M.
eg(m=0 Vvm>M,

and they have these relevant beliefs:

pE(©) =
pe(l) =
pe2) =
p3(1) =

pE(2) =

BE0)=1—ep

pe(1)=0

BE(2)=0

Pp-(1) = (1 —&c)et(0)/[ec: + (1 — &c)et(0)]
BE(2) = [1—(1—-30)(1—49)][1—- Rp]
(1—-338)[(1 —46)Rp + 44]
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Equilibrium (iv) exists only if
gor <Ec &p > Ep

These equilibria are derived through backward programming. As noted
earlier, no state can attach a positive probability to attacking at any
information set. Accordingly, determining the sequential equilibria means
specifying e¥(m) and e¥.(m) for 0 <m < K/2, ef(m) and e}.(m) for 1l <m<
K/2, and a consistent set of beliefs, where an asterisk denotes an equilibrium
condition.

Recall that M, which is assumed to be equal to 1, is the last step C can
take before the inherent risk of slipping over the brink becomes too large:
M_is the largest integer m such that 2mé < R.. Thus, C’s best reply at Q(m)
for m> M.=1 is to submit: e¥(m)=0. Similarly, e}(m)=0 for m> M,
where M, is taken to be 1; e}.(m) =0 for m > M,,, where M, is equal to 2;
and ek.(m)=0 for m > M. > 2. Now note that if C’ escalates at Qc.(m) for
My =>mz=2, its adversary, regardless of type, will not subsequently
escalate. The risk is too high. But then the definition of M. implies that the
payoffto C’ of escalating at these information sets is greater than the return
to submitting. So e (m)=1 for Mc.=2m>2.

The game has been simplified by assuming that C’ will escalate at .(0),
Qc(1), and Q.(2), regardless of what its adversary does. That, it was
observed, might further restrict M. beyond the existing constraint that
M. > 2. To define this constraint and ensure that it can be satisfied, note
that the worst that can happen to C’ is that it will be facing a resolute
adversary that will escalate with probability 1 at (1) and Qp.(2). Because
Mp =2, the resolute adversary D’ will then submit. To ensure that C’ will
escalate at Q..(0), Q..(1), and Q..(2) in this worst case, it will suffice to
assume that

Re->1—(1-6)(1—26)(1—36)(1—40) + (gc — sc) (We: — dc)

For any J <3, this can always be done with suitable choices of wc., g¢, S,
and d;.. Finally, observe that whenever that inequality is satisfied,
R¢.> 46, and therefore M. > 2.

The only strategies left to be specified are those at Q(0), Q(1), Qp(1),
Q,(1), and Q,.(2). To find these, begin by considering the problem facing D’
if the crisis reaches Q,.(2). If D’ is facing C, escalation brings 3dd), +
(1—38)wpy.. If, however, D’ is facing C’, escalation yields 3ddp + (1 —36)
[46dp. + (1 — 40)sp 1. But D’ is uncertain whether it is facing C or C’, and so
its expected payoff to escalation is

Bp(2)[3ddp + (1 —30)wp ] +(1—Bp(2))
x [36dp + (1 — 38)[46dy + (1 — 48)sp.1]
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where, recall, f.(2) is the probability of facing an irresolute challenger at
QpA2).

Let By(2) be the value of B,(2) that leaves D’ indifferent between
submitting and escalating at Q,(2). Then,

[1-(1—-38)(1—46)][1—Ryp]

(1 —35)[(1 —40)Rp + 44]
So the best response of D’ at Q,(2) is ep(2)=1 if Bp(2)> Bp(2), ep(2)e
[0,1] if B5(2)=Bp(2), and ep(2)=0 if f,.(2) < Bp(2).

Beliefs are given by Bayes’ rule where this rule can be applied. For Q,(2),
this means

BD’(2) = (

BD'(2) =

(1 —&c)ec(0)ec(1)
1 —ec)ec(0)ec(1) + ec-ec(0)ec (1)

Recalling that e%(0)=eg(1)=1 in equilibrium, substituting for fp(2)
shows that D’s best reply is

e T B

ep(2)=1 if ec()ec(0)>| 1 ich, B ,;3 1 ,22)
— , - - B.(2 B

ep(2)ef0,1] if ec(1)ec(0)= 1 icgc 1 —11)31 22)
- JL 1l
[ s [ _Bo(@ ]

ep(2)=0 if ec(1)ec(0) <

| 1—¢c || 1-Bp(2) |

Now observe that there must always be some chance that the resolute
defender will escalate at Q,,(2) in a sequential crisis equilibrium: e%,(2) must
be greater than zero. To see this, assume that e},(2) = 0. Because D’ is certain
to submit at Qp.(2), C’s best reply at Qc(1) is to escalate: e-(1)=1. This
implies that D’ should not resist: ep(1) = 0. It would make no sense for D’ to
resist at (1) if C and C’ were certain to escalate at Q(1) and Q..(1), after
which D’ would be certain to quit. D’ could do better simply by not
resisting. Similarly, the irresolute defender will not resist: ep(1)=0. But
this is a contradiction: If e(1)=e,(1)=0, no challenge is resisted, and
there is no crisis.

The fact that e%/(2) > 0 implies that

ec(ec(0) = [ec- /(1 —ec)][Bp(2)/(1 — Bp(2))]

in any sequential crisis equilibrium. Finding these equilibria requires
consideration of two cases. Equality is assumed to hold in the first and
yields equilibria (i), (iii), and (iv). Inequality is presumed in the second, and
this gives equilibrium (ii).

Case I: ec(1)ec(0) = [ec//(1—&c)I[Bp(2)/(1 — Bp(2))]
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Consider the problem facing the irresolute challenger C after a resisted
challenge [i.e., at Q.(1)]. The payoff to escalation is

Bc()[26dc + (1 — 26)wc] + (1 — (1))
x [26dc + (1 —28)[(1 — ep(2))we + ep(2)[30dc + (1 — 38)sc11]
Let é,(2) be the strategy of D’ at Qp.(2) that leaves C indifferent to
submitting and escalating. Then,
ép(2)=[Rc—261/[(1— Bc(1))(1 —28)[(1 — 38)Rc + 36]]
The expression for é,.(2) may be simplified by substituting for fc(1). By
Bayes’ rule,

Bc(1)=(1—¢p)ep(1)/[(1 — eplep(1) + ep-ep(1)]
This gives

) ~ 1—¢p ep(l) R-—26
ép(2)= [1 + ( tp ) eD,(l)][(l ~20)[(1—36)Rc+ 35]:|

Because the irresolute defender always quits at Qp(2), C’s best response at
Qc(1) depends only on what the resolute defender does at Q.(2).
Consequently, C’s best response at Q(1) is ec(1) =0 if ey (2) > é(2), ec(1)e
[0, 1] if ep(2) = ép(2), and e(2)=1 if ep.(2) < ép(2).

Now turn to the problem facing D at Q(1). Let é.(1) be the value of ec(1)
that makes D indifferent to escalating and submitting. Then é(1) satisfies

sp= Bp()[ddp + (1 - O)[(1 — éc(1))wp + éc(1)[28dp +(1 — 26)sp]1]
+(1—Bp(1)[ddp+ (1 —8)[26dp + (1 —28)sp]]
and this is given by
[1-(1-6)(1-28)]J[1—Rp]
Bo(1)(1 —6)[(1 —26)Rp +25]
Substituting for f(1) yields

. Ec 1 1 [1-(1-6)(1-26)][1—Rp]
)=1—|1
é(l) [ + (1 - ec.) eC(O)][ (1= 6)[(1— 28)Rp + 26]
D’s bestreply at Qp(1)is ep(1)=0if ec(1) > é(1), ep(1)e[0, 1] if ec(1) = é.(1),
and ep(1) =1 if ec(1) < é-(1).
D’ faces a similar problem at Qp,(1). Recalling that D’ is indifferent
between submitting and escalating at Q,,.(2), because fp.(2) = Bp.(2) in Case

I, then the value of ec(1) that will leave D’ indifferent to escalating and
submitting, which will be denoted by é.(1), is

sy et [ ga (e )L T[T =81 — 28001 R, ]
%=1 |:1+(1—8C:)€C(0):|[ (1-930)[(1 —26)Ry +26] :I

é(l)=1—
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The best response for D' at Q. (1) is ep(1) =0if ec(1) > (1), ep.(1)e[0, 1] if
ec(1)=¢é-(1), and ep.(1)=1 if e(1) < é(1).

These best-reply correspondences will now be used to find points that
will be the best responses to themselves. Note that é,(1) and é-(1) are
increasing in e.(0). Because 6 < R, <3d and 36 < Ry,. < 59, it is easy to show
that for any ec(0), é-(1) > é.(1). Figure A3.1 graphs é-(1) and &-(1) and the
constraint Z, that defines Case I. That is, Z is the curve given by

ec()ec(0) =[ec /(1 —&c)1[Bp(2)/(1 — Bp(2))]

Because in Case I this constraint must be satisfied, only points along Z need
be considered as potential equilibria.

Let H' be the value of e-(0) at which é(1) satisfies the constraint, and let
H be the value of e-(0) at which é,(1) satisfies the constraint. Because
éc(1) < é-(1) for any e(0), and because e(1) is decreasing in e(0) along Z,
H' <H.

H' and H make it possible to specify the best replies of D and D’ at Qp(1)
and Q,(1). Considering only points along Z, then if, for example, e(0) < H,
it must be that ec(1) > é-(1). But this means that the best reply of D is
ep(1)=0. Indeed, the best-reply correspondence of D at Q(1) is given by
ep(1)=0 if e(0)< H, ep(1)e[0,1] if e-(0)=H, and ey(1)=1 if e-(0)> H.
Similarly, the best-reply correspondence of D’ at Q (1) is given by e, (1) =0
if ec(0)< H’, ep(1)e[0,1] if ec(0)= H’, and ep.(1)=1 if ec(0)> H".

In a sequential crisis equilibrium there must be some chance of a
challenge being resisted. This means that e-(0) > H’, because if e-(0) < H’,
then ep(1) =0 and e,.(1) = 0. Thus, the search for sequential crisis equilibria
may be limited to points along Z for which e (0)> H'. If, moreover,
ec(0)= H’, then ep.(1) > 0; otherwise, ep(1)=ep(1)=0.

Figure A3.1. é.(1) and é.(1).

ec(l)

1

ec(0)
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Now consider C’s best response if the game reaches Q.(1). This depends
on a comparison of ej.(2) and ép.(2). This comparison may be transformed
into one between ep.(2) and e.(0). Recall that é,,(2) is a function of ep(1)/
ep(1). But in equilibrium, ep(1) and ep(1) will be best replies to other
strategies. Indeed, as was just demonstrated, these best replies are functions
of e-(0). If, for example, H' < e-(0) < H, the best replies of D and D’ at (1)
and Q,.(1) are ep(1)=0 and e,(1) > 0. Hence, é,,.(2) evaluated at these best
responses is

[Rc—26]/[(1 —26)[(1 — 30)Rc+ 3611

Let L be this value, and let L be the value of é,(2) evaluated at ey(1)=
ep(1) = 1. Then the transformed best-reply correspondence for C at Q(1) is

1 if (ec(0), ep(2)e[H', H) x [0, L)
[0,1] if (ec(0), ep(2)e[H', H) x {L}
0 if (ec(0), ep Q) H', H) x (L, 1]
1 if (ec(0), ep(2))e{H} x [0,L)
[0,1] if (ec(0),ep(2)e{H} x [L,L]

0 if(eclO)hen@e{H} x (L 1]

1 if (ec(0), ep(2))e(H, 1] x [0, L)
[0,1] if (ec(0), ep(2))e(H, 1] x {L'}

0 if (ec(0), ep2)e(H, 11 x (I, 1]

This correspondence is illustrated in Figure A3.2 and will be called BR.
Figure A3.2 also shows the constraining curve Z, which has now become a
surface, X.

Remember that the problem is to specify the equilibrium strategies at
Qc(0), (1), Qp(1), Qp(1), and Q,(2). The first of these to fall out is e}.(2). If
a sequential crisis equilibrium exists, it must be in the intersection of BR
and X. But at all points of intersection, 0 < e(1) < 1. To see this, recall that Z
approaches 0 asymptotically from above; so e-(1)> 0. Over H' <e(0)< 1,
ec(1) attains its maximum on X at e-(0) = H'. But from the definition of H’,
ec(1)<1at e-(0)= H'. Because 0 < e.(1) < 1, the best-reply correspondence
for C at Qq(1) implies ep(2)=¢é,(2). In a sequential crisis equilibrium,
e%(2) =ép(2). [Of course, ép.(2) is still a function of ep(1) and ep(1); so a
complete determination of é,(2) awaits their specification.]

At this point it is necessary to consider two subcases. In the first,
ec(0) = H, and this will yield equilibrium (iii). The second subcase is defined
by H'<ec(0) < H, and this will give equilibria (i) and (iv).

The specification of (iii) begins by noting that because e-(0)> H > H' in
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the first subcase, then e}.(1) = 1. Moreover, 1 >e(0) > H. Accordingly, it is
assumed that H < 1. (The possibility that H =1 is disregarded because it has
measure zero.) But A < 1 implies that e-(0) < 1. Arguing by contradiction,
assume ec(0)=1. Because e (0)=1>H, ey(1)=1. Moreover, e;(0)=1
implies that the payoff to C from exploiting the situation at Q(0) is at least
as great as the value of the status quo. This leaves

gc <(1—ep)(ddc + (1 —9)sc) + ep(ddc + (1 —d)s¢)

where the expression for the return to exploiting the situation has been
simplified by taking ep(1) = ep,.(1) = 1 and noting that because 0 < e (1) <1,
C is randomizing at Q.(1), which means that the expected payoff if this
information set is reached is s.. The right side of this is less than s¢. This,
however, is a contradiction, because g¢ > s¢c. Hence, H <1 means 0 < H’' <
ec0)< 1.

Because 0 <e(0) <1, C must be indifferent to accepting the status quo
and exploiting the situation. This leads directly to an expression for e¥(1).
Indifference implies

gc=(1—¢ep)[(1 —ef(Dwc + ep(1)[dd + (1 — 8)sc]]
+ep[8de+(1—)sc]

Figure A3.2. The best-reply correspondences.
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This gives

1 1 _(We—4c 1
esl)=1 1—8,,;[1 (Wc_dc><(1_5)RC+6>]

This expression and the fact that e%.(1)=1 may be used to complete the
specification of e}.(2). The result is the expression reported earlier for
equilibrium (iii).

The expression for e}(1) places a restriction on the relation among the
variables ¢, ¢g¢, R¢, and 8. Examining it carefully yields the last two
strategies that remain to be determined, ¢%(0) and e(1). The expression for
e¥(1) implies e}(1) < 1. The best-reply correspondence for D at (1) shows
that ec(0) < H if e}(1) < 1. But e¢(0) has also been restricted to being larger
than or equal to H. Thus, e#(0)= H. H, in turn, is the value of e.(0) that
satisfies the constraint

éc(1) =[ec:/(1 —&c)][Bp(2)/(1— By (2))1[1/ec(0)]

Solving this for e(0) gives the expression for e(0) described earlier.
Substituting €%(0) for e-(0) in the constraint defining Case I yields the
expression for e#(1).

The expressions for the states’ beliefs are obtained by Bayes’ rule and by
substituting the expressions for the equilibrium strategies that have just
been derived.

A sequential equilibrium will exist as long as the expressions for e#(0),
eg(1), e}(1), and e}.(2) satisfy the constraints 0 <e(0)<1,0<ef(1)<1,0<
e¥(1)<1, and 0 <e}.(2) < 1. The first two constraints are satisfied because
0 < H<1.0Only H <1 is binding, and this gives the restriction on &¢. noted
earlier. The expression for e}(1) is always less than 1, and e}(1) > O yields the
upper bound on g, defined earlier for equilibrium (iii). Finally, examining
the expression for e%.(2) after substituting the expression for e}(1) gives the
lower bound on ¢j..

Now consider the second subcase, in which H' < e (0) < H. If ef(0) <1,
equilibrium (iv) results. If €%(0) = 1, equilibrium (i) obtains.

Assume e(0) < 1. This implies e#(0) = H'. Arguing by contradiction to
establish this, assume H' < e(0). Because H' < e(0) < H, the best reply for
D is ep(1)=0, and the best reply for D’ is ep(1)=1. But 0< H' <e(0) < 1
means that C is mixing at Qq(0). C must therefore be indifferent to the
payoffs to exploiting and not exploiting the situation. And, as has already
been shown, 0 < ec(1) < 1 for H' < e(0) < 1; so Cis also mixing at Q(1). All
of this requires

gc =1 —ep)wc+ep[6dc + (1 —6)sc]
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where this expression has been calculated given that ep(1)=0and ep,.(1) =1
and that C’s expected payoff on reaching Q.(1) is s because C is mixing
here. The relation among wg, ¢, ¢, and d; defined by this equality is an
event of measure zero, and disregarding it leaves e.(0)= H'.

Substituting for H’ gives the expression for e}(0) for equilibrium (iv).
Substituting the expression for e#(0) in the constraint that defines Case I
gives e(1). Finally, e}(2) is obtained by noting that ej,.(2) = L' for all points
in the intersection of X and BR for e-(0) < H. Thus, e}.(2)=L.

The only strategy left to be specified is ep(1), which is no longer
necessarily 1 as it was when e-(0)> H'. With e-(0)= H’, D’ may mix at
Q,(1). To obtain e.(1), note that because C mixes at Q(0) and (1) and
ep(1)=0,

qc =wc—epep (1)[we —[0dc + (1 —d)sc]]

Solving this for e}.(1) gives the expression for e}.(1) for equilibrium (iv).
Combining Bayes’ rule and the expressions for the states’ strategies gives
the beliefs reported earlier. The constraint that 1> H'=e}(0) yields the
restriction on &... Constraining the expression for e},(1) to be less than 1
gives the restriction on &p,..
Now suppose e£(0) = 1; then (i) results. Generically, H < 1, so the relation
H' <ec(0)=1< H implies e}(1)=0, e} (1)=1, e}(2)=L', and

et(1)=[ec-/(1 — &c)1[Bp(2)/(1 — Bp(2))]

Beliefs are given by Bayes’ rule and by substituting the expressions for
the states’ strategies. Because H' < e}(0) < H and €}(0) =1, then H > 1, and,
generically, H' < 1. Ensuring H>1 yields the lower bound on &, and
requiring H' to be less than 1 gives the upper bound. Because e(0) =1, the
expected payoff to exploiting the situation must be at least equal to the
payoff to not exploiting the situation. This gives the restriction on &p. for
equilibrium (i).

Case II: ec(1)ec(0) > [ec-/(1 — ec)][Bp(2)/(1 — Bp(2))]

This case gives equilibrium (ii). The best-reply correspondence for ep.(2)
implies e}.(2) = 1. This leaves e%(0), e£(1), eX(1), and e3.(1) to be specified.

The specification begins with two observations. First, because the resolve
of D’ is strictly greater than that of D, it would seem intuitively that if
e¥(1)>0,then e}.(1) = 1. Algebra shows that any value of f(1) that sustains
ep(1)> 0 is strictly greater than the minimal value of 8,.(1) that sustains
ep(1)=1. But g¥(1)=B3.(1); so if ef(1)>0, then e} (1)=1.

The second remark is that in a crisis equilibrium it must be that e§(1) > 0.
Suppose the contrary: e}(1) = 0. In a crisis equilibrium there must be some



The dynamics of nuclear brinkmanship 83

chance of resistance; so e}.(1)>0. But given these strategies, resistance
unambiguously signals that the challenged state is resolute, and with
et (2)=1, C’s best reply is ec(1)=0. This, however, contradicts the
inequality defining Case II. Thus, e}(1)> 0. These remarks imply that
e}(1)>0 and e} (1)=1.

Now consider the problem facing C at Qg(1). Let B.(1) be the value of
Bc(1) that leaves C indifferent to escalating and to submitting. Then

Be(1) = [1—(1-24)(1—34)][1 — Rc)/[(1 - 20)[(1 — 30)Rc + 36]]

Thus, C’s best response at Qc(1) is ec(1) =1 if fc(1)> Bc(1), ec(1)e[0, 1] if
pc(1)=Bc(1), and e (1)=0 if (1)< B(1). Applying Bayes’ rule and
substituting for f(1) implies that C’s best-reply correspondence can be
written as

ec(l)=1 if ep(1)> [ep/(1—ep)][Bc(1)/(1 - Be(1))]
ec(1)e[0,1] if ep(1) =[ep /(1 —ep)I[Bc(1)/(1— Bc(1))]
ec()=0 if ex(1) <[ep/(1—ep)I[Bc(1)/(1—Bc(1))]

To specify e}(1), begin by noting that the inequality defining Case II
implies ec(1) > 0. It will now be shown that e.(1) < 1. Assume that ec(1) = 1.
Then the best-reply correspondence for C at Qc(1) gives

ep(1) 2 ep Be(1)/[(1 — &p)(1 — Be(1))]

If, moreover, ec(1) =1, then because e&.(1)=1, D will submit at Qp(1), for
there is no chance of its prevailing. But if ey(1)=0, then

ep(1) <ep B(1)/[(1—&p)(1—Be(1))]

a contradiction. This contradiction leaves e¥(1)<1. The fact that 0 <
e(1) <1 and the best-reply correspondence for C at Q.(1) yield

eb(1) = epBc(1)/[(1 — ep)(1 — Bc(1))]

The strategies left to be specified are e%(0) and e¥(1), and this begins by
obtaining a relation between them. For there to be an equilibrium,

0 <ep(1)=epBc(1)/[(1—ep)(1—Bc(1)] <1
Because 0 < B(1) < 1, e}(1) > 0. Generically,
epBcl1)/[(1—ep)(1—B(1)]
isless than 1; so e¥(1) must also be generically less than 1. With0 < e}(1) < 1,
D is indifferent to escalating and submitting at Qp(1). So
sp = Bp(1)[0dp + (1 — O)[(1 — ef(1)wp + eH(1)[26dp + (1—26)sp]]]
+ (1= Bp(1)[édp + (1—6)[26dp + (1 — 26)sp]]
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Substituting for (1) yields

ex(1)=1— [1 + ( Ecr > 1 ][[1 —(1-9)1-24)][1- RD]]
1—¢c. ) ec(0) (1—=0)[(1 —28)Rp + 24]
This relation is the same as the relation between e-(0) and é.(1) that was
derived in Case I. Accordingly, the sequential equilibria in Case II must lie
along é.(1) in Figure A3.1 above the constraint Z. This implies 0 < e¥(1) < 1.
C’s best-response correspondence at (0) will now be determined. Note
that because C randomizes at Q(1), C’s expected payoff if the game reaches
this information set is s¢. Then, letting Q. be the value of the status quo at

which C will be indifferent to exploiting the situation and accepting the
status quo gives

Qc=(1—ep)[(1—ej(D)we + ep(1)[ddc + (1 - d)sc]]
+ep[(1—ep()we + e (D[ddc +(1 —d)sc]]

Substituting the expressions for e¥(1) and e¥.(1) produces

Qc=1[((1—ep)—ep-Bc(1))/(1 - Bc(1))]
X [(we —s¢) + 0(we — dc)] + 6dc + (1 — d)sc

The best-reply correspondence for C at Q(0) is therefore e (0)=1 if
4c<Qc, ec(0)e[0,1] if gc = Qc, and ec(0)=0 if g¢> Q.

The final step in determining e¥(0) and e(1) is to note that if there is to be
a sequential crisis equilibrium, then g, < Q.. Otherwise, C will never
challenge the status quo. A challenge will then unambiguously signal that
the challenger is resolute. This challenger escalates with probability 1 forall
m < M.; so there will be no resistance and no crisis. Hence, ¢, < Q.

Disregarding the event g = Q, which has measure zero, the equilibrium
strategies e#(0) and e¥(1) may now be specified. If g < Qc, then e¥(0)=1,
and e¥(1) is the value of é.(1) evaluated at e-(0) = 1, which is the expression
reported earlier for eg(1) in this equilibrium.

Expressions for the relevant beliefs are obtained with Bayes’ rule and by
substituting the expressions for the states’ strategies.

Several conditions are needed to ensure the existence of the sequential
crisis equilibrium in Case I1. First, é-(1) must be above the constraint Z at
ec(0)=1. This is equivalent to assuming H < 1, which when solved for &..
gives the restriction stated earlier. The second condition is that g¢c < Qc,
which means that

ep <[(1 = Be(1))we — q)1/[(we — dc)[(1 — 6)R¢ + 51]
This also ensures that 1— g, > B(1), so that ef(1) < 1. [ ]




CHAPTER 4

Stability and longer brinkmanship crises

The preceding chapter examined the effects of various changes on the
escalatory dynamics of brinkmanship crises. Such examinations are always
bound by the limits of the model used in the investigation. One limitation of
the model developed in Chapter 3 was that in order to simplify the analysis,
the maximum length of a crisis in the model was fixed exogenously and was,
moreover, assumed to be very short. In the longest possible crisis, the
challenger would dispute the status quo, and both the defender and
challenger would take two steps toward the brink, after which the defender
would submit. These simplifications reduced the complexity of the analysis,
but they made it impossible to study crucial aspects of the approach to
deterrence based on the array of risk. One could not, for example, compare
the effects on stability of being able to take smaller, less dangerous steps
toward the brink and the effects of being able to take only larger and more
dangerous steps.

This chapter begins to examine the dynamics of longer brinkmanship
crises. In the model to be developed here, there is no exogenous restriction
on the number of steps that the states can take. In these longer crises, states
generally become less and less likely to escalate as the crisis unfolds. Each
also becomes more and more confident that its adversary is resolute. If,
therefore, two irresolute states are actually facing each other, mis-
perception will grow worse throughout the crisis. The effects of changes in
the states’ levels of resolve, in the challenger’s stake in the status quo, and in
the degree of initial misperception in longer crises parallel those in shorter
crises. The greater an adversary’s resolve, for example, the more likely a
state may be to escalate, and the greater the potential challenger’s stake in
the status quo, the less likely the defender will generally be to resist a
challenge. Finally, the model makes it possible to examine the effects of
having to approach the brink by taking steps of different sizes. An increase
in the size of the incremental risk of losing collective control that each step
toward the brink entails (i.e., an increase in ) turns out to have two effects.
First, it makes both the challenger and defender less likely to escalate at
every stage of the crisis. It is as if they compensate for the greater level of
autonomous risk by being less willing to create it. Second, the potential
challenger becomes more likely to dispute the status quo. It is as if the
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smaller chance of escalation affords a greater opportunity to dispute the
status quo.

The model

This analysis of longer brinkmanship crises is based on the formalization
developed in Chapter 3. Two features of brinkmanship — that there is a
series of decisions, and that the states escalate by generating an
autonomous risk of disaster — are modeled here as they were previously.
Indeed, the underlying complete-information game illustrated in Figure 3.2
is the same. The confrontation begins with a potential challenger’s having
to decide to attack, to exploit the situation, or to accept the status quo. If it
challenges the status quo, the onus of escalation shifts to the defender. The
defender then has three options: quitting, launching a massive nuclear
attack, or escalating by taking a step toward the brink. If the defender
escalates and the states do not lose collective control of events at that point,
the onus of escalation shifts back to the challenger. The challenger must
decide to quit, launch a massive nuclear attack, or escalate. The crisis
continues, with the onus of escalation shifting back and forth with each
step, raising the risk of losing collective control by an increment 6, until the
crisis ends in a general nuclear exchange or until one of the states quits.

The third essential of brinkmanship, which is that the states lack
complete information, is modeled somewhat differently than before. As in
the previous model, a state, say C, is unsure whether it is facing a resolute
defender D’ or an irresolute defender D. Previously, the resolute defender
was assumed to be able to quit, attack, or escalate, just as its irresolute
counterpart could. To simplify matters, now suppose that the resolute
defender D’ is wedded to a strategy of always escalating.! That is, if the
challenger escalates, then D’ is certain to escalate.? This is illustrated in
Figure 4.1, where the only alternative D’ has at each of its decision nodes is
to escalate.

Although incomplete information is formalized in this way in part to

! Theearlier analysis was more complicated, because if D’ could quit, attack, or escalate, then
the game had to be solved for the equilibrium strategy of D’ as well as those of Cand D. In
the present formulation in which D’ and, as will also be assumed, C’ can only escalate, the
game need only be solved for the equilibrium strategies of C and D. Assuming that C’ and
D’ always escalate also simplifies the analysis in another way. This assumption ensures that
all information sets are reached with positive probability in equilibrium, and this avoids
the difficult problem of deciding what are “reasonable” beliefs to hold off the equilibrium
path. For further discussion of this latter issue, see the Appendix after Chapter 8.
odeling incomplete information in this way by assuming that the actors are wedded toa
fixed strategy is based on the method used by Kreps et al. (1982) in their study of the effects
of incomplete information on cooperation in a finitely repeated prisoner’s dilemma.

(N3



Figure 4.1. Longer brinkmanship crises.
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ease the analysis, this representation also addresses two substantive issues.
First, because the game ends as soon as one state stops escalating, D’ is, in
effect, wedded to playing a strategy of tit for tat. In tit for tat, a state always
does what its adversary just did, and, as in tit for tat, D’ escalates if C has
just escalated. Of course, if C quits, then I, following its strategy of always
escalating, will still escalate if it has the opportunity. D', therefore, is not
strictly following tit for tat. This difference, however, is unimportant and
does not influence the outcome of the game, for if C quits, the game ends
before D' has another opportunity to escalate. Effectively, then, D’ is
wedded to playing tit for tat. Thus, in deciding what to do, C is uncertain
whether or not its adversary will play a strategy of tit for tat.

The second issue is based on the observation that D’ is in some sense
irrational. Because it is wedded to a strategy of always escalating, D’ will
escalate even if this entails creating a certainty of disaster. That is, D’ will
escalate even if doing so requires it to trigger a disaster with probability 1.
As will be seen, what drives escalation in this model is a state’s attempt to
derive the benefits of having a reputation for being resolute. D, for example,
wants to have a reputation for behaving like D'. That is, it is rational for D
to seem to be irrational like D'. D, in essence, is employing what has been
called the strategy of the rationality of the irrational (Kahn 1965, pp. 57-8;
Maxwell 1968), in that D rationally tries to appear to be, at least to some
extent, irrational. Modeling incomplete information by assuming that the
resolute state is wedded to a strategy of always escalating may illuminate
the roles of both tit for tat and the strategy of the rationality of the
irrational in brinkmanship bargaining.

Information is incomplete on both sides. D will also be assumed to be
uncertain of the type of its adversary. D does not know if it is facing C or C’,
where the resolute challenger, C’, is also wedded to a strategy of always
escalating. The prior probability of facing the resolute defender D’ is ¢p.,
and the prior probability of facing the resolute challenger C is ¢, and both
of these probabilities are common knowledge.

Incomplete information is the force driving escalation in the model. If,
for example, there were complete information, M > M, and C were facing
D, then Proposition 3.1 would imply that C would challenge the status quo,
and D would not resist. If, however, C were facing D', it would not escalate.
But with incomplete information, C is unsure whether it is facing the
resolute defender D’ or the irresolute defender D. This gives an irresolute
defender an incentive to develop and maintain a reputation for being
resolute. A state’s struggle to determine if its adversary is actually resolute

3 See Kreps et al. (1982) for a game-theoretic analysis of tit for tat and Axelrod (1981, 1984)
for a discussion of tit for tat as a bargaining strategy based on the results of computer
simulations.
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and its adversary’s struggle to maintain a reputation for being resolute and
derive the benefits of it are the seeds of escalation.

As in the previous model of brinkmanship, the information set at which
C must decide whether or not to escalate for the mth time is denoted by
Qc(m); Bc(m) is the conditional probability that C is facing the irresolute
defender D at Q.(m); Qp(m) and Bp(m) are defined similarly. To describe the
states’ behavioral strategies, take ec(m) and ac(m) to denote, respectively,
the probabilities that C will escalate or attack at Qg(m). Then the
probability that C will submit is 1 — e(m) — ac(m). The probabilities that D
will escalate or attack at Qp(m) are, respectively, ep(m) and ap(m).

The family of sequential crisis equilibria

There may be gains to be had from having a reputation for being resolute.
But there are also costs, for an irresolute defender generally must be willing
to escalate and accept some risk of disaster. The game’s sequential crisis
equilibria formally balance these costs and benefits and describe the
resulting dynamics. Proposition 4.1 specifies the complete set of sequential
crisis equilibria for the incomplete-information game of brinkmanship.*

Proposition 4.1: If ep > &y = (we— qc)/[(we—de)(1— )R +6)]
then, generically, there are no sequential crisis equilibria, because C
does not challenge the status quo. If €p <&p, but ec.>éc =

(Rp—08Y[(1 —~d)[(1—20)Ry +26]] there are again no sequential
crisis equilibria, but this time D does not resist C’s challenge. If
& < &p and ec < Ec, then there exists a generically unique family of
sequential crisis equilibria. Each member of this family is indexed by
m >0, and D’s strategies for any m are given by

1 We—4q 1  Ep—&p
(1) = c—4c P N
sl <l—spl>[<wc—dc>(1—amc+é 8”] ey

eK(2) = Rc—26 < Epr >

T(1=28)[(1-38)R.+35] \l—¢p

[T1=(1-20)1-38)](1 = Re) ] _1
(1—20)[(1 - 30)Ro+ 3] |ex(1)

4.2)

4 Asbefore, no state will ever launch a general nuclear attack deliberately: a%(m) = a¥(m)=0
for all m. This means that in order to describe the equilibrium strategies, only the
probabilities of escalation eg(m) and e}(m) need be determined.
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If m>2, then for 2<m<m,
e¥m+1)

1 1— (1= 2md)(1 — (2m + 1)) >
T (1 — (1= 2(m —1)8)(1 — 2m —1)d)

x( Re—2(m —1)8 ><1—e;;(m)> @3

(1=2md)[1—(1 —(2m+ 1)d)(1 — R.)] eX(m)
And for m>m+ 1,
eXm)=0

C’s equilibrium strategies are given by

e EC [1—(1-6)1-20)1(1—-Rp) ] 44
eC(O)_1—Sc'[RD——é——eé(l)(l—6)[(1—26)1},,+26] 49
For l<m<m,
e&(m)

1— (1= 2m — 1)8)(1 — 2m?)

= [1 +(1—etlm+ 1”(1 —(1—Cm+1)o)1—2(m+ 1)5))

y (1—(2m+1)6)[1—(1—2(m+1)6)(1—RD)> -1 “s)

Rp— (2m— 1)

And for m>m,
eg(m)=0

Because all information sets are reached with positive probability,
beliefs are simply given by Bayes rule.

To complete the specification of the family, the range of m must be
given. Use (4.1), (4.2), and (4.3) to generate a sequence of numbers,
and let M be the first integer for which e¥(m)>0 for0<m< M + 1
and e}(M +2)<0. Now let N be the maximum value of # such that
e(0) generated by (4.4), (4.5), and the initial condition e¥(fi + 1) =0
is positive. Then the range of i is 0 <m <min {M, N, M, — 1, M}.

Proposition 4.1 is derived in Appendix 4.1. If the probability of facing the
resolute defender ¢, is too large, there is no challenge. The potential
challenger accepts the status quo. If the potential challenger is sufficiently
confident that it is confronting the irresolute defender, there may be a
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Figure 4.2. The sequential crisis equilibria.
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challenge, but still no crisis, for the defender may be sufficiently confident
that the challenger is resolute (i.., &c. may be high enough) that a challenge
will not be resisted. Only if both the challenger and the defender are
sufficiently confident that their adversaries are irresolute will there be a
crisis. Figure 4.2 illustrates the regions in which the sequential crisis
equilibria exist.

Figure 4.3 illustrates the family of equilibrium strategies. After the
defender has taken a first step toward the brink, the states become less and
less likely to escalate as the confrontation continues. That is, as long as
eg(m) >0, then e¥(m) is decreasing in m for m > 1, and as long as e}(m) > 0,
then e}(m) is decreasing in m for m>2.° The beginning of a crisis is,
however, more complex. The potential challenger may be more or less likely
to challenge the status quo than it is to escalate if its challenge is resisted.
That is, ef(0) may be greater or less than e¥(1). In the latter case, C would
seem to be relatively reluctant to dispute the status quo. But if, however
reluctantly, C does challenge the status quo, then C is relatively more likely
to meet any initial resistance from the defender with further escalation.
Similarly, the defender may be more or less likely to take a first step toward
the brink than it is to take a second step.

The equilibrium strategies defined in the proposition describe the
dynamics of escalation in longer brinkmanship crises. If there is a crisis, the
confrontation begins with the potential challenger’s believing that it is

3 This is demonstrated in Appendix 4.1.
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facing a resolute defender with probability .. If C is sufficiently confident
that the defender is irresolute, it will challenge the status quo with probability
¢#(0). A challenge shifts the onus of escalation to irresolute defender D and
forces it to update its assessment of the likelihood of its facing a resolute
challenger from g.. to 1 — B,(1). After this reassessment, the defender is
sufficiently confident that it is facing an irresolute challenger that it resists
the challenge. D resists C’s challenge by taking a step that “leaves
something to chance” with probability e}(1). That is, D steps toward the
brink and thereby generates some autonomous risk that the states will lose
collective control of the crisis and that it will end in disaster. D’s resistance
shifts the onus of escalation back to C and forces it to revise its estimate of
the probability that its adversary is resolute. C is still sufficiently confident
that its adversary is irresolute that it will meet D’s resistance by escalating
with probability e%(1). C’s escalation shifts the onus of escalation back to D.
The crisis continues in this way, with the onus of escalation shifting back
and forth until C or D quits or until the risk of disaster is realized and the
crisis ends in the horror of a general nuclear exchange.

Figure 4.3. A family of brinkmanship equilibria.
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As the crisis unfolds and continued escalation entails generating larger
and larger risks of disaster, each state becomes increasingly confident that
it is facing a resolute adversary. Formally, the probabilities of facing a
resolute adversary, 1— f(m) and 1— B,(m), are increasing in m. This
implies that each state’s reputation for being resolute grows stronger as the
crisis continues. Put another way, misperception becomes worse and worse
as the crisis goes on, for although C becomes increasingly confident that it is
facing D', and D becomes increasingly confident that it is facing C’, Cand D
are actually facing each other.

The dynamics of escalation

The strategies defined in Proposition 4.1 describe the dynamics of
escalation in longer brinkmanship crises and may be used to investigate
how changes in the model’s parameters affect escalation. The consequences
of three changes will be considered here. First, what are the consequences of
varying the states’ levels of resolve? Recall that incomplete information is
modeled somewhat more simply than in the preceding chapter. There,
however, the states’ levels of resolve were exogenously restricted in such a
way that the number of times that the states might be willing to escalate was
fixed and was small. It was assumed that M.=M,=1, M, =2, and
M. > 2. That restriction forced the crisis to be very short. More important,
it precluded examination of the effects of changes in the states’ levels of
resolve that would make them willing to escalate a different number of
times. The simpler treatment of incomplete information here results in a
more tractable extensive form that facilitates analysis of the game when the
levels of resolve are arbitrary. The number of times that a state might
escalate in a crisis becomes endogenous, and that permits investigation of
the effects of changes in levels of resolve that will alter this number. The
second set of consequences to be examined encompasses those due to
changes in the value that the challenger places on the status quo. How do
the equilibrium strategies change as g varies? Third, what are the effects of
incomplete information on deterrence?

Before examining these consequences, the length of a crisis should be
defined. Note that in the /th equilibrium, that is, in the rath member of the
family of equilibria, C is willing to challenge the status quo and
subsequently to escalate m times, and D is willing to escalate riz + 1 times.
That is, ef(m) >0 for all m <m, and e¥(m)> 0 for all m <+ 1. Thus, the
maximum number of times that a state might generate some risk of disaster
in this crisis is 2m + 1. Accordingly, the length of a crisis associated with the
mith equilibrium is 2m + 1.

As noted earlier, critical-risk models (Snyder and Diesing 1977,
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pp- 48-52) suggest that the greater an adversary’s resolve, the less likely a
state will be to escalate, for the greater an adversary’s resolve, the more
likely it is to stand firm. That, in turn, would seem to make escalation more
dangerous for the state. Shying away from this greater danger, the state is
less likely to escalate the more resolute its adversary. As has already been
shown, this does not hold for the short crises examined previously. It also
fails to hold in longer crises.

Consider first the consequences of the defender being more resolute. In
any existing member of the family of equilibria, an increase in the
defender’s resolve makes the challenger more likely, not less likely, to
escalate throughout the crisis.® The challenger, however, may become less
likely to challenge the status quo. Thus, an increase in the defender’s resolve
may affect the challenger differently at different stages of the confrontation.
An increase in R, may also add new members to the family of sequential
crisis equilibria that will be longer than any of the previously existing
crises.” Turning to the challenger’s resolve, an increase in it may also make
the defender more likely to escalate in an existing equilibrium, as well as
make for longer crises by adding new members to the family of sequential
crisis equilibria.

The effects of changing the levels of resolve are subtle, complicated, and
difficult to explain intuitively. (Indeed, it is difficult to determine which, if
any, of these effects are artifacts of the model and ought not to be explained
untuitively.) As in the shorter crises, these complications seem to arise, at
least in part, because of the interaction of the states’ strategies and their
beliefs about their adversaries’ resolve. To illustrate this interaction,
consider the decision confronting the defender at a given stage of the crisis,
say at the information set Qp(m,). Now suppose that the defender’s resolve
is increased. In the new equilibrium associated with this higher level of
resolve, D still must be indifferent between escalating and submitting at
Qp(m,), because 0 < ef(my) < 1. But with greater resolve, D will strictly
prefer to escalate at this stage of the crisis if C’s strategies are unchanged
from those of the original equilibrium. Thus, C’s strategies must change in
the new equilibrium so as to make D indifferent to escalating at Qg ().
Two types of changes are possible. C may be more likely to escalate in the
future. That is, C may be more likely to escalate at Q(r) for some m >m,.
This change does not affect the strength of D’s belief that it is facing C at
Qp(mg): Bplmy) is unaffected. This change does, however, increase the

¢ To show def(m)/dRp >0 for 1 < m < 1, differentiate (4.5) to show that for a fixed ef(m + 1),
e¥(m)isincreasingin R;,. Then, because e¥(r + 1) = 0, an increase in Ry, raises e¥(rn). Butan
increase in Rj, coupled with a larger ef(r) unambiguously raises e¥(/n — 1). Continuing in
this way establishes the result.

7 That is, N may increase, so that a larger /2 may satisfy the contraint that /7 < min {M, N}.
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expected cost to D of escalating at Qp(m,) by making C less likely to submit
in the future. This tends to restore D’s indifference. In the second type of
change, C may have been less likely to escalate before the crisis reached
Qp(mg). Formally, e¥(m) for some m<m, may be smaller in the new
equilibrium than in the original. The effect of this is that D, when deciding
what to do at Qp(m,), is less confident that it is facing C and more confident
that it is facing C’. This also reduces the expected value to D of escalation
and tends to make D indifferent.

These two influences on ef(m) arise from considering just one of D’s
information sets, Qp(m,). But D has several information sets, and this
creates opposing pressures on ef(m). To make D less confident of facing C
at D’s information sets that follow, say, Q(m,), e®(m,) will tend to fall. But
to increase the expected return to D of escalating at its information sets that
come before Q.(m,), the challenger C will have to be more likely to escalate,
and e¥(m,) will tend to rise. The model helps to identify the competing
influences on e¥(mm) that are at work, and the precise balance struck between
these opposing influences is specified in the equilibrium strategies described
in Proposition 4.1.

The challenger’s having a greater stake in the status quo will generally
enhance stability, but not by making a challenge less likely. Rather, the
defender will be less likely to escalate. More precisely, suppose that the
challenger has a greater stake in the status quo. If a member of the family of
sequential crisis equilibria exists after the increase in ¢, then the defender
will be less likely to escalate throughout the crisis.®

Table 4.1 illustrates the effects of the challenger having different stakes in
the status quo for some arbitrary but perhaps suggestive parameter values.
The challenger’s level of resolve is taken to be 0.105, so that the greatest risk
of disaster that the challenger is willing to run in order to prevail is about 10
percent.® The defender’s resolve is assumed to be 0.085, and the probability
that the defender is facing the resolute challenger is 1 percent: ¢.. =0.01.
The number at the top of each cell is the length of the longest crisis in the
family of crises associated with that cell. The number 5 in the cell for which
the challenger’s normalized stake in the status quo is zero (g. =0) and the
probability of facing a resolute defender is 1 percent (g5 = 0.01) means that
the maximum number of times that the states are willing to escalate by
generating some risk of disaster in the longest crisis is five. There is some

8 To see that e}}(m) is decreasing in g, note that as g rises, (1) decreases. Then (4.2) shows
that this decrease in e}(1) reduces e}(2). Finally, (4.3) implies that as e}(m) falls, e}(m + 1)
falls. Thus, the decrease in e}(2) reduces e}(3), which in turn reduces e}(4), which in turn
reduces e}(5), and so on.

° The underlying values of prevailing, submitting, and suffering a disaster that produce this
level of resolve are we=1, sc= —1, and d. = —18.048.
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Table 4.1. The length of a crisis and the probability of war

9c
&p —-0.8 —-04 0 04 0.8
5 5 5 3 *
0.1 0.0455 0.0446  0.0427 0.0298
0.00376 0.00275 0.00175 0.00011
5 5 5 5 5
0.01 0.0479 0.0478  0.0477 0.0474 0.0457
0.00404 0.00313 0.00222 0.00130 0.00039
5 5 5 5 5
0.001 0.0481 0.0481  0.0481 0.0480 0.0479
0.00407 0.00316 0.00226 0.00135 0.00045
5 5 5 5 5
0.000001 0.0481 0.0481  0.0481 0.0481 0.0481

0.00407 0.00317 000226  0.00136 0.00045

* No sequential crisis equilibrium exists for these values.

Note: The length of the crisis and the probability of war are calculated for
the case in which R, =0.085, ¢¢. =0.01, 6 =001, we=1,s.=—1,and d.=
—18.048. The latter three values imply that R.=0.105.

chance that the challenger will escalate twice and the defender three times.
The number in the center of the cell is the probability that this longest crisis
will end in a general nuclear exchange. If, therefore, g =0 and ¢, =0.01,
the chances that the states will lose collective control, given that there has
already been a resisted challenge, is 0.0477. Because the longest crisis in any
family of equilibria is also the most dangerous, the probability that a crisis
will end in war reported in any cell is therefore the probability that the most
dangerous crisis in the family will end in disaster. Finally, recall the
difference between situational stability and crisis stability. The former
measures the probability that there will not be a general nuclear exchange
from the point in the game tree at which C is deciding whether or not to
dispute the status quo. The latter measures the probability that there will
not be a war once there has been a resisted challenge.!® The number at the
bottom of the cell is the probability that the situation will end in disaster. So
in the cell for which ¢, =0 and ¢, =0.01, the likelihood that the situation
will end in disaster is 0.00222, or about two-tenths of 1 percent. Reading

190 More formally, recall that situational stability is given by 1 — Sy, and crisis stablity is given
by 1 — Py, where Sy, = e(0)e}(1)Py, and Py, = +(1 — 6)e(1)[26 +(1 —26)ep(2)[36 +- -1}
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across the rows of Table 4.1 indicates that an increase in g. enhances
stability. But regardless of the values of g¢ and ¢, the crisis and situation
are remarkably stable. The probability of war given that there has been a
resisted challenge never exceeds 5 percent, and the chance that a situation
will end in disaster is much less, never more than one-half of 1 percent. The
model seems quite stable.

Incomplete information plays an essential role in brinkmanship
bargaining. Indeed, without it there would be no bargaining in the model:
The state with the greatest effective resolve would escalate, and its
adversary would submit. Incomplete information may, however, greatly
enhance deterrence by reducing the likelihood of a challenge. For example,
C’s effective resolve in all of the equilibria summarized in Table 4.1 is
greater than D’s. With complete information, C would always dispute the
status quo, and D would never resist. But with incomplete information, the
probability of a challenge in any of these equilibria is never more than 0.11.
Incomplete information about the resolve of the challenger in these
examples does much to enhance deterrence. In other cases, however,
incomplete information may not do much to improve deterrence. In the
equilibrium associated with =2 in Figure 4.3, the probability of a
challenge falls to only 0.8. Incomplete information about the defender’s
resolve also affects the dynamics of escalation. The stronger the defender’s
initial reputation for being resolute (i.., the larger g;,.), the less likely D is to
escalate throughout the crisis.!!

Once again these effects seem to be due to the interaction between states’
strategies and their beliefs about their adversaries. An increase in g5 would
initially make the challenger C more confident that it was facing the
resolute defender when it was deciding whether or not to accept the status
quo. That greater confidence would reduce the payoff to disputing the
status quo and make a challenge less likely.!2 But that would mean that if
there were a challenge, the defender would be more confident that the
challenger was resolute. That, in turn, would reduce the payoff to escalating
and leave the defender D less likely to resist a challenge.!3 But if resistance
were less likely, the payoff to disputing the status quo would rise, and a

11 To see that an increase in the strength of the challenger’s belief that the defender is resolute
leaves the defender less likely to escalate throughout the crisis, differentiate (4.1) with
respect to &, to show that de}(1)/0ep. < 0. Inspection of (4.2) then demonstrates that e}(2)
will have decreased with the increase in &j,.. Finally, (4.3) implies that if e}(2) decreases, so
will e¥(3), and if e}(3) falls, so will e}(4), and so on. Thus, the larger ¢, and therefore the
greater the defender’s initial reputation for being resolute, the less likely the defender will
be to escalate throughout the crises.

12 More formally, if &, increases, then e(0) = 0 becomes C’s best reply to D's original strategy.

1¥ If e(0)=0, then D is certain that it is facing C’ at Q,(1); so e,(1)=0 is now D’s best
response.
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challenge would be more likely.'# That, of course, would leave the defender
more confident that it was facing the irresolute challenger if there were a
challenge, and so it goes. On balance, the greater the initial probability of
facing the resolute defender in the model, the less likely the irresolute
defender is to escalate.

The effects of incomplete information on the probability of war are
mixed. The stronger the challenger’s initial reputation for being resolute (i.e.,
the greater ¢.), the greater e(0), and the more likely C is to challenge the
status quo. This tends to make the situation less stable. But the increase in
¢c- has no effect on crisis stability, because the larger ¢.. has no effect on the
probability of a general nuclear exchange given that there has been a
resisted challenge.!® If, however, the defender has a stronger initial
reputation for being resolute, D is, throughout the crisis, less likely to
escalate, and this increases both situational stability and crisis stability.
Table 4.1 illustrates the effects of increasing &, with some numerical
examples. Although the probability that the situation and crisis will end in
war falls as ¢ rises, the table suggests that once some uncertainty about the
defender’s resolve exists, variations in the degree of this uncertainty do not
significantly affect the probability of war. In each column, the probability of
the challenger facing a resolute defender, ¢, varies from one chance in ten
to onein a million. Yet the probability of war hardly varies. Some aspects of
deterrence may be quite sensitive to the beliefs and perceptions of each state
about its adversary, but the model indicates that at least the probability of
war is rather insensitive to a wide variation in beliefs about whether or not
the defender is more resolute. Structural constraints, more than beliefs
about the defender’s resolve, seem to be more important determinants of
the probability of war in the model.

The array of risk and the dynamics of escalation

In terms of the brinkmanship analogy, 6 measures the size of the step thata
state must take toward the brink if it decides to escalate. The larger J, the
larger the risk that a state must generate if it escalates. What are the
consequences of an increase in § for the dynamics of escalation and crisis
stability? Does having to take a larger, more dangerous step make a state
less willing to escalate? Does that, in turn, reduce the probability of war and
enhance crisis stability? Or, if the states are less likely to escalate, does that
create an opportunity for a potential challenger and make it more likely to
dispute the status quo? And if a challenge to the status quo is more likely,
does this raise the probability of war and reduce crisis stability? The model

14 With ep(1) =0, C’s best reply is to challenge the status quo: e.(0)=1.
15 e¥(m) for m > 1 is independent of &.
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may be used to explore these questions by examining the effects of changes
in 6 on the states’ strategies.

Before investigating these effects, it will be useful to relate these issues to
the array of risk. The array of risk conceptually bridges the gap between
doing too much by launching a massive nuclear attack and doing too little
by submitting. A state can pursue an intermediate course by exercising one
of the limited options from the array of risk. This generates not a certainty
but only a risk that the states will lose collective control and that the crisis
will end in disaster. In a sense, then, § measures the “grain” of the array of
risk. That is, the smaller 6, the smaller the risk that escalation entails. The
escalatory steps are closer together probabilistically. It is as if, in terms of
Figure 2.2, the limited options that constitute the array of risk are closer
together, in effect making the grain of the array of risk finer. Accordingly,
questions about the effects of changes in  may be rephrased in terms of the
effects of changes in the grain of the array of risk. Studying the effects of
increasing ¢ is, for example, akin to examining the consequences of
coarsening the array of risk.'®

The effect of increasing 8, and, in this sense, coarsening the array of risk, is
to make both states less likely to escalate. Thatis, having to take larger risks
with each step toward the abyss makes the defender less likely to step
forward, and as long as the defender is not willing to run a risk of disaster
that is greater than one chance in three (i.., as long as R, <3), then having
to take riskier steps toward the brink also leaves the challenger less likely to
escalate. The challenger, however, also becomes more likely to dispute the
status quo. These influences pull the probability of war in opposite
directions. The smaller likelihood of escalation tends to reduce the
probability of war and enhance crisis stability. But the greater likelihood of
achallenge and the fact that escalation now entails greater risks because 9 is
larger tend to increase the probability of war and reduce crisis stability. The
net effect appears to be that increasing 6 makes a general nuclear exchange
more likely. Table 4.2 illustrates the effects for each member of a family of
sequential crisis equilibria of variations in é on the probability that the
crisis and the situation will end in war. If, for example, 6 =0.020, then the
probability that the states will lose collective control, given that there has
already been a resisted challenge in the equilibrium associated with iz = 1, is

16 Although rephrasing questions in this way is suggestive, the two interpretations are not
completely equivalent. As Figure 2.2 illustrates, the states may select various levels of risk.
That is, a state may vary the size of the initial step toward the brink. After this first step, the
confrontation continues, but this is left implicit in the formulation underlying Figure 2.2.
The model, conversely, explicitly represents the continuing confrontation, but in order to
simplify the game, the states are assumed to choose a single level of risk if they escalate.
Each formulation leaves the opposite half of the problem implicit.
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Table 4.2. The grain of the array of risk and the probability
of war

]

é 0 1 2 3 4

0.005 0.005 0.0191 0.0333 0.0433 0.0483
0.000004  0.000064 0.000337 0.00131 0.00504
0.010 0.010 0.0330 0.0477 0.0523
0.000017  0.000292  0.00222 0.0259

0.015 0.015 0.0434 0.0542
0.000039  0.000822 0.0194
0.020 0.020 0.0512
0.000071  0.00216
0.025 0.025 0.0573
0.000115  0.00792
0.030 0.030
0.000174
0.035 0.035
0.000251
0.040 0.040
0.000352
0.045 0.045
0.000483
0.050 0.050
0.000659
0.055 0.055
0.000899
0.060 0.060
0.001242
0.065 0.065
0.001765
0.070 0.070
0.002644
0.075 0.075
0.004415
0.080 0.080
0.009750
0.085 —*
0.0*

* No sequential crisis equilibrium exists for these values.

Note: The length of the crisis and the probability of war are calculated
for the case in which R, =0.085, ec.=¢p =001, we=1, sc=—1, and
dc = —18.048. The latter three values imply that R, =0.105.
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0.0512. The chance of the situation ending in disaster is 0.00216. For any
given equilibrium, an increase in J generally increases the probability of an
unlimited nuclear exchange and thereby reduces stability. Having to take
larger, more dangerous steps generally makes the crisis and underlying
situation more dangerous. But sometimes having to take a larger step may
increase stability in the model. This seems to occur if a small increase in ¢
eliminates an equilibrium; then the remaining equilibria may be less
dangerous than was the equilibrium that was eliminated by the increase in
d. Table 4.2 offers an example. The probability of war in the longest and
therefore most dangerous crisis is 0.054 if § = 0.015. If d increases to 0.020,
then what was formerly the most dangerous crisis is eliminated, and the
probability of war in the most dangerous of the remaining crises drops to
0.051.17

In sum, if each step toward the brink is more dangerous, both the
defender and the challenger are less likely to escalate. But the challenger,
knowing of this greater reluctance to escalate, is more inclined to take
advantage of the situation by challenging the status quo. Although the
states are less likely to escalate, this does not appear to be generally enough
to offset the greater likelihood of a challenge and the greater risk that each

17 To see more formally that having to take a more dangerous step makes the defender less
likely to escalate, begin with equation (4.1). Inspection of this equation shows that e}(1) is
decreasing in 8. Now, if C finds itself at Q (1), it is less confident that it is facing D.
Assuming that C continues to mix at Q¢(1) in the new equilibrium associated with the
larger 4, then the fact that C is less confident that it is facing the irresolute defender implies
that ¢}(2) must fall in order to keep C indifferent. Thus, e}(2) is decreasing in J, but this
means thatif C finds itself at (2), it is again less confident that it is facing D. Applying the
same argument shows that e}(3) is decreasing in . Continuing in this way demonstrates
that e}(m) is decreasing in é.

A more formal analysis also shows that as long as the defender’s resolve is not too
great (i.e., Rp<3), then the challenger C s less likely to escalate if steps toward the brink
are more dangerous, but, second, it is less likely to dispute the status quo. To establish the
first claim, recall that ef( + 1) =0. Differentiating (4.5) with respect to § at m =rn then
gives def(m)/86 <0 as long as Rp < 1. (If R, >4, the sign of deX(17)/d5 is ambiguous.) But
equation (4.5) also implies that if § is larger and e%(/7) is smaller, then k(7 — 1) is smaller.
Continuing in this way shows that e¥(m) for m>1 is decreasing in . To see that the
challenger is more likely to dispute the status quo if the risk associated with each step is
larger, consider D’s decision at Qp(/ + 1). Given that C will immediately submit if D
escalates [i.c., (7 + 1) = 0], then the greater §, the more confident D must be that it is
facing C and not C’ at Qy(#m +1) if D is to remain indifferent between escalating and
submitting. That is, (% + 1) must be increasing in . But

B +1)=(1—¢c) n eé(i)/liac" +(1—éc) n eé(i)]
i=0 i=0
so if Bp(m + 1) is to be increasing in &, then [ , e%(7) must also be increasing in 6. Yet, as
was just shown, e¥(m) for 1 <m <m are decreasing in 4. Consequently, €%(0) must be
increasing in 6.
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step toward the brink entails. The probability of war rises as stepping
toward the brink becomes more dangerous. Coarsening the array of risk
generally seems to reduce stability.

This chapter and the preceding chapter have used formalizations of the
brinkmanship analogy to provide insight into the approach to nuclear
deterrence based on the strategy of leaving something to chance and the
array of risk. The preceding chapter examined the effects on the dynamics
of escalation of changes in the states’ levels of resolve, the potential
challenger’s stake in the status quo, and the degree of misperception. The
model illuminated the complicated interactions that may exist between a
state’s strategy and its adversary’s beliefs about it and the effects of this
interaction on crisis bargaining. In the model, the state with the greatest
resolve might not prevail, and a state might be more, not less, likely to
escalate the greater its adversary’s resolve. A challenger’s having a greater
stake in the status quo did make a crisis less likely, but not necessarily
because the potential challenger was less likely to dispute the status quo.
Rather, the defender might be less likely to resist a challenge. Finally, it was
seen that the effects of greater misperception could be both stabilizing and
destabilizing.

The conclusions derived from the model in the preceding chapter were,
however, limited because crises in that model were constrained to be short.
The defender’s level of resolve was assumed to be such that the defender
would never take more than two steps toward the brink. This constraint
made it impossible to examine the dynamics of longer brinkmanship crises.
It also precluded an examination of some other crucial aspects of the
approach to the credibility problem based on bridging the gap between
doing too much and too little with an array of risk. The effects of being able
to take small steps, which create small incremental risks of losing collective
control, or of being able to take only large steps, which generate large risks,
could not be studied within the confines of the restrictions placed on the
model developed in the preceding chapter.

This chapter relaxed the constraint that required crises to be short, and
that made it possible to examine the dynamics of longer brinkmanship
crises. States in the model become increasingly confident that they are
facing resolute adversaries and less and less likely to escalate the longer the
confrontation lasts. When, therefore, two irresolute states are actually
facing each other, misperceptions will be growing worse throughout the
crisis. The crisis does not end because misperceptions have been reduced so
that one state sees more accurately that its adversary is more resolute than
it is. The effects of changes in the levels of resolve and the potential
challenger’s stake in the status quo are generally the same in both the
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models of longer and shorter crises. Finally, being able to take smaller, less
risky steps toward the brink has two effects. The defender becomes more
likely to escalate throughout the crisis. And as long as the defender’s resolve
is not too high, the challenger is also more likely to escalate but less likely to
dispute the status quo. These two effects pull stability in opposite directions.
The greater propensity to escalate tends to reduce stability, but the smaller
chance of a challenge tends to improve it. On balance, stability seems to
increase as steps toward the brink become less dangerous.

In the first approach that nuclear deterrence theory took to the
credibility problem, the strategy that leaves something to chance related the
use or threatened use of force to states’ attempts to further their ends. That
strategy explains how, at least in principle, states may attempt to coerce an
adversary with a sanction that no state would ever deliberately be the first
to impose. The assumption that there is no situation in which a deliberate,
unlimited nuclear first strike would be imposed is crucial to the brink-
manship analogy and the formalizations of it. Indeed, this assumption does
much to define the analogy. Nowhere along the curved slope leading to the
abyss is it rational to push one’s adversary into the chasm. There is no
situation, no place along the slope, where the sanction might be imposed
deliberately.

That defining assumption was quite restrictive. What if there were to
exist a situation in which the sanction might be imposed deliberately? Is the
approach based on the strategy that leaves something to chance and on the
brinkmanship formalizations of it helpful in understanding the dynamics
of escalation in these circumstances? Can anything be said about the
likelihood that a crisis will escalate to an unlimited nuclear exchange when
there is at least one situation in which a state might impose this sanction
deliberately? The next two chapters examine the problem of stability when
there are situations in which this unlimited sanction might be imposed
deliberately.

Appendix 4.1

This appendix demonstrates Proposition 4.1. The demonstration is done in
three steps. The first is to show that if a sequential crisis equilibrium exists, it
must satisfy certain basic conditions. Then it will be shown that if a
sequential crisis equilibrium satisfies these conditions, it must be of the
form described in the proposition. Finally, ¢.. and ¢, will be restricted to
ensure that a sequential crisis equilibrium actually exists.

The first step is to establish that if a sequential crisis equilibrium exists,
then two conditions must hold. First, C must be indifferent between
escalating and submitting at Q(m) and e}(m) > 0 for 0 < m < m, where m is
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some integer. Second, ef(m)=0 for m>m. To see this, let /m be the
maximum integer m such that eg(m) > 0. Clearly such an r exists, for in a
sequential crisis equilibrium, e%(0)>0. By construction, e&(m)=0 for
m > m; so it only remains to be shown that if a sequential crisis equilibrium
exists, then it satisfies the first condition. To do this, assume the contrary.
Thatis, for some m’ < m, C must strictly prefer to escalate at Q(m'), strictly
prefer to submit, or be indifferent between them, but with ef(»')=0. In
both of the latter cases, ef(m’) =0, and this leads to a contradiction. To
reach this contradiction, note that e(m’) =0 implies that the defender is
certain that it is facing the resolute challenger C’ at Qp(m’ + 1): Bp(m’ + 1) =
0. This means that e}(m’ +1)=0. But e} +1)=0 implies that
Bc(m’ +1)=0 and then that e¥(m’ + 1) =0. Continuing in this way leaves
e}(m) =0 for m>n’'. In particular, e}(/n) =0, because 1 = m’, and this is a
contradiction.

Assuming that C strictly prefers to escalate at Qq(»’) also leads to a
contradiction. Without loss of generality, let m’ be the largest integer for
which C strictly prefers to escalate at Qc(m'); then

Sc < PEM)[2m ddc + (1 —-2m'S)[(1 — e}(m’ + 1)we + ef(m' + 1)
x [2m’ + 1)édc + (1 — (2m' + 1)d)sc11]
+ (1= BEm)[2m'dd + (1 —2m'd)
x [2m' + 1)édc + (1 — (2m' + 1)d)sc]1]
Satisfying this inequality requires that ef(m’ + 1) < 1 and therefore implies

that D’s expected payoffat Qp(m’ + 1)is sp. This and the fact that ef(m’) =1
means that escalation at Qp(m’) brings

@m' — 1)8dp + (1 —(2m' — 1)S)[2m'Sdp + (1 — 2m'S)sp]

This, however, is less than sp, which is what D can have if it submits at
Qp(m'). Thus, D’s best reply at Qp(n?') is efi(m’)=0. But if e}(m') =0, then
BE(mM’) =0, and C’s best reply is eg(m’) =0. This, however, contradicts the
assumption that C strictly prefers to escalate at Qc(m').

In sum, if a sequential crisis equilibrium exists, then C is indifferent
between escalating and submitting at Q(m) and e¥(m) >0 form<m < M.
If, moreover, m > rn, then eX(m)=0.

The second step is to demonstrate that if a sequential crisis equilibrium
exists, then its strategies are defined by the expressions reported in
Proposition 4.1. Suppose that C is indifferent to escalating or submitting at
Qc(m) and eg(m) > 0 for m < m; then, for l <m<m,

sc=PBEm)2mdd. + (1 — 2md)(1 — ef(m + 1))w
+ ef(m~+ D)[2m + 1)od; + (1 — (2m + 1)d)s¢]))
+(1 — BEm)[2maddc + (1 — 2m))
x [2m + 1)édc + (1 —(2m + 1)d)s¢1] (Ad.1)
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Simplifying and substituting R, for (we— s¢)/(we — di) give

=(1 —2md)1 —e}(m+1))

BE(m)
[ Ro+(2m+1)5(1—Ry) ] (A42)
[1—(1—=2mé)(1—(2m+1)8)](1— R.)
But
m m -1
Be(m)=(1— SD')I;UI eD(i):”:aD +(1—¢p) U :|
Substituting this expression into (A4.2) yields
Dep(i)— (1—8D)
[1—(=2mé)1—(2m+ 1)d)J(1 — R) )
(RC —2mé — e¥(m+ 1)1 —2md)[2m + 1) + (1 — (2m + 1)6)R]
(A4.3)
Reindexing this gives an expression for []",! e%(i) that holds for 2<m <

m + 1. Then, dividing this into []iL, eD(z and solving for e}(m + 1) gives

ebim+ 1)=1_< 1—(1=2ms)(1 — (2m +1)9) )

1—(1— 2(m—- 1)8)1 — 2m — 1)5)

—2(m—1)6 1 —ef(m)
((1 - 2m5)[1 - (1 —(2m+1)o)(1 - Rc)]) ep(m)
(Ad.4)
for 2 <m < m. (Generically, e} + 1) # 0, but (M, + 1) must be zero.
Thus to avoid a contradiction, m < Mp.)
C’s indifference at Q¢(0) also implies g¢c = (1—&p)[(1 — ep(1))we + ep(1)x
[odc + (1 —0)sc1]+ ep [6dc + (1 — 8)sc]. This leaves

1) = 1 We—4c 1 _
eD(l)_<1_SD'>|:<WC_dc)(1—5)RC+5 8D’:| (A4.5)

Equation (A4.5) defines e¥(1), and (A4.4) links e¥(2),..., e§(m + 1) recursively.
Thus, all that is needed to complete the specification of D’s strategies is to
provide an initial condition for the recursive relation. Evaluating (A4.3) for
m=1 does this by defining e}(2) as a function of (1), leaving

‘)= -2 e
=T 2511~ 30k, + 301 <1—a,,,)

[1——(1—26)(1-—36)](1—RC):| 1
T A= 20)[(1=38)R.+38] |exD)

(A4.6)
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In sum, (A4.5) defines e}(1), (A4.6) then gives e¥(2), and (A4.4) determines
e¥(3),..., es(m+1). For m>m+1, ef(m)=0.

To determine C’s strategies, recall that e}(0)=0 for m>m. The
expressions for e}(m) show that generically, 1 > e}(m)>0forl <m<m+ 1.
Hence, D is indifferent between escalating and submitting at Qp(m) for
1 <m<m+ 1. This implies

sp = Pp(m)((2m — 1)édp + (1 - (2m — 1)0)(1 — eg(m))wp
+ eX(m)[2mddy + (1 —2md)sp]))
+(1 = Bpm) [(2m — 1)édp + (1 — (2m — 1)5)
x [2médp+ (1 —2md)sp]]  (A4.7)

for Ll<m<m+ 1. Letting m=1 gives

sc,[ [1—(1—8)(1—28)](1 - Ry) ] (A43)

et0)=7=5
.

Rp—3—eE(1)(1 —0)[(1 —26)Rp, + 26]
Solving (A4.7) for 1 <m <m < M in the same way that (A4.1) was solved

gives the following recursive relation for e¥(1),...,e&(m +1):

1— (1 — 2m —1)5)(1 — 2m?) >
1— (1= 2m + 1)3)(1 — 2(m + 1)3)

e&(m) = I:l + (1 —ef(m+ 1))(

(1= 2m + DS = (1 — 20m + 1)6)(1 — Rp)]\ T~
% Rp—(m—1)

(A49)

But e(m + 1) =0. This, in turn, provides the needed initial condition so that
(A4.9) now defines e¥(1),..., e4(n) and then determines eX(0) through (A4.8).
This completes the derivation of the challenger’s and defender’s strategies.

All that remains to be done is to restrict g5, and . to ensure that a
sequential crisis equilibrium actually exists. This amounts to choosing these
probabilities in a way that guarantees that the states’ strategies are feasible
in that the expressions for these strategies cannot require a state to escalate
with a negative probability. Once the strategies have been shown to be
feasible, then they will define the generically unique family of sequential
crisis equilibria.

To obtain the restrictions on g, solve (A4.5) for g, subject to the
condition that 0 <e} (1)< 1. Only the first inequality is binding, and it
implies that

_ We—{qc 1
, < =
b <%p (wc — dc> (1—8)Rc+0
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There is also a second restriction on ¢j.. To specify it, solve (A4.5) for &5,/
[(1—ep-)ef(1)] and substitute this into (A4.6). Then solve for g, subject to
the constraint that 0 < e}(2) < 1. Again, only the first inequality is binding,
and satisfying it requires

Re—26 ]

Ep <Ep = gp'[[l ~(1-28)(1-38)1(1—Ry)

Note, moreover, that &, <z,

To ensure that e¥(m) is feasible for m > 2, assume ¢;,. < &p.. [If &p. > &p.,
then e¥%(2) is not feasible, and so the feasibility of e}(m) for m > 2 is no longer
of any interest.] Suppose further that it can be established that ef}(m) is
decreasing in m as long as m >2. Then let M be the largest integer m for
which e%(m +1)> 0. Generically, e}(# +2) will be less than zero and thus
infeasible. If M =0, then e%(2) <0, and the feasibility of e}(m) for m > 2 is
not of any interest. If, however, M > 0, then e}(m) for 2<m< M +1 are
feasible for

ep2)>ef(3) > >el(M+1)>0>el(M+2)
In sum, if ¢, < £, and e¥%(m) is decreasing in m for m > 2, then the e}(m + 1)
are feasible for 1 <m< M, < M)

To see that e}(m) for m > 2is actually decreasing in m aslong as e}(m) > 0,
solve (A4.4) for e}(m) in terms of e}(m + 1), substitute this expression for
e¥(m)in e}(m) > e}(m + 1), and solve this inequality for ef(m + 1). The result
is that e}(m) is decreasing in mif efj(m + 1) < Up(m) and e}(m + 1) > 0, where

1— (1 —2md)(1 — (2m + 1)3) )

Uslm) = <1 —(1=20m— 1)5)(1 — 2m—1)3)

X( Re—2m—1)5
(1=2md)[1—(1—(2m +1)8)(1 - R.)]

Now calculate &§(m), where é}(mm) is the value of e}(rm) defined by (A4.4) and
the initial condition
€p(2) =(Rc—20)/[(1—20)[(1 - 30)Rc + 35]]
This gives
R:—2mé
(1=2md)[1 —(1—(2m+ 1)8)(1 — R.)]

epim +1) =

Comparing é§(m + 1) and Up(m) gives éj(m + 1) < Up(m). But €§(2) is the
least upper bound for e%(2), which is obtained by letting £, =0 in (A4.5).
The facts that &}(2) > e%(2) and, by (A4.4), de}(m + 1)/de}(m) > 0 now imply
that &%(3)> e}(3). This then means that e5(4)> e}(4), and, in general,
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eym+1)>ep(m+1). Accordingly, ef(m+1)<ek(m+1)< Upy(m), and
therefore ef(m) is decreasing in m.

In sum, if &p. > &p., there are no sequential crisis equilibria. In this case, g
is too large, and the payoff to not challenging the status quo at Q(0) is
always greater than the payoff to disputing the status quo. The probability
that Cis facing a resolute defender is too great, and there is no challenge. If
Ep < &p: < Ep, then, assuming C’s strategies to be feasible, ef(1) is given by
(A4.5), and e}(m) =0 for m> 1. If ¢, < &, then (A4.5) defines e}(1), (A4.6)
gives e%(2), and (A4.4) yields e%(3), ..., ek(m + 1), where m < M < M),

To find the restrictions on ¢.. that will ensure that C’s strategies are
feasible, let eZ(7 + 1) = O be the initial condition, and use (A4.8) and (A4.9) to
determine eg(0), ..., e2(n). Inspection of (A4.9) shows that 1 > e%(m) > 0 for
1 <m <A< M. Thus, only the feasibility of e£(0) is at issue. Constraining
(A4.8) to be between 0 and 1, and then solving for e#(1), gives

Rp—8—ec1—d)[(1— 20)Ryp + 20]

< e 1= 3)[(1 — 20)Rp + 201

(A4.10)

where the subscript 77 on e#(1) indicates that e#(1) was obtained from the
initial condition e%(71 + 1) = 0. Now assume that (A4.10) is satisfied for some
7. Then it will also be satisfied by e#(1),,, where 71’ < 7. This follows from the
observation that (A4.9) implies Jef(m)/Oef(m+1)>0. Then, because
ef(n"+1);>0 and eX(@ +1),=0, eX(@);> ek(@);. This, in turn, gives
ef(n’ —1);>ef(@ —1);, and, in general, eX(m);> et(m);. Letting m=1
shows that e%(1); satisfies (A4.10). Now let N be the maximum value of 7z for
which e%(1); satisfies (A4.10). Then, if m< N, all of C’s strategies are
feasible. Indeed, if m < min {M, N, M, — 1, M}, then both C’s and D’s
strategies are feasible.

To ensure that at least one sequential crisis equilibrium exists, A and N
must be greater than or equal to zero. Taking e, < &, makes M >0. To
make sure that N> 0, e¥(1),_, must satisfy (A4.10). But the definition of 7
implies ef(@m+1)=0. So if =0, ef(1)=0 must satisfy (A4.10). Letting
e(1); =0 and solving (A4.10) for &.. gives

&c: <&c'=(Rp—9)/[(1-9)[(1—20)Rp +26]]

If, therefore, ¢, < &, and &.. < &, a family of sequential crisis equilibria
exists, the members of which are indexed by m, where 0 <m <min {M, N,
Mp—1, Mc}. |

Although the demonstration of Proposition 4.1 is now complete, it will be
useful to show that ed(m) is also decreasing in m for 1 <m < . Use (A4.9) to
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substitute for ef(m) in ef(m) > ef(m + 1), and solve for eg(m + 1). The result
is

et(m+ 1)< Udm) =<

Rp—(2m—1)5
1—(1— (2m — 1)d)(1 — 2md)

X( 1—(1—(2m+1)5)(1—2(m +1)5) >
(1—(2m+ 1DS)[(1 = 2(m + 1)6)R,, + 2(m + 1)5]

That is, as long as ef(m) >0, ef(m+1)>0, and U(m)> 0, then e¥(m)>
e&(m+ 1)if and only if eg(m + 1) < U (m). Note, moreover, that if, as will be
assumed, R, < 1— 26, then as long as Ug(m)> 0, Uc(m) is decreasing in m.
This means that if e%(k + 1) < U(k) for some K, then (k) < U(k — 1). This
follows assuming the contrary: e(k) > Uk — 1). This implies eX(k + 1)>
e¥(k). This and the fact that U(m) is decreasing then give eX(k+1)>
ef(K) > Uc(k — 1) > Uc(k). This contradicts the assumption that ef(k + 1) <
Uc(k). Thus, e¥(k) < Uk —1). Generalizing, ef(m + 1) < Ug(m) for m<k.
This, then, gives eg(m) > ef(m + 1) for 1 <m < k. That s, e#(m) is decreasing
from e%(1) to ef(k + 1). To show that e}(m) is decreasing in m for1 <m <
m+ 1, it will suffice to show that ef(r + 1) < U(rn). But the definition of
implies ef(m + 1) = 0. It need only be shown that U(#1) > 0. The definition
of Ug(m) shows 0 < ef(r) = Uq(m)/[ 1+ Uc(m)]. Hence, ef(m) is decreasing
in m from e&(1) to e¥(rn + 1).




CHAPTER 5

Crisis stability in the nuclear age

Nuclear deterrence theory has generally tried to relate the use of threatened
use of force to states’ efforts to secure their interests through the strategy
that leaves something to chance or the strategy of limited retaliation. At a
high level of generality, these strategies approach the relation between force
and states’ political objectives in fundamentally the same way: Each uses an
array of limited options to bridge the gap between doing too much and
doing too little. But at a somewhat lower level of generality, these strategies
focus on different concerns. The strategy of leaving something to chance
begins with the assumption that the sanction is such that it will never be
imposed deliberately. That assumption defines the conceptual problem
confronting this approach to the credibility problem: to explain how a state
might use the threat of such a sanction to further its ends. Schelling’s threats
that leave something to chance solve this problem, at least in principle, by
assuming that the states do not have complete collective control of events
(Schelling 1960, pp. 187-203; 1966, pp. 99-105).

But the defining assumption that there is no situation in which the
sanction will be imposed deliberately may be very limiting. Do the strategy
that leaves something to chance and brinkmanship offer any insight into
the dynamics of escalation in which there is at least one situation in which
the sanction will be imposed deliberately? Or, put another way, what are the
consequences of relaxing the assumption that there are no situations in
which the sanction will be imposed deliberately and of reducing the
corresponding dependence on there being some risk that the states may lose
collective control?

Chapter 7 will take a large step away from this assumption by examining
the strategy of limited retaliation, in which the sanctions are both imposed
deliberately and are limited. This chapter and the next take an intermediate
step, albeit one that leads to a reconsideration of an old and important
problem in nuclear deterrence theory: the problem of first-strike
advantages and crisis stability. These chapters continue to focus on the
brinkmanship sanction of an unlimited nuclear first strike, but they relax
the assumption that the sanction will never be imposed deliberately by
assuming instead that there is at least one situation in which this unlimited
sanction will be imposed deliberately. This means that the sanction no
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longer has to be imposed autonomously as it must in brinkmanship. The
states no longer have to be able to lose collective control. Events now may
be fully under control in the first sense. It is enough that events are not fully
under control in the second sense, in that no state can control the actions
and reactions of another, for the unlimited sanction will be imposed
deliberately if the interaction of the states’ actions puts one of them in the
situation in which it will deliberately use the sanction. What, then, are the
dynamics of a crisis in which states try to use the unlimited sanction of a
general nuclear attack coercively and in which there is at least one situation
in which a state will launch this attack deliberately? In particular, can
anything be said about the likelihood that a crisis will escalate to an
unlimited nuclear exchange when there is at least one situation in which a
state will deliberately impose the sanction of launching this attack? This
chapter and the next address this question.

This question has been motivated by an attempt to begin to relax and
move away from one of the most demanding assumptions underlying the
strategy that leaves something to chance and the analogy of brinkman-
ship.! There are, however, two other motivations for this question. The first
is related to an old problem in nuclear deterrence theory and policy.
Suppose that, however slight, there is some advantage to striking first
rather than second if there is to be a general exchange. A first-strike
advantage does not imply that a state, by striking first, can avoid horrible
destruction. Indeed, the only fate worse than striking first may be being
struck first. A first-strike advantage means only that if there is to be a
general exchange, it is better to strike first rather than second. The effect of a
first-strike advantage, however modest it may be, is to create a situation in
which a state will launch a first strike deliberately. If a state becomes
sufficiently confident that its adversary is going to attack, then attacking in
the hope of preempting an adversary’s attack will become the best of a set of
bad alternatives. The problem of crisis stability, then, is to understand the
effects of first-strike advantages on the dynamics of escalation. The general
conclusion, which may be called the conventional logic of crisis stability, is
that the greater the first-strike advantage, the easier it is for a state to find

! Although the desire to relax confining assumptions may be seen as primarily a theoretical
concern, there is, at least in this case, an important parallel policy concern. Relying on
brinkmanship to relate force to political objectives means that a state is ultimately relying
on the risk of losing collective control to deter an adversary from challenging its vital
interests. This would seem a rather unsatisfactory foundation for policy. Lawrence
Freedman, although not distinguishing between the two interpretations of events not
being fully under control, put the matter clearly: “To rely on leaving things to chance,
however realistic in terms of the actual fears and perceptions of political leaders and the
difficulty of controlling the process of escalation once it was under way, seemed like the
abandonment of strategy” (1986, p. 773).
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itself in a situation in which attacking first is the best of a bad set of choices,
and therefore the more likely a general exchange and the less stable the
crisis.2

The emphases in these two ways of motivating this question about the
dynamics of escalation differ. If an adversary’s fear of suffering the sanction
of an unlimited nuclear attack is to be used by a state to protect its interests,
and if such a strategy is not ultimately to depend on this sanction’s being
imposed autonomously, then there must be at least one situation in which it
will be rational to launch a first strike deliberately. Accordingly, this
situation would seem to require the existence of a first-strike advantage, for
otherwise it is difficult to conceive of a situation in which this sanction
would be imposed deliberately. The emphasis here is on the necessity of a
first-strike advantage. The emphasis in the problem of crisis stability is not
on the necessity of a first-strike advantage and, in this sense, on its
desirability, but on its undesirability, for it is the source of instability. A
first-strike advantage makes it more likely that a crisis will escalate to an
unlimited nuclear exchange. But despite their different emphases, these two
motivations lead to the same question: What are the dynamics of crises in
which there is an advantage to striking first?

The third motivation for this question is more general. The preceding
analysis of brinkmanship focused on specific models and demonstrated
that in those models there was some chance that the crisis would end in a
general nuclear exchange. But how sensitive is this result to the particular
properties of those models? Can any general conditions be identified that
will either ensure that there is some chance of a crisis ending in a general
exchange or guarantee that a crisis cannot end in that way? Again, this
question leads to a consideration of the dynamics of crises in which there
are advantages to striking first.

The three motivations reflect three different concerns. The first of these is
to relax one of the most demanding assumptions of brinkmanship. The
second is to study the relation between stability and first-strike advantages.
The third is a concern for determining those general conditions under
which a crisis can end in an unlimited nuclear exchange. But, as has been
seen, a single question binds these concerns together. In this sense, these
concerns are different facets of a single problem.

This chapter and the next examine the escalatory dynamics of crises in
which there are first-strike advantages by reconsidering the problem of
crisis stability. This chapter focuses on a simple game in which there are
significant first-strike advantages. The conventional logic of crisis stability
2 See Schelling (1960, pp. 209-29) and Jervis (1978) for a discussion of crisis stability that is

referred to here as “the conventional logic of crisis stability” in order to distinguish it from
the analysis in this chapter and the next.
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would seem to imply that because of these advantages, there should be
some chance that the game will end in a general nuclear exchange. The
game, however, is completely stable. This game is used to illustrate a set of
conditions that turn out to ensure stability even in the presence of first-
strike advantages. The next chapter extends the analysis to a more general
game-theoretic setting and shows that this stability is not peculiar to this
simple game. Any game satisfying these conditions will be stable. The next
chapter also examines the consequences of loosening the general conditions
needed to ensure stability.

Stability with first-strike advantages

Once again, Schelling provides a point of departure. In his study of crisis
stability in the nuclear age, Schelling (1960, pp. 207-29) focused on a highly
stylized description of this age that seemed to capture the essence of the
problem of crisis stability and preemption. Because the description was
highly stylized, it was analytically tractable. Because the description seemed
to capture the essence of the problem, its analysis held the promise of
shedding light on the nature of crisis stability.

Three features characterize Schelling’s stylization. First, there is “no
fundamental basis for war” (Schelling 1960, p. 207). That is, a general
nuclear war would be so horrible that if a state had to choose between the
certainty of war, even a war in which it was sure of having the first strike,
and the certainty of peace, albeit a peace secured by submitting to its
adversary, then the state would choose to avoid a general nuclear war. But
second, if there is going to be a war, if war is inevitable, it is better to strike
first rather than second. There is an advantage to striking first. These first
two characteristics of the stylization relax the defining assumption of
brinkmanship, which is that there is no advantage to striking first. A
genveral nuclear war is so terrible that the only fate worse than striking first
is being struck first, but it is still better to strike first instead of second. The
third characteristic ig that both states fully appreciate the situation in which
they find themselves (Schelling 1960, pp. 207-8).

This section presents a game-theoretic model of a situation that is
consistent with this stylization. Thus, the conventional logic of crisis
stability implies that because there are first-strike advantages in this
situation, there should be some risk of preemption. But, as will be seen,
there is no risk. The game is completely stable, even though there is an
advantage to striking first.

The game is illustrated in Figure 5.1. Nature, N, begins by making a
random move: Nature will take the left branch with probability p and the
right branch with probability 1 — p. Beginning the game with a random
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move is a modeling technique that, as will be seen, formally creates the
fundamental uncertainty that is the essence of the problem of preemption
and crisis stability.

If Nature plays left, state 7 is the first state in the game to move. ] must
decide between two options. It can quit and thereby end the game by
playing Q. Ending the game at this point avoids an unlimited nuclear
exchange, but it also brings 7 the loser’s payoff L,. IT receives the payoff to
prevailing of Py;. Or I may decide to launch an unlimited nuclear attack, A.
If I'attacks, II' must then choose between two options. Because 7 has already
attacked, Iis certain in the game to achieve a first strike. Nevertheless, I7is
not indifferent to its two options. Given that I has attacked, I7 can obtain a
higher payoff by attacking rather than quitting. One interpretation of this is
that a prompt second strike, which may be thought of as II playing
A, given that I has attacked, is better than a slow second strike, which is
represented by Q. Because II prefers 4 to Q, S;; > Wy, where Sy, is the
payoff to IT of attacking immediately with its second strike, and W, is the
payoff to not attacking and, in effect, waiting until later to launch a second
strike. I, moreover, is not indifferent to ITs decision. I prefers that IT quit
and thereby be able to launch only a less effective second strike. That is,

F > /.

Figure 5.1. A game of preemption.

Q Q0
(LI’PII) (PI’LII)
Q
A A e
(Fl’ wll) / (WI’FII)
(f[,S[[) (Sl’fll)

P>L>F>f>S>w
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If Nature plays right, ITis the first state to move in the game, and it must
choose between @ and 4. Now, however, when I7 is making its decision, I
has not already committed itself to attacking. If IT quits by playing Q, the
game ends without there having been an unlimited nuclear exchange. I7
receives the loser’s payoff of L, and I obtains the payoff to prevailing of P,.
If IT attacks, it achieves a first strike, and 7 must then decide what to do.
Given that it has been attacked, I prefers attacking to quitting: S; > W,.
Conversely, IT would prefer that I did not attack: Fy;> fi;.

To complete the specification of the relation among the payoffs, recall
that in the stylization of the problem of preemption and crisis stability there
is no fundamental basis for war. That is, although prevailing is better than
losing, losing and thereby avoiding an unlimited nuclear exchange is better
than the payoff to even a successful first strike (Schelling 1960, p. 208). In
terms of payoffs, this means that P> L > F, where the subscripts have been
dropped because the relation applies to both 7 and II. There are, however,
first-strike advantages: f> S. Combining these gives the following relation
among the payoffs: P> L> F>f> S> W. That is, prevailing, P, is better
than avoiding a nuclear exchange by submitting, L, which is better than
achieving the most successful first strike but nevertheless having toabsorb a
second strike, F, which is better than launching a first strike but having to
absorb a more effective second strike, f, which is preferred to being attacked
first but retaliating with a more effective second strike, S, which, finally, is
better than being attacked first and retaliating with a less effective second
strike W.

The final step in describing the preemption game in Figure 5.1 is to
discuss its information structure. Both of I's decision nodes are in the same
information set. Similarly, both of IF's decision nodes are in the same
information set. A state’s information set represents what the state knows
when it must make a given decision. More specifically, a state knows
whether or not it is in a particular information set, but a state cannot
determine where it is in a given information set. A state must therefore form
beliefs about where it is in an information set, and these beliefs are in turn
shaped by the other state’s strategy. In the preemption game, I does not
know if it is at the upper-left decision node, in which case it is the first to
move in the game, or if it is at the lower-right node, in which case it is the
second state to move. Similarly, 7 does not know if it is at the upper-right
decision node, in which case it has the first move in the game, or if it is at the
lower-left node, in which case it has the second move.

The game’s information structure and the relation among the payoffs
formally create the same dilemma as that posed by the problem of
preemption. Viewing the game from I’s perspective, suppose that when it
had to choose between Q and A4,  was certain that it was at the lower-right
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decision node. At that node, war is inevitable. II has already committed
itself to attacking, and regardless of whether I chooses Q or A, I cannot
avoid an unlimited nuclear exchange. In the stylization of the problem of
preemption, a state will attack if it believes that war is unavoidable. The
same is true of the game in Figure 5.1: I attacks if it is certain that war is
inevitable, that is, if it is certain that it is at the lower-right node, because
S; > W,;. Now suppose that when it has to choose between Q and A4, I is
certain that it is at its decision node at the upper left. Here, war is not
inevitable. Indeed, I can avoid an unlimited exchange by quitting. In the
stylization in which there is “no fundamental basis for war” (Schelling 1960,
p- 209), a state will submit if it is certain of being able to avoid an unlimited
nuclear exchange by accepting the limited losses of submitting. The
preemption game also captures this aspect of the stylization. If I is certain
that it is at the upper-left node, then I will quit. Quitting brings L, and the
best that attacking can bring is F;. But L, > Fy; so I prefers to quit.

The dilemma posed in the game, as in the logic of crisis stability, is that /
is not sure that war is inevitable. I does not know if it is at the upper-left
node, in which case war is avoidable, or if it is at the node at the lower right,
in which case war is inevitable and attacking is the best strategy. The more
confident that 7 is that war is inevitable (i.e., the higher the probability /
ascribes to being at the lower-right node), the higher the expected payoff to
attacking, and the lower the expected payoff to not attacking. At some
threshold probability, I becomes sufficiently confident that war is inevitable
that the expected payoff to attacking is greater than the expected payoff to
not attacking, and I attacks.

“To help make the preemption game more concrete, suppose that state I’s
early warning systems suddenly indicate that I has launched a massive
attack. This may be a false alarm. A practice tape simulating an enemy
attack may, for example, have been accidentally loaded onto the on-line
system.? If the warning is actually a false alarm, Iis, in effect, at its upper-left
decision node in Figure 5.1, in that if 7 decides to attack on the basis of this
warning, it will be launching a first strike. It will be starting an exchange
that was otherwise avoidable. But the warning may not be a false alarm: 17
may have launched an attack. If so, then I is at its lower-right node, and war
is inevitable. s best strategy is to attack. The difficulty is that the warning
is the only information that I has. It cannot distinguish between the
possibility of a false alarm and a real attack, and this is formalized in the
game by including I’s two decision nodes in the same information set.

3 A practice tape simulating a massive Soviet attack actually was accidentally loaded onto
the on-line system in 1979. An alert was called, and ten air interceptors were scrambled
before the mistake was discovered and corrected; see Carter (1987, p. 629) and Sagan
(1989a, 1989b).
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Figure 5.2. The normal form of the preemption game.

1

A | pfi+U=p)S; (A =p)fy+pSy | pF+(1 —p)P; (1 -p)L;+pW,

Q | L+ =p)W; (1 =p)Fy+pPy | pL;+(1 —p)P; (1 =p)L;+pPy,

P>L>F>f>S>W

Given what it knows, which is that its warning systems indicate that I has
launched an attack, I must decide how likely II is to have launched an
attack and on the basis of that evaluation decide whether or not to attack.
This is the dilemma posed by the preemption game.*

The essence of the conventional logic of crisis stability is that when there
are first-strike advantages, then there is some chance that the threshold of
inevitability needed to justify launching an attack will be crossed. There is
some risk that one or both states will attack because it seems sufficiently
likely that war is inevitable. But is this correct? More formally, is there any
chance that, in an equilibrium of the game in Figure 5.1, one of the states
will attack? The answer to this question is no. With one further restriction
on the states’ payoffs, the probability that J or I will attack in equilibrium is
zero. The situation is completely stable even though there is a first-strike
advantage.

To show this, it will be useful to transform the extensive game of Figure
5.1into its normal form. Each state in the game tree has a single decision to
make, whether to quit or attack, and this decision is made in ignorance of
what the other state does. Accordingly, this situation can be represented by
the normal-form game in Figure 5.2.

* Inanactual crisis, a state might decide not to attack immediately, but rather to try to verify
the alarm. The preemption game is too simple to allow for this, but a more complicated
model could. More complicated games are considered in the next chapter. The point here is
merely that the issue of false alarms can be examined, albeit in a very simple context, with
the preemption game in Figure 5.1, and viewing the game from this perspective helps to
clarify what is at issue.
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The payoffs in the matrix in Figure 5.2 are derived from the tree in Figure
5.1. Suppose, for example, that both states adopt the strategy Q. If Nature
happens to play left, which it will do with probability p, then I moves first in
the game. At this point, I, according to its strategy, quits by playing Q. The
game ends with payoffs (L,, P,,). If Nature happens to play right, then I7
moves first. IT then quits, and the game ends with payoffs (P,, L,,). Thus, the
expected payoff to Iif both states play Q is pL, + (1 — p)P,. This is the payoff
reported for Iin the (Q, Q) cell of the payoff matrix in Figure 5.2. The other
payoffs are calculated similarly.

In some circumstances the probability of an attack is zero, and the
situation is completely stable, despite the existence of first-strike
advantages. To identify these circumstances, compare I's strategy of
attacking, which is represented by the top row of Figure 5.2, to I's strategy
of quitting, which is in the bottom row. Suppose that 7is certain that I7 will
play Q. Then I's payoff to quitting is pL;+ (1 — p)P; and to attacking is
pF;+(1—p)P,. Because L, > F,, I's payoff to quitting is greater than its
payoff to attacking. If, therefore, I believes that II is playing Q, I will
certainly not attack, for it is sure to do better by quitting. Similarly, if I7
is completely confident that I will play Q, II’s best strategy will also be to
play Q.

Now assume L —F> S — W for both I and II. A justification for this
assumption will be discussed later. At this point, note that this assumption
implies that for at least one of the states the payoff to playing Q is higher
than the payoff to playing A4 regardless of what the other state does. Qis a
strictly dominant strategy for 7 or I1.° Suppose that it is 7 that prefers to quit
regardless of what IT does. Then 7 will play Q. But given that 7 is doing this,
Q also offers IT its highest payoff. In equilibrium, neither state attacks. If,
alternatively, IT prefers to quit regardless of what 7 does, then 17 will quit. O,
in turn, will maximize I’s payoff. Again, neither state attacks in equilibrium.
The situation is completely stable even though there are first-strike
advantages.

The crucial stabilizing assumption that L — F> S — Wis a mathematical

5 To see this, suppose that p > 4. Then quitting strictly dominates attacking for I. As shown
earlier, 7 strictly prefers to quit if 17 quits; so all that remains to be shown is that 7 strictly
prefers to quit even if I7 attacks. To do this, note that the assumption that L— F>S— W
ensures that (L, —f)/(S;— W) > 1, for with F>f, then L—f> L— F, and consequently
L—f>S8—W,or(L—f)(S— W)> 1. I, moreover, will strictly prefer to quit given that II is
attacking only if the payoff to quitting is greater than the payoff to attacking, i.e., only if
pL;+ (1 — p)W, > pf; + (1 — p)S;. This inequality implies (L, — /;)/(S; — W) > (1 — p)/p. But
if p=4, then (1 —p)/p< 1. This leaves (L;—f)/(S;— W;)> 1= (1 —p)/p. Thus, I strictly
prefers quitting to attacking even if I7attacks, and therefore Q strictly dominates 4 for I. A
similar argument shows that if p <4, I7 strictly prefers quitting to attacking regardless of
what I does.
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formalism. But considering two less formal, more intuitive, and more
general aspects of this assumption will help to make it more concrete and
meaningful. One aspect of this assumption will be discussed here. The
second aspect will be addressed later in the context of the discussion of why
the conventional logic of crisis stability is misleading in the preemption
game. Each of the expressions L—F and S— W has an intuitive
interpretation. The former is the difference between the payoff to the most
successful first strike (which with large, robust, and relatively survivable
strategic forces still means having to endure a terribly destructive second
strike in retaliation) and the payoff to quitting. This difference is the net cost
of attacking and then suffering a devastating second strike, whereas by
quitting a state would have avoided an unlimited nuclear exchange.
Similarly, the latter expression is the net cost to a state of waiting to attack
and thereby reducing the effectiveness of its second strike, whereas by
attacking immediately a state would have achieved a more effective second
strike. The assumption L — F> S — W requires that the former be greater
than the latter. The net loss of striking first and thereby triggering a nuclear
exchange that could have been avoided is larger than the net loss of
launching a less effective rather than more effective second strike.

The game-theoretic model developed earlier is clearly too simple to be
accepted as a model of a crisis. There are, for example, too few choices in the
game, and its information structure is much too simple. A set of richer,
more elaborate models will be considered in the next chapter. For now, the
important point is that despite its simplicity, the game satisfies the three
stylized conditions that describe the environment that poses the problem
of crisis stability and preemption. First, there is an advantage to striking
first in the game. But, second, because even a successful first strike cannot
protect a state from a terribly costly retaliatory second strike, the only fate
worse than striking first is being struck first. There is no fundamental basis
for war. And, finally, the states fully appreciate their situation. Thus, the
conventional logic of crisis stability, if applied to this game, would seem to
imply that because there are first-strike advantages, there will also be some
risk of a state becoming sufficiently confident that war is inevitable that it
will attack. Yet, as has been shown, no state ever attacks. Apparently, no
state ever becomes sufficiently confident that war is inevitable to justify
attacking. The conventional logic of crisis stability in this model is
misleading. This raises two questions: First, why is this logic misleading?
Second, how general is this result? Is there something special about this
particular game that makes it stable despite the conventional logic of crisis
stability, or are there more general conditions that ensure stability? The
next section takes up the first question by examining the conventional logic
in more detail.
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The conventional logic of crisis stability

The conventional logic of crisis stability is that first-strike advantages are
destabilizing and that the greater the first-strike advantage, the less stable
the crisis. This logic is easily formalized, and doing so will help to explain
why it is misleading. If a state attacks preemptively, its payoff in this
formulation is F. If a state does not attack, one of two outcomes is possible.
If a state’s adversary attacks, then that state, by not attacking, condemns
itself to suffering a first strike and retaliating with a second strike. Let S be
the payoff to this outcome. If, however, neither the state nor its adversary
attacks, then the states avoid a nuclear exchange and receive some
compromise payoff. Let C denote this payoff. In the stylization of the
problem of preemption in the nuclear age there is a first-strike advantage.
So the payoff to striking first is greater than the payoff to striking second:
F> S. But also in keeping with the stylization, even a successful first strike
cannot protect a state from suffering a horribly costly retaliatory second
strike. In terms of payoffs, this means that C> F. Now let 7 be a state’s
subjective probability that war is inevitable. That is, the state believes that
the probability that its adversary is attacking is t. Then the expected payoff
of not preempting is tS'+ (1 —17)C.

Attacking preemptively is rational if its payoff is greater than the payoff
to not preempting. Attacking is optimal if F> 7S+ (1 — 7)C. Solving for ©
gives 1> (C — F)/(C — S). Defining the threshold =* to be (C— F)/(C —S),
then attacking becomes the best of a set of bad alternatives if a state believes
that the probability that war is inevitable is greater than t*. Attacking is
rational if 7 > t*. Conversely, waiting and not preempting is optimal if a
state’s level of confidence is less than this threshold.

The essence of the conventional logic of crisis stability is captured in the
relation between the threshold t* and the size of the advantage to striking
first, F—S. To see this, rewrite the expression for t* to obtain
™ =1—(F- S)/(C— S). Now note that as long as there is an advantage to
striking first (i.e., as long as F— S > 0), the threshold * is less than 1. As long
as there is an advantage to striking first, there is some probability that will
make attacking the best of a set of bad alternatives. Moreover, the higher
the payoff to striking first, or the lower the payoff to being struck first, the
greater the first-strike advantage, and the lower the threshold.® And the
lower the threshold, then presumably the easier it is to cross, and
consequently the less stable the crisis. Finally, suppose that, as in the
strictest interpretation of mutually assured destruction, there is no
advantage to striking first, so that F= S. Then the value of the threshold t*

$ That is, dv*/0F <0 and 8:*/8S > 0.
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is 1, and the threshold can never be crossed. Crises in this strictest
interpretation of mutually assured are very stable.

The formalization of the conventional logic of crisis stability reveals a
peculiar aspect of this logic, and this is the source of the conventional logic’s
misleading conclusions. First-strike advantages mean that t* is less than 1,
and this creates instabilities by making it possible for 7 to be greater than t*.
But note that the conventional analysis treats T and 7* quite differently: t* is
a function of the parameters C, F, and S that describe the structure of the
crisis, and, therefore, the threshold t* is endogenously determined by the
structure of the crisis. But 7 is not an explicit function of any parameter that
describes the crisis; 7 is formally exogenous.

Treating the strength of a state’s belief that war is inevitable as formally
exogenous is problematic, for this treatment is at odds with the notion of a
crisis as a bargaining process. A crisis is generally seen as a bargaining
process in which each state attempts to shape its adversary’s beliefs. One
tries to alter an adversary’s assessment about the relative costs and benefits
of continuing the confrontation in the hope that the adversary will
eventually back down. In a condition of mutually assured destruction, for
example, each superpower knows that the other is capable of inflicting
catastrophic damage onit. A crisis is less about what one can do than about
what one is willing to do. Each state attempts to further its ends by
influencing its adversary’s beliefs about what it is willing to do. Inherent in
the notion of a crisis as a bargaining process is the presumption that a
state’s beliefs are affected by its adversary’s actions. That is, beliefs are
endogenous. Yet in the conventional logic of crisis stability, beliefs are not
related to the crisis formally.”

The formally exogenous treatment of beliefs raises questions that reflect
on the problem of stability. Can structural features of a crisis constrain a
state’s belief that war is unavoidable? Can such constraints keep this belief
from becoming strong enough to justify attacking? For example, can the
fact that even a successful first strike cannot protect a state from a terribly
costly second strike keep 7 below t*? If so, then the crisis will be stable
despite the existence of first-strike advantages.

As shown earlier, the preemption game in Figure 5.1 is completely stable.
The reason for this is that the model allows the states’ beliefs to be treated
endogenously. This makes beliefs, like strategies, interdependent. What one
state believes affects what it does, and those actions in turn affect what the

7 In treating beliefs exogenously, what has become the conventional logic of crisis stability,
although perhaps simpler, fails to capture much of the subtlety and insight of Schelling’s
original analysis of the problem (1960, pp. 207-29). An essential element of his treatment
was the endogeneity of beliefs.
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other state believes. This interdependence means that neither state can
become sufficiently confident that war is inevitable to justify its attacking.

It takes two steps to show this. The first determines a strict lower bound,
., ON the threshold of inevitability needed to justify attacking. Because
¥, 1s a strict lower bound, t%;, <t*. The second step demonstrates that
the probability that war is inevitable never exceeds this lower bound:
T < t¥,.. These two inequalities imply 7 < 7* and that no state attacks. The
crisis is stable even with first-strike advantages.

The crucial assumption L — F> §— W defines this lower bound, and
this is the second aspect of this assumption that helps to explain why it is
needed to stabilize the crisis. This assumption implies that no state will
attack unless the probability that war is inevitable is greater than 4. Or,
equivalently, t* is always greater than 4, which means that t¥;, =Lisa strict
lower bound of t*.

To see that the assumption that L — F> S — W implies that no state will
attack unless it believes that the probability that war is inevitable is greater
than 4, suppose that I believes that the chance that war is avoidable is 1. If
quits while actually at its upper-left node in Figure 5.1, where war is
avoidable, it receives L;. If war is actually inevitable (i.e., I is at its lower-
right node), then the payoff to quitting is W;. The expected payoff to
quitting, given that the probability that war is inevitable is 1, is therefore
1L, +4iW,. To calculate the expected cost of attacking in these circum-
stances, note that if 7 attacks when war can be avoided, the best it can do is
to obtain the payoff to the most successful first strike, F;. If I attacks when
war is inevitable, its payoffis S}. If, therefore, I believes that the chance that
war is inevitable is , the best it can expect to do by attacking is 1F, +1S,.
Thus, I will certainly not attack when it believes the probability that war is
inevitable is § if the payoff to quitting is greater than the payoff to attacking,
that is, if 1L, + W, >1F, +1S,, or, equivalently, if L, — F,> S;— W,. But
this is precisely what the stabilizing assumption says, and in this way it
ensures that 7 will not attack if the probability that war is inevitable is 3.
This, in turn, means that the threshold of inevitability needed to justify
attacking is still higher; so 1+ <t*. Thus, 4 is a strict lower bound for this
threshold: t¥,,=3.

To establish that the game is stable when beliefs and strategies are
interdependent, it will now suffice to show that the probability representing
the strength of a state’s belief that war is inevitable can never exceed 1. If,
that is, t¥,, =% and 1%, < 7* then showing that t is always less than or
equal to 4 will ensure stability. At first it appears that it should be easy for
beliefs to cross this lower bound of 4. If the probability that 7 will move first,
which is p, is high, and if 7is very likely to attack, then it would seem that I7
should be very confident that war is inevitable (i.e., that ITis at its lower-left
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node in Figure 5.1) and that attacking is rational. This is essentially the
conventional logic of crisis stability. The difficulty with this logic is that the
probability that 7 will move first and the probability that it will attack are
not independent. They are interdependent. Loosely, the higher the value of
D, the more confident 7 is that it is at its upper-left node and that war is
avoidable. This makes I less likely to attack. These two factors oppose each
other. The higher p tends to make /T more confident that war is inevitable,
but the smaller chance that 7 will attack tends to make I7less confident that
war is inevitable. On balance, the effect of these opposing influences is that
the probability that war is inevitable never exceeds 1.® Neither state ever
becomes sufficiently confident that war is inevitable that it attacks.

This result contrasts sharply with the flavor of the conventional logic. If,
in that logic, the first-strike advantage is small (i.e., if F— S is small), then
the threshold t* is close to 1 and presumably is difficult to cross. The crisis,
even in the conventional logic, is relatively stable. But the threshold needed
to ensure stability in the preemption game is much less than 1 and much less
than that suggested by the conventional logic. Indeed, a first-strike
advantage that lowers the threshold to what, by the conventional logic,
would seem to be a quite unstable level (e.g., t* =0.6) still leaves the
threshold greater than 4 and thus still high enough to ensure stability in the
model.

In sum, the conventional logic of crisis stability is misleading if applied to
the preemption game in Figure 5.1, because that logic ignores the structural
features of a crisis that may constrain the states’ beliefs that war is
inevitable. When these features are taken into account, at least in the
context of the specific model examined earlier, these beliefs are constrained
to be below the threshold at which attacking becomes rational. Despite the
implications of the conventional logic, there is no risk of crossing this
threshold. There are first-strike advantages, but the situation is completely
stable.

8 To see this, suppose that this probability does exceed 4. For this to be possible, p must be
greater than 4, for if p were less than or equal to 4, then even if  were certain to attack, the
probability that II would be at its lower-left node and that war would be inevitable would
beless than . So p > 4. Note, however, that the probability that war appears inevitable to J,
which is the probability of its being at its lower-right node, is less than or equal to 1 — p. If;
therefore, p >4, then 1 —p <4, and I believes that the probability that war is inevitable is
less than 1. All of this means that if there is some chance that I7is at its lower-left node and,
consequently, that there is some chance that war is inevitable when p > %, then I must have
attacked when the probability that war was inevitable was less than or equal to . But that
cannot be, for the assumption L — F> §— W implies that no state will attack as long as it
believes that the probability that war is inevitable is less than or equal to 4. Thus, the
probability measuring the strength of IPs belief that war is unavoidable cannot exceed . A

similar argument shows that the same holds for 1. In the preemption game in Figure 5.1, no
state can come to believe that the probability that war is inevitable is greater than 4.
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The general conditions of stability and potential sources of
instability

The stability of the preemption game in Figure 5.1 raises two questions. The
first is why the conventional logic is misleading in this example, and that is
attributed to its failure to treat beliefs as formally endogenous. The second
question asks if there is something peculiar about the preemption game that
ensures stability or if some more general conditions are responsible for
stability. The next chapter formally identifies a set of conditions that do
ensure stability and then tries to examine some of the consequences of
relaxing them. This section discusses the four most significant conditions
needed to ensure stability somewhat less formally.

Identifying the conditions needed to ensure stability contributes to a
better understanding of the problem of preemption and crisis stability and,
more generally, the escalatory dynamics of crises in which there are
situations in which a state might deliberately launch a general nuclear
attack. Indeed, identifying general conditions that are sufficient to ensure
stability also serves to identify the potential sources of instability, for if a set
of conditions ensures stability, then at least one of these conditions must be
violated if there is to be any instability. The more refined understanding of
these problems that emerges from elaborating and clarifying the relation
among the factors needed to ensure stability indicates that the conventional
logic focuses attention too narrowly on the size of any first-strike
advantage. Instability results from a more subtle interaction of several
factors, of which the size of any first-strike advantage is only one. By itself,
the existence of an advantage to striking first is not enough to create
instability.

Four major conditions assure stability.® If these conditions are satisfied,
then even though there is an advantage to striking first, the probability that
there will be an exchange in equilibrium is zero. The first condition is that
states always retain collective control: An attack cannot happen unless a
state orders it. There is no risk of a purely accidental general nuclear attack.
In the preemption game, for example, Nature cannot launch an attack
directly by playing 4. Only the states can attack.

Precluding a purely accidental general nuclear attack, however, does not
preclude the possibility of other types of accidents. Only one narrowly
defined type of accident has been excluded. A general nuclear attack cannot
result directly from an accident. Such an attack cannot be triggered
automatically by a false alarm caused by, for example, a rising moon, a
flock of geese, failure of a computer chip (Bracken 1983, pp. 48-9), or the
loading of a practice tape simulating a Soviet attack onto the on-line systém

9 Several technical conditions are also needed. These are described in the next chapter.
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(Carter 1987, p. 629; Sagan 1989a, 1989b). The exclusion of a purely
accidental general nuclear attack, however, does not imply that there can be
no accidents or false alarms. To the contrary, the model, as indicated
earlier, may be seen as a model of a false alarm. Excluding purely accidental
general nuclear exchanges implies only that an accident or false alarm can
lead to such an attack only indirectly by creating a situation in which the
national command authority accepts the risk that it may be acting on the
basis of a false alarm and nevertheless decides to attack deliberately. Events
are not fully under control, but only in the second sense in that no state
controls another.

It is important to emphasize that excluding the possibility that the states
can lose collective control does not, at least in principle, eliminate the
possibility of an inadvertent general nuclear exchange. Because events are
not fully under control in the second sense, this outcome remains a
possibility. If, for example, L — f<S— W in Figure 5.1, then there exist
equilibria in which the states will deliberately launch an unlimited attack. It
is, moreover, the risk that this outcome will occur because events, although
fully under control in the first sense, are not fully under control in the
second sense that is the essence of the problem of preemption and of the
conventional logic of crisis stability. This is clear from the emphasis in the
conventional logic on the threshold at which attacking becomes rational
and the risk of crossing this threshold. The problem in the conventional
logic is that events are not fully under control in the second sense.!®

The second assumption needed to ensure stability is that whenever a
state has the option of attacking, it also has the option of trying to submit to
its adversary. If, moreover, a state tries to submit before its adversary has
committed itself to attacking, then the crisis will end with the state’s
submission and without there being an unlimited nuclear exchange.

The preemption game in Figure 5.1 satisfies this condition. Whenever a
state has the option of attacking, it also has the option of trying to submit
by playing Q. If, moreover, a state plays Q when war is still avoidable (i.e.,
plays Q at its upper-left node or II plays Q at its upper-right node), then the
game will end, and there will not be a general exchange.

The option of being able to attempt to submit and thereby avoid a
nuclear exchange if one’s adversary has not already attacked is a structural
aspect of the game used to model a crisis. This structural feature helps to
prevent a nuclear exchange by constraining the beliefs that would justify an
attack. But this option is a theoretical construct in an abstract game. It is an

10 Nevertheless, assuming that the states always remain in collective control remains a strong
assumption. The next chapter relaxes this assumption by reintroducing some autonomous
risk. This will show that there is a subtle relation between stability and the two senses in
which events are not fully under control.



126 Nuclear deterrence theory

assumption about a model and may or may not be a sensible assumption to
make about an actual crisis. Indeed, the stabilizing effects of such an option
can be appreciated without asserting that such an option exists in any
particular crisis. As noted earlier, the most important function of
identifying the conditions that are sufficient to ensure stability may be that
doing so also serves to identify potential sources of instability, especially
those sources that have not been identified previously.

Nevertheless, it is useful to ask if this theoretical construct might have
any empirical referents in actual crises. For what, in other words, is this
construct an apt analogy? The essence of having this option is not, as the
preemption game in Figure 5.1 may have suggested, that the game mustend
immediately if a state tries to submit and its adversary has not already
attacked. The essence of having the ability of being able to submit if one’s
adversary has not already attacked is rather that each state has an option
that has two properties. First, the exercise of this option must be evident to
one’s adversary, or, more formally, its exercise must be common
knowledge. Second, if an adversary observes that this option has been
exercised, then attacking is not in the adversary’s best interest. If an actual
option is to be an empirical referent corresponding to the theoretical
construct, it should satisfy these two criteria.

Whether or not any real options meet these criteria depends very much
on the actual capabilities of the superpowers’ strategic arsenals and their
command and control systems. But suppose, for example, that to launch an
effective first strike, a state’s strategic forces must be brought to a higher
state of readiness than is normally maintained: A state must “generate” its
strategic forces before being able to launch an effective first strike. Assume
further that each state is able to monitor the other’s alert status and will
know if its adversary is generating its strategic forces. Now suppose that in
the midst of a crisis an adversary either does not increase the readiness of its
strategic arsenal or reduces it, and a state observes its adversary’s failure to
generate its forces. The state then reasons that such a step makes no sense if
its adversary is planning to attack. But the only justification for this state to
attack would be that it expects its adversary to attack. Accordingly, this
state will not attack, although it may maintain the pressure on its adversary
by not reducing its alert status or through other means. Given the
suppositions that the alert status of the states can be monitored and that an
effective first strike requires that forces be brought to a high state of
readiness, an empirical referent corresponding to the theoretical construct
of being able to attempt to resign and thereby avoid a nuclear exchange if
one’s adversary has not already attacked would seem to be the ability to
maintain an alert status that will ensure that a devastating second strike can
still be launched but that an effective first strike cannot be.,
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In this light, it is interesting to observe that during the Cuban missile
crisis the Soviet Union apparently did not put its strategic forces on alert.!?
As USS. Air Force General David Burchinal described Krushchev’s position
in the crisis, “We put a gun to his head and he didn’t move a muscle.”*? The
Soviets, it would seem, not only had but also exercised an actual option that
corresponded to the theoretical construct. Indeed, in many crises in the
nuclear era, including the most severe crises over Berlin and, later, over
missiles in Cuba, American leaders, at least, were not significantly
concerned by the prospect of the Soviets attempting to launch a first strike,
and there was little reciprocal fear (Betts 1987, p. 164).

Finally, it should be emphasized that although escalation may not mean
risking that the reciprocal fear of surprise attack or some other process will
lead to a general nuclear exchange, escalation may still do other things. It
may, for example, indicate a willingness to inflict and endure severe but
limited punishment in order to have one’s way. Escalation may also
enhance one’s military position and thereby improve the prospects of
prevailing in a limited contest of military strength. These effects may
convince an adversary to come to terms. Escalation may still be an
important means of exerting coercive pressure, although perhaps not for
the reasons commonly assumed.

The third condition is that the net cost of launching a first strike and
thereby having to absorb a second strike, when by coming to terms a
general nuclear exchange could have been avoided, is larger than the net
cost of launching a less effective rather than a more effective second strike.
This condition is a generalization of the assumption that L— F>S— W,
which is what was used to stabilize the preemption game in Figure 5.1.
When this third condition is combined with the second condition, which
assumes that states have the option of attempting to quit, they imply that
no state will attack in equilibrium unless it believes that the probability that
war is inevitable is greater than .13

Two points should be underscored. First, the size of any first-strike
advantage is still relevant to stability. If the advantage to striking first is so
large that a state will attack even if it believes that the probability that war is
inevitable is less than 4, then there may be an unlimited exchange, even if all
of the other conditions needed to ensure stability are satisfied. If, as noted
earlier, L — f < W — Sin the preemption game, then the threshold needed to
justifying attacking is less than 3, and there are equilibria in which 7 and II

11 Trachtenberg (1985, pp. 156-61). See, however, the discussion of Soviet submarines in the
Caribbean during the crisis (Sagan 1985, pp. 112-18).

12 Quoted in Trachtenberg (1985, p. 161). Also see Burchinal’s comments on the Cuban
missile crisis in Kohn and Harahan (1988, pp. 92-5).

13 Lemma 6.1 demonstrates that these two conditions do imply this.



128 Nuclear deterrence theory

will attack. It is surprising, however, that the threshold needed to ensure
stability can be so low. As long as the threshold exceeds the lower bound of
1. the crisis will be completely stable. In particular, there will be no risk of a
general nuclear exchange if the threshold of inevitability at which it
becomes rational to attack is, say, 60 percent. But viewed from the
perspective of the conventional logic, a crisis in which the threshold is this
low will be likely to be described as highly unstable.

The second point to be emphasized is that the size of the lower bound on
the threshold needed to justify attacking if the crisis is to be stable is related
to the number of nuclear superpowers. If there are two superpowers in the
international system, this lower bound is . But if there are M nuclear
superpowers, then as is shown in the next chapter, the stabilizing lower
bound for the threshold is (M — 1)/M. To ensure stability, the payoffs and
first-strike advantages must be such that no state will attack unless the
probability that war is unavoidable is greater than (M — 1)/ M. Note that as
the number of nuclear superpowers increases, the lower bound needed to
ensure stability rises. Thresholds that were above this lower bound for some
M and therefore ensured stability may no longer exceed the lower bound as
M increases. If, for example, there are two nuclear superpowers, and the
threshold needed to justify attacking is 0.6, then the game is stable, because
(M — 1)/M = 0.5, and this is less than the threshold of 0.6. If, however, the
threshold remains 0.6, but there are instead three nuclear superpowers, the
crisis may no longer be stable, because (M — 1)/M =%, and this is less than
0.6. In this sense, then, stability decreases as the number of nuclear
superpowers increases.!*

The fourth condition needed to ensure stability is the formalization of
the third feature that characterized Schelling’s stylization. He assumed that
the states fully appreciated their situation. More formally, the fourth
condition is that the first three conditions are common knowledge. That is,
every player knows that the first three conditions are met and that the other
players know that they are met and that all the other players know that all
of the other players know that the conditions are met, and so forth. The first
three conditions describe an objective situation. But, as has been pointed
out many times (Jervis 1982-3), deterrence depends on beliefs about a
situation rather than on the actual situation. The same is true in game-
theoretic analyses of deterrence. If, for example, the actual payoffs satisfy
L— F>S— W, but the states believe that this condition has not been met,
then the game used to model this situation may not satisfy the first three

14 This conclusion is suggestive of Waltz’s conclusion (1979) that a bipolar system is more
stable and less prone to war than is a multipolar system. And although nuclear weapons
play no part in Waltz’s argument, the greater uncertainty associated with a greater number
of superpowers is the key to both his argument and that developed here.
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conditions, and there may be some chance of an exchange in this game. The
common-knowledge assumption is crucial because it links the states’ beliefs
about the situation to the situation.> The states are assumed to understand
fully the objective situation described by the first three conditions.

A final qualification about limited options is in order. Any option
satisfying the third assumption in a game that satisfies the other
assumptions will not be played in equilibrium. Of course, in games that are
more complicated than the preemption game in Figure 5.1 there may be
many more options than 4, and these other alternatives need not satisfy the
third assumption. In addition to the possibility of launching an unlimited
attack by playing A, there may, for example, also be an option A’ that
corresponds to launching a limited attack. Depending on the underlying
payofs, it might well be that, unlike A, a state would launch A4’ even if it
were confident its adversary was not launching a limited attack. If so, then
A’ would no longer satisfy the third assumption, and a state might play 4’ in
equilibrium (although it remains the case that 4 would not be played). The
set of games that satisfy the stabilizing conditions includes games in which
there are limited options. But, unfortunately, the preceding analysis is silent
on the question of the effects of first-strike advantages on the likelihood of
limited attacks. Whether these effects can be analyzed only in the context of
specific games or whether there are any more general results remains an
open question. Accordingly, it is important to remember that crisis stability
is interpreted narrowly here, as elsewhere (Schelling 1960, 1966; Jervis 1978;
Brams 1985; Brams and Kilgour 1987; O’Neill 1987; Powell 1987, 1988,
1989a, 1989c¢), as relating to the probability of a general or unlimited
exchange.

The strategy that leaves something to chance and brinkmanship have
attempted to solve the credibility problem by linking the use or threatened
use of force to states’ efforts to further their ends with a sanction that it is
assumed will not be imposed deliberately. This chapter has begun to move
away from this demanding assumption and its associated emphasis on the
risk of losing collective control by supposing instead that there is at least
one situation in which a state will deliberately be the first to impose the
brinkmanship sanction of a general nuclear attack. Assuming there to be
some advantage to striking first created this situation and led directly to
reconsidering the problem of crisis stability and preemption.

This reexamination identified four conditions that ensure that crises will

15 More precisely, the common-knowledge assumption ensures that the extensive game used
to model the crisis and especially the states’ uncertainty satisfies the first three assumptions.
Theorem 6.1 in the next chapter shows that any game satisfying these three assumptions is
completely stable.
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be stable despite there being an advantage to striking first. Because these
conditions are sufficient to ensure stability, their explication also identifies
the potential sources of instability, for if there is to be any instability, at
least one of the sufficient conditions must be violated. The first condition is
that a general nuclear attack may be the inadvertent consequence of
escalation, but it cannot be purely accidental. States always remain in
collective control. Second, whenever a state can attack, it can also attempt
to end the crisis by submitting to its adversary. If, moreover, its adversary
has not already committed itself to launching a general nuclear attack, the
crisis will end with the state’s submission, and there will not be a general
nuclear exchange. Third, if there are two nuclear superpowers in the
international system, then it must be that neither state will launch a general
nuclear attack unless it believes that the probability that a general nuclear
war is inevitable is greater than 4. If there are M nuclear superpowers in the
system, then it must be that no state will launch a general nuclear attack
unless it believes that the probability that a general nuclear war is in-
evitable is greater than (M — 1)/M. Because (M — 1)/M, which is a lower
bound on the threshold of inevitability needed to ensure stability, rises as
the number of nuclear superpowers in the system increases, a bipolar
system may in this sense be said to be more stable than a multipolar system.
The final condition needed for stability is that the states fully appreciate
their situation, in that the first three conditions are common knowledge.

The conventional logic of crisis stability holds that if there are first-strike
advantages, then there is some chance of an unlimited exchange. The larger
the advantage to striking first, moreover, the greater the chance of an
exchange. Yet the game examined here is completely stable even though
there are first-strike advantages in it. The conventional logic of crisis
stability focuses too narrowly on first-strike advantages. Stability results
from a more subtle interaction of several factors, of which the size of any
first-strike advantage is only one.

This chapter has presented a simple model of a crisis that is completely
stable despite the existence of first-strike advantages and has asserted that
four conditions ensure stability not only in this simple example but also in
any model satisfying these conditions. The first task in the next chapter is to
demonstrate that this assertion holds. The second task is to examine some
of the consequences of relaxing the four conditions and, especially, to
examine the effects on stability of relaxing the first condition and thereby
allowing for the possibility that the states may lose collective control. This
yields a result that is very close in spirit to the conclusions of the
conventional logic of crisis stability.



CHAPTER 6

Stability and the lack of control

The strategy that leaves something to chance and brinkmanship appeal
to a sanction that, it is assumed, would not be imposed deliberately. The
problem, then, is to explain how threats that ultimately rely on such a
sanction can be related to states’ attempts to protect their interests. The
preceding chapter began to move away from this assumption by discussing
the dynamics of escalation when there is one situation in which the sanction
will be imposed deliberately. This chapter describes the game-theoretic
foundations underlying that discussion. This is done in two steps. The first
is to define a large class of games. The games in this class are then shown to
be completely stable, even though there are significant first-strike
advantages. The probability of there being a general nuclear exchange in
any game satisfying the conditions defining the class is zero. These
conditions are sufficient to ensure stability.

Once sufficient conditions of this kind have been identified, it is natural to
try to investigate the consequences of relaxing them. The first assumption
to be relaxed will be the assumption that there are only two nuclear
superpowers. Here it will be shown that if there are M superpowers, and if
the threshold of inevitability needed to justify launching a first strike is
larger than (M — 1)/M, then the crisis will be completely stable. Therefore,
(M — 1)/ M forms a lower bound on the threshold of inevitability such that
the crisis will be stable as long as all of the states’ thresholds exceed this
lower bound.

The other assumption to be relaxed is that there is no autonomous risk
of an unlimited attack. There will, instead, be some risk that the states
may lose collective control. When this risk is reintroduced, it is no longer
possible to ensure that a crisis will be completely stable. It is, however,
possible to demonstrate that the probability that a first strike will be
launched deliberately, which will be denoted by %, is related to the
probability that a first strike will be launched because the states lose
collective control, &y, according to

-1
.97D<.97N<M(11 ™ 1) 6.1)
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where M is still the number of nuclear superpowers, and T* is the threshold
of inevitability needed to justify a deliberate first strike.

The possibility that a confrontation may end in a deliberate attack exists
because events are not fully under control, in the sense that no state controls
the actions and reactions of another. Accordingly, %), is akin to the
probability that the confrontation will end in a general nuclear exchange
because events are not fully under control in this sense. Similarly, & is the
probability that the confrontation will end in a general nuclear exchange
because of a collective loss of control. In this way, (6.1) establishes a formal
relation between the two senses in which events may not be fully under con-
trol that were described in Chapter 2.

The expression on the right side of (6.1) is an upper bound on the
probability that there will be a deliberate first strike. This upper bound is an
increasing function of the probability that the states will lose collective
control. As the autonomous risk of a first strike rises, the upper bound rises,
and in this sense the crisis becomes less stable. This suggests that the more
likely states are to lose collective control, the more likely the crisis may be to
end in a deliberate exchange because events are not fully under control in
the second sense.

The upper bound for the probability of a deliberate first strike is also
decreasing in the threshold of inevitability needed to justify launching a
deliberate first strike. As the threshold of inevitability rises, that is, as a state
must be increasingly confident that war is inevitable before it is willing to
attack, the upper bound falls. The crisis, in this sense, becomes more stable
as the threshold of inevitability rises.

There is, finally, a still simpler upper bound on this probability, one that
is very much in keeping with the conclusion of the conventional logic of
crisis stability. The probability of a deliberate first strike plus the
probability of a first strike resulting from a collective loss of control must be
less than or equal to 1: £, + % < 1. Using this to eliminate %y in (6.1) gives
Fp<M(1—T*). As the threshold of inevitability approaches 1, the
probability that a state will become sufficiently confident to launch a first
strike deliberately approaches zero. The conventional logic reached the
same conclusion: As the size of the first-strike advantage approached zero,
the threshold of inevitability needed to justify attacking deliberately, *,
approached 1, and that, it was presumed, reduced the chances of crossing
the threshold. The difference between the analysis that follows and the
conventional logic has less to do with their respective conclusions; these are
quite similar, although the former illuminates the importance of there being
some risk of a collective loss of control in ways that the latter does not.
The difference has more to do with the nature of the argument. The
conventional logic treats beliefs as being formally exogenous. The
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discussion that follows brings them into the analysis by making them
endogenous, albeit in a stylized way.

The class of games

Before formalizing the conditions that define the class of games and ensure
stability, it will be useful to state them less formally:

i The states always retain collective control over whether or not
there is a general nuclear exchange. There is no autonomous risk of
a state launching a first strike. An unlimited nuclear attack can
happen only if a state orders it. An accident may be responsible for
a false alarm, but that cannot trigger an attack directly. If the false
alarm is to lead to an attack, it can do so only indirectly by leading
a state to attack on the basis of it. Between any accident and an
unrestricted attack, there must be a decision to attack. Events are
not fully under control, but only in the second sense.

ii A state can launch an unlimited attack only once. Moreover, as
long as a state has the option of attacking, it can also attempt to
terminate the crisis by accepting its adversary’s terms. If the
adversary has not already attacked, accepting the adversary’s
terms will end the confrontation.

iii It is better to strike first than second. But even a successful first
strike cannot protect a state from such a devastating second strike
that the state would have preferred to have accepted its adversary’s
terms rather than suffer the second strike. Moreover, this
devastating second strike is sure to come, because it is also
assumed that an adversary will have the capability to launch a
retaliatory second strike if it is struck first and will believe doing so
to be in its interest.

iv  Assumptions (i), (ii), and (iii) are common knowledge. That is, each
state knows them, knows that the other states know them, knows
that the other states know that the other states know them, and so
forth.

Assumptions (iii) and (iv) ensure that the games in this class satisfy the three
stylized conditions that describe the problem of preemption. The other
assumptions are additional restrictions that are needed to ensure stability.

To formalize the class of games, denote this class by I, and let GeI” be a
finite game in extensive form with perfect recall. There are m + 1 players, m
states S;, S5, ..., S,, and Nature. To allow for the possibility of incomplete
information in G, there are also ¢, types of states S,, where S; fori=1,2,...,
t, denotes the ith type of state k.
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Of the states, only two, S; and S,, are superpowers. That is, only these
states can launch an unlimited, society-destroying attack. More formally,
let 4 denote the alternative of a massive nuclear attack in the game. Then
the only decision nodes in the tree at which 4 may be played belong to S,
or S,.

A first strike and second strike may be defined in the following way. Let Z
be the set of terminal nodes in GeI. S, will be said to have struck first if the
game ends at ze Z and S, was the first state to take 4 along the pathto z. S,
will be said to have struck second if the game ends at ze Z and S, struck first
along the path to z. Thus, S, may be said to have struck second in the game
in one of two ways: First, S, may explicitly have attacked by playing 4 after
S, played A. Second, S, may be assumed implicitly to have attacked after
S, played A. In this case, the payoffs incorporate the implicit assumption
that S, has launched a second strike. (This second, implicit way of modeling
a second strike is used in the preemption game in Figure 5.1, where the
payoff to playing Q after one’s adversary has played A4 is assumed to
correspond to launching a slow second strike. Allowing second strikes to be
modeled in this way makes it possible to study simpler games, like that in
Figure 5.1, in which only the decision to launch a first strike is modeled
explicitly.)

The first restriction on the members of I is that there is no autonomous
risk that a state will launch a general nuclear attack. This can be formalized
by assuming that Nature cannot attack. That is, the alternative 4 is not
present at any node belonging to Nature. This, however, is the only type of
accident that is prohibited. All other accidents (i.e., all other acts of Nature)
are allowed.

Turning to the second assumption, a state can attack only once. That s, a
state can play 4 only once along any path through the tree. Now consider
any information set 4 at which a superpower, say S, can attack. Because S,
still has the option of attacking, it must be that it has not previously
attacked. Accordingly, S, may try to terminate the crisis by accepting S,’s
terms. If S, has not already attacked, S,’s acceptance of S,’s terms will end
the crisis. More formally, let y be any node in 4. Then at y, §; may select an
alternative Q that represents S,’s attempt to quit the crisis. If S, has not
already attacked somewhere along the path to y, then the game will end if
S, chooses Q at y.

Some further notation will facilitate the statement of the third restriction.
Let & be an information set belonging to a superpower, say S, at which S,
has the alternative of attacking, 4. Then, by assumption (ii), S; has not
already attacked, and therefore it also has the alternative of attempting to
terminate the crisis by playing Q.

The nodes of & can be partitioned into two types. In the first, S; has not
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already been attacked. Letting ¢(4) denote this set, ¢(h) is the set of nodes in
h at which S; will be launching a first strike if it attacks. More formally,
ye@g(h)if yeh and S, has not played 4 along the path to y. Now let a(h) be
the set of nodes at which S, will be launching a second strike if it attacks: If
yea(h), then S, has launched an attack against S; somewhere along the
path to y. Then, a(h)= h— ¢(h).

Now let (4, ) be any perfect Bayesian equilibrium of any GeTI', where p is
asystem of beliefs, and m is a profile of the states’ strategies.! EUy(4|y, (1, 7))
is the expected payoff to S starting from y and assuming S plays 4 at y and
that play thereafter follows the strategies given by (u, n). EU(Q|y, (4, 7)) is
defined similarly, except that S quits at y. Because the game endsif S plays Q
at any ye(h), EUs(Q|y,(p 7)) = Us(Q|y) for any yed(h).

The formal restriction on the states’ payoffs may now be stated. Let / be
any information set such that 4 is reached with positive probability and
there is some possibility that the owner of 4 could launch a first strike at 4.
More formally, assume P(k|(u, 7)) > 0 and ¢(h) # &. Then the restriction on
the payoffs that formally defines assumption (iii) is

min {Us(Q|y)— EUs(4| y, (1, m))}
yeg(h)

>max {EUg(A|y,(n, ) — EUS(Q|y, (™)} 20 (6.2)

yea(h)
where (u, ) is any perfect Bayesian equilibrium, and, if o(#) is empty, the
maximum over yea(h) is defined to be zero. Note further that although it

simplifies some of the discussion, the game need not end if a state plays Q at
yed(h). All that is required is that (6.2) be rewritten as

ng(l;) {EUS(Q | Y, (ﬂ9 T[)) - EUS(A | Y, (ﬂ9 T[))}

> max {EUS(A |y9 (ﬂ9 T[)) - EUS(Q|y9 (ﬂ9 T[))} 2 0

yea(h)

and be assumed to hold for all perfect Bayesian equilibria.

This formalization requires some discussion. To see that (6.2) may be a
reasonable formalization of a technological state of affairs in which there
are first-strike advantages but even a successful first strike is certain to
bring a terribly costly second strike, consider the term on the left side of the
first inequality in (6.2). Because ye@(#), S has not already been attacked if
play has reached y. Thus, if S attempts to terminate the crisis by choosing Q,

! The weakest notion of a perfect Bayesian equilibrium is used here: It is a sequentially
rational assessment in which the only condition required of beliefs is that they satisfy Bayes’
rule where this rule applies. (See the Appendix following Chapter 8 for a discussion of this
type of equilibrium.)
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the crisis will end, because neither state has launched an unlimited nuclear
attack. The payoff to this outcome is Ug(Q| ). If, however, S attacks at y,
then S will have struck first when the game ends. The payoff to this is
EUy(A| y,(u, 7). Assuming that S’s first strike ensures that it will have to
endure its adversary’s second strike in any perfect Bayesian equilibrium,
then Ug(Q|y)— EUg(A|y,(u, 7)) is the difference between the payoff to
accepting an adversary’s terms, and in so doing avoiding an unrestricted
nuclear war, and the payoff to suffering an unlimited second strike. If
the nuclear era is such that it is better to strike first than second, but
even a second strike is certain to bring a devastating reply, then
Us(Q|y)— EUg(A|y,(u,m)) would seem to be large for all yedp(h).
Accordingly, the minimum of these differences over ¢(#) should also be
large.

Turning to the term on the right side of the first inequality in (6.2),
S’s adversary has already initiated a first strike because yea(h). Regardless
of what S does, it will suffer an unlimited first strike. Thus, EUs(4]|y,
(, ©)) — EUg(Q| y, (1, m)) is the difference between the payoff to a more
effective second strike and the payoff to a less effective second strike. With
large, relatively survivable strategic arsenals and no effective strategic
defenses, this difference would seem to be small for all yea(h).

This analysis focuses on general conditions needed to ensure stability,
not on whether or not particular games are stable. If, however, the stability
of a particular game were at issue, then there would be little point in trying
to see if the game satisfies condition (6.2). Determining this would entail
finding or at least characterizing that game’s perfect Bayesian equilibria.
But if one already had the game’s equilibria, one could simply look at them
to see if there were any chance of a general nuclear exchange. In evaluating
the stability of a particular game, it may be more useful to have a condition
that, although more demanding than (6.2), is easier to verify and, moreover,
does not depend on obtaining a game’s equilibrium strategies first. To this
end, let Z,(¢(h)) be the set of terminal nodes that follow the nodes in ¢(h),
given that the owner of 4 plays Q at A. Similarly, let Zy(a(h)) be the set of
terminal nodes that follow the nodes in ¢(h), given that the owner of 4 plays
Q at h. Finally, take Z ,(¢(h)) and Z ,(o(h)) to be the sets of terminal nodes
that follow, respectively, ¢(h) and o(h), given that the owner of A plays A4 at
h. Then suppose that the payoffs satisfy the following condition, which,
because it depends only on comparing the payoffs at terminal nodes, not on
deriving equilibrium strategies, is easier to verify than the relation defined
in (6.2): For all A such that ¢(h) # &,

yl:,,i(r;,l) {min {Us(z): ze Zo($(h(y)))} — max {Us(2): z€ Z {($(h(y)))} }
> max {max {Us(2): ze Z 4(o(h(¥)))} — min {Ug(2): ze Zy(a(h(»)}} = 0

yea(h)



Stability and the lack of control 137

If this inequality holds, then the relation described in (6.2) also holds, and
assumption (iii) is satisfied.

In terms of the game in Figure 5.1, this inequality requires L — F> S — W,
for

min {min {Us(2): ze Z,(p(h(y)))} — max {Us(z):z€ Z (d(H(y)))}}

ye@(h)
= min {min {L} —max {F,f}}
yed(h)
=L —F
> max {max {Us(2): ze Z (a(h(y)))} — min { Uy(z): z€ Zo(a(h(»))} }

= max {max {S} —min {W}}

yea(h)
=S—W

This, moreover, ensured the stability of this game.

The formalization of the final assumption is simply that assumptions (i),
(ii), and (iii) are common knowledge. In effect, this has already been done
implicitly by assuming that the game representing the situation satisfies (i),
(ii), and (iii).?

An impossibility theorem

Theorem 6.1 shows that in equilibrium, no state will ever launch an
unlimited attack. In particular, then, no state will ever launch such an
attack preemptively. No process, neither the reciprocal fear of surprise
attack nor any other, would make it rational for a state to launch such an
attack.

Theorem 6.1: The probability of an unlimited nuclear exchange in
any perfect Bayesian equilibrium of any Gel is zero.

The intuition underlying the proof of this theorem is straightforward.
The argument proceeds by contradiction. Assume that there exists an
equilibrium in which there is some chance of a deliberate first strike. Then
the assumption that the threshold of inevitability needed to justify

2 The interesting games in I" are those, like that in Figure 5.1, in which there are overlapping
information sets because of the states’ uncertainty about the order in which they move. In
such games, the problem of what are reasonable beliefs to hold off the equilibrium path may
be especially difficult. For example, the conjecture in sequential equilibria that if an
information set with probability zero is reached, then there will be no further deviations
from the equilibrium strategies may be incompatible with beliefs being structurally
consistent. See Kreps and Ramey (1987) for a discussion of this.
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attacking deliberately is greater than 3 implies that the probability that S,
will strike first, given that there will be a first strike, is less than . Similarly,
the probability that S, will be the first to strike, given that there will be a first
strike, is less than 1. This, however, immediately leads to a contradiction. If
the probability that .S, will strike first, given that there will be a first strike, is
less than 3 and the probability that S, will strike first, given that there will be
a first strike, is also less than 1, then the sum of these probabilities, which is
the probability that S, or S, will strike first, given that one of the states will
strike first, is less than 1. But this is a contradiction, for if only these two
states can attack, then the probability that one of them has struck first,
given that there has been a first strike, must be 1. This contradiction implies
that there cannot be an equilibrium in which there is some chance of a
deliberate first strike.

Before proving the theorem, it will be helpful to establish a lemma. To
state the lemma, let (i, 7) be any perfect Bayesian equilibrium of GeT', and
let 4 be any information set of G. Define a(h|(y, 7)) to be the probability
specified by (u, 7) that the owner of A will attack at 4. Then if the probability
of reaching A is positive [i.e., if P(k|(u, n)) > 0], then 4 is a strict lower bound
on the threshold of inevitability needed to justify attacking. That is, a state
can attack at 4 only if it believes that the probability that war is inevitable is
greater than 1. More formally:

Lemma 6.1: If P(h|(u,0))>0 and a(hl(p, 7)) >0, then P(c(h)|(u, 7))
> P(¢(h)|(n, M), or, equivalently, P(a(h)|(n, m)/ P(h] (g, 7)) > 3.

Proof: Let S be the owner of . For S to be able to attack at 4, 4 must be an
alternative at 4. By assumption (ii), if 4 is an alternative at 4, so is Q. Now, S
may have many options at 4 other than 4 and Q. But if a(h|(y, 7)) >0 in
equilibrium, then the expected value of selecting 4 must be at least as great
as that of choosing Q. That is,

Zh [EUs(A| y, (1, 1)) p(»)] = Zh [EUS(Qly, (1, M) m(¥)]

where p,(y) is S’s belief that it is at y conditioned on being in 4. Because
P(h|(y, m)) >0, Bayes’ rule applies at 4, and u,(y)= P(y|(u, n))/ P(h|(u, 7)).
Substituting for p,(y) and recalling that ¢(h) and o(h) partition A, the
preceding inequality may be rewritten to give

Y. [EUs(4]y, (s, m)— EUS(Q] y, (1, m)]- P(y|(n, m))

yeo(h)

2 ;h) [EUS(QI Y (/’t, 7'[)) - EUS(Aly, (u, n))] . P(Y|(N, 7'[))
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Thus,

I:max {EUS A|y,(ﬂ,7t))— EUS(Q' Vs ﬂaﬂ))}] h)l(ﬂ,ﬂ))

yea(h)

2 [g& {EUs(Qly, (u, m) — EUs(A] y, (n, 7«'—))}] " PR (n, )

Now note that if P(e(h)|(i, 7)) =0, then this inequality cannot be satis-
fied. The left side equals zero, and (6.2) and the assumption that P(A|(u, 7))
>0 mean that the right side is positive. Thus, if a(k|(u, 7))>0, then
P(o(h)|(n, 7)) > 0.

But assumption (iii) also ensures that the minimum on the right of the
inequality is greater than the maximum on the left. Hence, P(a(k)|(, 7)) >
P(¢(h)|(n, m). Because Pla(h)|(u, )+ P(p(h)|(, m)) = P(h|(n, @) and
P(o(h)|(n, 7)) > P($()| (1, m), then P(o(h)|(y, n))/P(h|(y,w))>3. That is, a
state will attack at A only if the probability that war seems unavoidable at A,
P(a(h)|(u, m))/P(h|(1, ™)), is greater than 3. [

Proof of Theorem 6.1: The proof of the theorem proceeds by contradiction.
Suppose, that is, that there exists some GeTI and some perfect Bayesian
equilibrium of G, (g, %), in which there is a positive probability of a nuclear
exchange. This will be shown to lead to a contradiction.

Let V be the set of nodes that are reached with positive probability and at
which a state will launch a first strike with a positive probability. That is,

= {y: P(y)>0, yep(h) for some h, a(h) > 0}. By assumption, at least one
state will attack with a positive probability in (u, ); so V # &. Moreover, V
can be partitioned into the sets of nodes belonging to each of the
superpowers. That is, let V; and V, be the nodes in V that belong to S; and
S,, respectively. Then V, and V, partition V.

The probability that S, will attack first, which will be denoted by #,, is
Fe =Y yev, ah(Y)| (1, M) P(y| (1, m)). In calculating Z,, it will be convenient to
sum over information sets rather than decision nodes. To do this, let H, be
the set of information sets at which there is some chance that S, or, if there is
incomplete information, one of the types of S, will launch a first strike.
Then H,={h:yeh,yeV,} for k=1,2. # may be rewritten as

9’1=h21; [ > a(hl(u,ﬂ))P(yI(u,ﬂ))]

yed(h)

= Y. alh|(n, M)PP(H)| (1, 7)) (6.3)

heHy

Then the probability that S, will attack first, given that there will be an
attack, is #,/%, where F = F, + F,. Moreover, the probability that S, will
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strike first, given that some state will strike first, is less than {: %,/ <1. To
see this, note that Lemma 6.1 gives P(a(h)|(y, 7)) > P(¢(h)|(u, 7). This yields

Fi= Y, alhl(um)P($()| (1, 7)) <hZ a(h|(u, ) P(o(h)|(, 7))

heHy eHj

Now, without loss of generality, suppose k= 1. Then

Fi < h;{ alh|(u, ;) Plo(M)| (u, 7))
€l
The sum on the right is less than or equal to the probability that S; will
launch a second strike. (It may be less, because H,; does not contain sets at
which ¢(h)=& and a(h)> 0.) But the probability that S; will strike second
is less than or equal to the probability that S, will strike first, because the
only way to reach nodes at which S; strikes second is through nodes at
which S, attacks first:

Fi < hz; alh|(p, W)PleW)|(u, ) < F, = F - F,

Solving for #,/% leaves #,/# <1. A similar argument gives &,/# <3.

This leads immediately to a contradiction. &#,/# is the conditional
probability that S, will be the first to attack, given that there will be a first
strike. Thus, the sum of #,/# and &,/# must equal 1. But if #,/% and
F,/% are both less than 1, then their sum must be less than 1. [ ]

Theorem 6.1 shows that any game satisfying assumptions (i), (ii), and (iii)
is completely stable. These conditions are almost necessary too. To see this,
note that assumptions (ii) and (iii) enter the analysis only in the proof of the
lemma. Accordingly, the conclusion of the lemma, which is that no state
will attack at any 4 that is reached with positive probability in any perfect
Bayesian equilibrium (u,n) unless P(a(h)|(u, 7))/ P(h|(4, 7)) >4, can be
substituted for assumptions (ii) and (iii), and the proof of Theorem 6.1 will
still go through. Assumption (i) and the conclusion of the lemma are also
necessary conditions in the loose sense that if either of them is violated, then
there exists at least one game that satisfies the other condition and in which
there is a positive probability of an attack. The preemption game in Figure
5.1 is an example of a game in which there is a positive probability of an
attack if the assumption that a state will attack only if the probability of its
launching a first strike is less than or equal to 3 is violated. The
brinkmanship model studied in Chapter 3 does not satisfy the first
assumption (i.e., Nature can attack), but this model does satisfy the other
assumption, for no state will ever launch a deliberate attack in this game.
The brinkmanship model violates only the assumption that the states retain
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collective control; yet there is still some chance of a general nuclear
exchange.

Figure 6.1 offers another example of a game that fails to satisfy the
conditions needed to ensure stability and in which there is some chance of a
general exchange. To see that the game actually is unstable, note that the
combination of strategies in which both 7and I7 attack and I7 believes that
it is at its upper decision node is a perfect Bayesian equilibrium in which
there is certain to be a general exchange. The source of this instability is
twofold. First, the game does not satisfy assumption (ii). When 7 must
decide what to do, it knows that I7 has not attacked. Formally, if y is I's
decision node and 4 is I’s information set, then yeg(h). I, however, cannot
end the crisis by playing Q as is required by assumption (ii). The game fails
to meet this condition. But as noted earlier, the assumption that the game
must end immediately if S plays Q at ye@(h) can be relaxed by adopting a
somewhat more general formulation of (6.2). Allowing for this, the game in
Figure 6.1 now cannot meet the requirements of this more general
formulation. This formulation demands that

yf:l;(l:) {EUs(Q1y, (1, m) — EUs(A| y, (4, m))}

>max {EUg(A4|y, (4, m)) — EUL(Q| y, (1, m))} =0

yea(h)

But in the equilibrium in which both states attack, the right side of the first
inequality for I is —10—(—8)= —2. The game also fails to satisfy the
conclusion of Lemma 6.1, which, if satisfied and in combination with

Figure 6.1. An unstable game in which quitting is impossible.

(-8,-8)

0,0
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assumption (i), would be sufficient to ensure stability. I’s (/) is empty; so
P(a(h)|(u, 7))/ P(h|(u, ))=0. Thus, I attacks in the perfect Bayesian
equilibrium that was just described, although P(a(h)|(u, 7))/ P(h|(p, 7)) <
This contradicts the conclusion of Lemma 6.1.

Some extensions

The final task of this chapter is to examine some of the consequences of
relaxing some of the assumptions that ensure stability and thereby define
the set of games I. In particular, the effects of allowing there to be more
than two superpowers and of reintroducing the possibility that the states
may lose collective control will be considered. Suppose that there are M
superpowers. Then it is easy to show that a game will still be stable if the
threshold of inevitability needed to justify a first strike is greater than the
lower bound (M — 1)/ M. As long as no superpower will launch a first strike
unless it believes that the probability that war is inevitable is greater than
(M —1)/M, the game will be completely stable. Because the lower bound
needed to ensure stability increases as the number of nuclear superpowers
in the system rises, stability in this sense may be said to decrease as the
number of nuclear superpowers grows.

Before establishing that (M —1)/M is a stabilizing lower bound, a
number of definitional difficulties must be finessed. As soon as there are
more than two nuclear superpowers, the question of who is attacking
whom becomes relevant. With only two superpowers, when one state
played A, it was implicit that this state was attacking the other nuclear
superpower. But who is being attacked if a state plays 4 and there are more
than two nuclear superpowers? One way to approach this would be to
identify an attack in terms of both the attacking state and the attacked
state. That, however, would be quite cumbersome. Another approach is not
to focus on the probability of having already been attacked but to focus on
the probability that no one has yet attacked. That is, regardless of the
difficulties of interpreting a(h) when there are more than two nuclear
superpowers, the meaning of ¢(4) remains clear. Along the path to any node
in @(h), no state has launched an unlimited attack at any other state. Then,
P(¢p(h)|(u, 7))/ P(h|(1, 7)) is the probability that war is avoidable at A, and
P(a(h)|(u, =)/ P(h|(p, 7)) will simply be taken to be 1— P(¢(h)|(u,n))/
P(h| (4, m).

Finally, it should be noted that with more than two nuclear superpowers,
condition (ii) may be less appropriate. If there are more than two
superpowers, it may be less reasonable to assume that a state can end the
crisis if it attempts to do so before another state has attacked. With three or
more nuclear superpowers, if one of them signals that it is not going to



Stability and the lack of control 143

attack, then each of the others still must be convinced that none of the
others will attack. Given these preliminaries, the following holds:

Theorem 6.2: Let I’ be derived from T by dropping the assumption
that there are only two superpowers. Then the probability of an
unlimited nuclear exchange in any perfect Bayesian equilibrium of
any G'el" is zero if the threshold of inevitability needed to justify a
deliberate first strike for every nuclear superpower is above the
lower bound (M —1)/M.

Proof: The proof of this theorem closely parallels that of Theorem 6.1.
Again arguing by contradiction, suppose that there exists some G’eI"” and
some perfect Bayesian equilibrium of ¢, (¢, '), in which there is some
chance of an unlimited nuclear exchange. This will be shown to lead to a
contradiction.

Let V be the set of nodes that are reached with positive probability and at
which a state will launch a first strike with a positive probability. Then, V =
{y: P(y)>0, yed(h) for some h, a(h) > 0}. By assumption, at least one state
will attack with a positive probability in (i, 7'); so V # &. As before, V can be
partitioned into the sets of nodes belonging to each of the superpowers.
That is, let V,,...,V,, be the nodes in V that belong to S,,...,S,,. Then
Vi,..., Vy partition V.

The probability that S, will attack first, which will be denoted by &, is
F = Z,,Evk alh(y)| (', T )P(y|(1', 7)) In the calculation of &, it will again be
convenient to sum over information sets rather than decision nodes. As
before, define H; to be the set of information sets at which there is some
chance that S, will launch a first strike: H, = {h:yeh,yeV,}, where
k=1,...,M. %, may be rewritten as

Fi= 3 [ > a(hl(/i',ﬂ’))P(yI(/»t’,ﬂ’))}
heHy | yed(h)

= Y alhl(w, 7 )P@h)| (W, ) (6:4)

heHy
Then the probability that .S, will attack first, given that there will be an
attack, is %,/%, where F =Y, .
By assumption, a state can attack at an information set 4 that is reached
with positive probability only if
1—P@h)| (', 7))/ P(h] (W', ')
= P(o(h)| (', ="))/P(h| (', %) > (M — 1)/M
This, in turn, implies that a state will attack only if the conditional
probability of that state actually being the first to attack in the game is also
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less than 1/M. That is, a state can attack only if %,/# < 1/M. To see this,
note that the previous relation gives P(a(h)|(1', 7)) > (M — D)P(¢(h)| (1, ')).
This and (6.4) then yield

(M—1)F=(M— l)hZH alh| (', W) P(Sh)| (1, ')

< Y. alhl(, W )Poh)| (4, 7))
heHy
Letting k=1, then (M —1) %, <Y, _y, alh|(', 7" ))P(e(h)| (', 7). The term
on the right is less than or equal to the probability that .S, will attack after
some other state has already attacked. But the probability that S, will strike
after some other state strikes is less than or equal to the probability that
S5, ..., Sy will strike first. That is,

(M=) F < 3 ahl(s, K VPO, W) S Fot oo+ Fy=F —F,

Solving for &,/ gives #,/F < 1/M. A similar argument yields %,/ # <
1/M for all .

As before, this leads immediately to a contradiction. %/ is the
conditional probability that S, will be the first to attack, given that there
will be a first strike. Thus, Y X, #,/F = 1. But if #,/# < 1/M for all k,
then their sum must be less than 1. ]

The problem of crisis stability focuses on the probability of a deliberate first
strike. Given this focus, the assumption that there was no autonomous risk
of a first strike and that states always retained collective control of whether
or not there would be a general exchange was a useful point of departure for
the analysis of this problem. But it is also important to attempt to
determine the consequences of relaxing this assumption by reintroducing
the possibility that the states will lose collective control.

The following establishes an upper bound for the probability of a
deliberate first strike. This upper bound is a function of the autonomous
risk of a first strike and of the threshold of inevitability needed to justify
attacking. This upper bound defines a relation between the probability of
the states losing collective control and the probability of a deliberate first
strike.

Some preliminaries are needed in order to derive this upper bound. Let
I'” be the set of games described earlier, except that games in I"” need not
satisfy conditions (i) and (iii). That is, Nature may attack in G"eI'”, and as
yet nothing has been said about the threshold of inevitability required to
justify a deliberate attack. In keeping with the notation employed, let
Fi, ..., Fu, respectively, be the probabilities that S, ..., Sy, will launch a
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first strike deliberately. Also let % be the probability that a first strike will
be launched because the states lose collective control. That is, %y is the
probability that Nature will strike first. Finally, take T* to be the threshold
of inevitability needed in order to justify a first strike. That is, a state will
attack at an information set that is reached with positive probability only if
Plo(W\(u", n"))/P(h| (4", =")) > T*. Then:

Theorem 6.3: Let (1',=") be a perfect Bayesian equilibrium of
G"el™". If there are M nuclear superpowers and the threshold of
inevitability needed to justify a deliberate first strike is T*, then

1
(1) 7o

where Fp, =YY | &, is the probability of a deliberate first strike.
If M(1 —T*) <1, then

1 -1

Proof: The proof of this so closely parallels that of Theorems 6.1 and 6.2
that only a sketch is required. Although Nature can now attack, (6.3) still
holds. That is, for k=1,..., M,

P = hZﬁ alh|(u”, ") P(@R)| (1", m"))
Now, if a(h|(¢”,®")) >0, then

P(o(h) | (", n"))/P(h](u", ")) > T*
This gives

Pla(h)|(w",=") > (T*/(1 = T*) P($(h)| (1", "))

Substituting this into the expression for %, and focusing for the moment on
k=1 leaves

(TH[1=T*) #, < 3 alhl(u', )P (', )
€l
The term on the right is less than or equal to the probability that S, will
launch a second strike. But the probability that S, will strike second is less
than or equal to the probability that it has been attacked first, which is
less than or equal to &, + %3+ + F), + Fy. That is, (T¥/(1 - T*)F, <
122 #+ Fy. A similar argument shows that (T*/(1 — T*) #< Y™ , # +
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Fy for all j. Summing these inequalities and collecting terms gives
(I/[IM(1 =T*] - 1) Fp < Fy. |

Theorem 6.3 is in some ways a generalization of Theorem 6.1. Let M =2.
Then (6.5) gives [(2T* —1)/(1 — T £, + F,) < Fy. If, as is assumed in
Theorem 6.1, there is no autonomous risk, then the probability that Nature
will attack is zero: %y = 0. Then as long as T* > 1, the inequality reduces to
F, + F, <0. But this is impossible, for &, and &, are probabilities and
must be greater than or equal to zero. This contradiction implies that there
is no equilibrium (1", #”) in which there is a positive probability of a general
nuclear exchange. The game is completely stable, and this is precisely the
conclusion of Theorem 6.1.

To assess the effects of changes in % and T* on the upper bound of the
probability of a deliberate first strike, observe that the upper bound
[1/(M(1 —T*)— 1] 1%, is increasing in %.> As the probability of losing
control increases, the upper bound of the probability of a deliberate first
strike increases, and in this sense the crisis becomes less stable. It is also
easy to see that the upper bound is decreasing in T*; that is,
O[1/(M(1 —T*))— 1]~ %,/0T* <0. Thus, as the threshold of inevitability
needed to justify attacking rises, the upper bound falls, and in this sense the
crisis becomes more stable. This is quite similar to the conclusion of the
conventional logic of crisis stability. Accordingly, Theorem 6.3 may be seen
as providing some more secure game-theoretic foundations for this
conclusion.

A final step makes this similarity still clearer. The probability that there
will be a deliberate first strike or an accidental first strike must be less than
or equal to 1: ¥, + #y < 1. Combining this inequality and (6.5) shows that
the probability of a deliberate first strike is less than M(1 —T*); that is,
Fp< M(1—T*). If, therefore, the threshold of inevitability needed to
justify a deliberate first strike is so high that T* is close to 1, the probability
of a deliberate first strike is small. This is essentially what the conventional
logic implied. If the first-strike advantages in this logic were small, then the
threshold t* would be close to 1. That is, t* =1 —(F— S)/(C — S) would be
near 1 when the size of the first-strike advantage, F— S, was close to zero.
This presumably made the threshold difficult to cross and the chances of a
deliberate first strike small.

The differences between the discussion here and the conventional logic
have less to do with their conclusions and more to do with the support for

3 Although the upper bound is increasing in %, this must be interpreted carefully. It is
unclear whether or not the actual game can be modified so that in equilibrium, %y will be
larger, nor is it clear whether or not that would actually increase the equilibrium probability
of a deliberate general nuclear exchange.
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them. The risk of losing collective control plays no explicit part in the
conventional logic. But this discussion has shown that the risk of a
deliberate first strike depends in an important way on there being some risk
of losing collective control. If there is no risk, then crises, or at least the
models of them, may be completely stable despite the existence of large
first-strike advantages. This discussion, unlike the conventional logic, has
also brought states’ beliefs within the scope of analysis, albeit in a very
simple and stylized way.

This chapter and the last have begun to move away from what in many
ways is the defining assumption of the approach to the credibility problem
based on the strategy that leaves something to chance and brinkmanship.
This approach assumes that there is no situation in which the sanction will be
imposed deliberately. These chapters have examined the dynamics of crises
in which there is a first-strike advantage and consequently at least one
situation in which the sanction will be imposed deliberately. When it is
better to strike first than second, a state will attack if it becomes sufficiently
confident that war is unavoidable. The question then becomes whether or
not a state can become this confident. To address this, beliefs must be
brought within the analysis.

The examination shows that in the models, the probability of a deliberate
first strike and the probability of a first strike resulting from a collective loss
of control are related. There is a connection between the risk that exists
because events are not fully under control in the sense that no state can
control the actions and reactions of another and the risk that arises because
events are not fully under control in the sense that the states may lose
collective control. As the risk of losing collective control rises, the upper
bound on the risk of a deliberate attack rises, and the crisis in this sense
becomes less stable.

The next chapter takes a larger step away from the assumption that the
sanction will not be imposed deliberately. In the strategy of limited
retaliation, the use or threatened use of force is linked to states’ attempts to
secure their ends through an array of punishment. In this second approach
to linking force to states’ political objectives, the sanctions are imposed
deliberately, but more important, the sanctions themselves are limited.
Because they are limited, they leave an adversary with something more to
lose. An adversary remains vulnerable to further punishment, and the fear
of still greater losses may bring it to terms. The next chapter examines the
escalatory dynamics of the strategy of limited retaliation.



CHAPTER 7

The strategy of limited retaliation

Both the strategy that leaves something to chance and the strategy of
limited retaliation attempt to relate force or the threat of it to states’ efforts
to further their ends in the same fundamental way. An array of limited
options bridges the gap between doing too much and doing too little. What
distinguishes these two approaches to the credibility problem is not their
reliance on limited options but rather the way in which these options are
differentiated. Each option in brinkmanship generates a different risk of
losing collective control of events. Each option in the strategy of limited
retaliation inflicts a different level of punishment.

The strategy that leaves something to chance and the analysis of the
problem of crisis stability are direct conceptual descendants of the doctrine
of massive retaliation. All of them ultimately appeal to the same sanction: a
massive, unlimited nuclear attack. The strategy of limited retaliation, in
contrast, relies on limited sanctions. The crucial difference between a
limited sanction and an unlimited sanction is that if a state imposes the
former on an adversary, the adversary still has something left to lose, and
the fear of losing what is left may constrain its retaliation. Imposing an
unlimited sanction, however, leaves an adversary with nothing more to lose
and little, if any, incentive to restrain its retaliation. And it is the expectation
that an unlimited attack will provoke an unlimited retaliation that makes
the cost of deliberately imposing an unlimited sanction greater than the cost
of not doing so. This, in turn, renders the threat to impose this sanction
deliberately incredible and necessitates that there be some risk that the
states will lose collective control over this sanction.

A state uses the array of punishment to exert coercive pressure on an
adversary in the strategy of limited retaliation. By exercising a limited
option that leaves an adversary with something more to lose, a state tries to
make the threat of future punishment sufficiently credible that an adversary
will conclude that the cost of continuing would be greater than the cost of
submitting. Should this threat of future destruction prove insufficiently
credible, then this state can exercise another limited option in order to make
the prospect of still further destruction more credible. This chapter
examines the dynamics of limited retaliation. What, for example, are the
consequences of a finer array of punishment? Does having smaller, less
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destructive limited options make war more likely because a state is more
likely to use them if challenged? Or do these options make war less likely
because a potential challenger, recognizing that a challenge is more likely to
be resisted, is less likely to mount one?

The complete-information model

The model of the strategy of limited retaliation, like the brinkmanship
models, reflects an implicit judgment about what the essence of the problem
is. Three features seem essential to this strategy. As with brinkmanship,
there must be a series of decisions. A confrontation entails a sequence of
decisions whether or not to escalate. Second, if a state escalates, it does so by
inflicting a limited amount of punishment on its adversary. Finally, there is
some source of uncertainty.

The first feature is formalized in the model by letting the potential
challenger decide if it will accept or dispute the status quo. If it challenges
the status quo, then the burden of decision shifts to the defender, who must
choose to quit, to launch an unlimited attack, or to escalate by exercising a
limited option. If the defender escalates, the challenger must then decide to
quit, to launch a massive attack, or to escalate by exercising a limited
option. The confrontation continues in this way, with the onus of escalation
shifting back and forth.

The second feature is modeled by assuming that whenever a state
escalates, it does so by destroying some part of its adversary. In this
gruesome strategy, a state may, for example, destroy one of its adversary’s
cities to make the threat of future destruction more credible. As the
confrontation continues, the damage done increases as each state destroys
more and more parts of its adversary.

Incomplete information about an adversary is the source of uncertainty
in the model. Neither state is certain of the type of its adversary. As in the
model of longer brinkmanship crises, each state believes that there is some
chance that it is facing an adversary that is wedded to a strategy of always
meeting escalation with escalation.

The complete-information game is illustrated in Figure 7.1. There are
two players, a challenger, C, and a defender, D. The challenger and defender

Figure 7.1. Limited retaliation with complete information.
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start with some initial level of resources, rc and ry, respectively. In the
gruesome story underlying the strategy of limited retaliation and the model,
rc may be thought of as the number of the challenger’s cities, and rj, as the
number of the defender’s cities.

The challenger begins play by choosing one of three alternatives. It can
refrain from challenging the status quo by playing ~ E, in which case the
game ends immediately. Or C can launch an unlimited nuclear attack
against D by choosing A. This, too, ends the game: C’s unlimited attack
destroys D, and D is assumed to destroy C in retaliation. Finally, C may
exploit the situation by challenging the status quo with E. This shifts the
onus of escalation onto D.

A challenge forces the defender to decide which of three courses to
follow. First, it can submit to the challenge by quitting the crisis with Q.
Second, D can launch an unlimited attack against C by following A. As
before, an unlimited attack ends the game in both states’ utter destruction.
Third, D can escalate, E, by launching a limited attack against C. Thatis, D
can destroy part of what C values. Let pj, be the amount of punishment the
defender inflicts on the challenger with a limited attack. Then, D’s limited
attack leaves ro — p, of C intact.

The defender’s limited attack shifts the onus of escalation back to the
challenger. C must now decide among the three options that just
confronted D. C can submit by playing Q and end the game. C can end the
game by launching an unlimited attack against D. Or C can launch a limited
attack against D with E. This attack destroys part of what D values and
leaves D with rp — pc, where pc is the amount of punishment C’s limited
attack inflicts.

The challenger’s limited attack shifts the onus of escalation back to the
defender. As before, D must decide if it will quit the crisis by submitting to
C, launch an unlimited attack, or carry out a limited attack. A limited
attack again destroys pp of C. After D’s second limited attack, C is left with
rc—2pp.

The game continues in this way, with the onus of escalation shifting back
and forth. C’s mth limited attack leaves rp — mp of D intact, and D’s mth
attack leaves r, —mpy, of C intact. Once it starts, escalation can end in only
one of three ways. First, one of the states might end the crisis by submitting
toits adversary. Second, at some point one of the states might end the game
by launching an unlimited nuclear attack. Third, “a war of endurance might
bleed both sides to death” (Schelling 1962b, p. 429). Each state might con-
tinue to launch limited attacks against its adversary until one of them
was completely destroyed, albeit incrementally. Symbolically, the attacks
might continue until ro — Mppp=0 or rp,— Mcp-=0, where M, is the
number of limited attacks that it takes D to leave C with nothing more to
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lose, and M, is the number of limited attacks that it takes C to leave D with
nothing left to lose. (To simplify matters, rc and rj, are assumed to be evenly
divisible by p, and p., respectively.) Once one of the states, say C, is
completely destroyed (i.e., once m= My, s0 that ro — mp,=0), then it has
nothing left to lose and is assumed to destroy D in retaliation. Thus, the
game can continue only as long as both states have something more to lose.
As soon as one of the states has nothing left to lose, it destroys its adversary,
and the game ends. In terms of the game tree, this means that the last
decision node in the tree is characterized by a choice between quitting and
completely destroying an adversary. D’s last decision node in Figure 7.1, for
example, is the last decision node precisely because at this point all that
remains intact of C is pp, and D must choose between quitting and
attacking. If D quits, the game ends with D’s submission. If, however, D
attacks, C is left with nothing more to lose and is assumed to retaliate
against D with an unlimited attack. The game ends in the complete
destruction of both C and D.

It will be convenient to use the following notation for the states’
strategies and information sets, which, in the complete-information game,
are individual decision nodes. Paralleling the notation used in the
brinkmanship model, let Q(1) be the information set at which the defender
must carry out the mth limited attack on C if it is to escalate. Similarly,
Qc(m) for m>1 is the information set at which C must carry out the mth
limited attack on D ifit is to escalate. At Q(0), Cis deciding whether or not
to dispute the status quo. C has to choose one of three alternatives at Q(m).
It can quit, escalate by launching a limited attack, or launch an unlimited
attack. Consequently, C’s behavioral strategy at Q.(m) can be described by
the probability that C will escalate, e.(m), and the probability that C will
launch an unlimited attack, a-(m). The probability that C will quit the crisis
is given by 1 — ec(m) — ac(m). D’s behavioral strategies are labeled similarly.
At Qp(m), D will escalate with a limited attack with probability ep(m), will
launch an unlimited attack with probability ap(m), and will quit with
probability 1 — ep(m) — ap(m).

To complete the description of the game, the payoffs must be specified.
This specification is necessarily somewhat arbitrary. There are no clear
historical parallels to the situation underlying the strategy of limited
retaliation that might be used to inform the specification of the payoffs, nor
are there any widely accepted analogies in the existing work on limited
retaliation that might help to specify the payoffs. Fortunately, the
equilibrium outcomes of, at least, the complete-information game turn out
to be quite insensitive to the precise specification of the payoffs.

Two considerations motivate the specification of the payoffs that will
be assumed here. First, if the game ends after a state has suffered a given
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level of destruction, the payoff to this outcome should reflect the amount
of punishment a state has endured. Second, the incremental value of
prevailing or the incremental cost of quitting should fall as the amount of
damage a state has suffered increases. The idea here is that the more
destruction a state has endured, the less able it will be to exploit the fruits of
its “victory.”

To formalize these motivations, note that the game can end in one of
three ways. The game might end with continuation of the status quo if C
decides against making a challenge. Let the payoff to this be (¢, rp), where
the first element in the ordered pair is the challenger’s payoff. Alternatively,
the two states might completely destroy each other, either because one of
them launches an unlimited attack or because they bleed each other to
death. Normalize the payoff to this outcome to be (0, 0).

The third way that the game might end is that one of the states might
submit. Suppose that the challenger prevails because the defender submits.
In this outcome, the challenger’s payoff should reflect the influences of,
first, the loss due to the limited punishment that D may have wrought
on C and, second, the gain due to prevailing. The precise payoff to the
challenger if it prevails after suffering m limited attacks will be taken to be
(re—mpp) + (1 —mpp/rc)we. The first term reflects the first motivation, for
(rc — mpp) is what remains of the challenger after it has endured m limited
strikes. The second term reflects the second motivation. It is the incremental
gain due to prevailing after suffering m limited attacks, where w, is the
incremental gain the challenger receives if the defender does not resist the
challenge. Note that the size of the gain depends on m. The greater m, that s,
the more damage the challenger has suffered, the smaller the incremental
gain of prevailing. In the extreme, if the defender bleeds the challenger to
death (i.e., if rc — mpy, =0), then the incremental gain of prevailing will be
zero: (1 —m(pp/rc))we = 0. Prevailing is worthless if in doing so one has been
bled to death.

Similarly, the payoff to D of submitting after C has attacked m times is
taken to be (rp, — mpc) — (1 —mpc/rp)sp, where sp is the incremental loss that
D will suffer if it does not resist C’s initial challenge. That is, if D submits as
soon as C challenges the status quo, its payoff will be r,—sp, and its
incremental loss will be s5,. Again, the first term reflects how much of D has
not been destroyed when the confrontation ends. The second term is the
incremental loss of submitting.

Finally, suppose that the game ends because C submits to D. The payoff
to D of prevailing after having endured m limited attacks is (rp, —mp¢) +
(1 — mp¢/rp)wp, where wy, is the incremental gain that prevailing brings if D
can do so by coercing C into submitting after it has challenged the status
quo but before it has carried out a limited attack against D. As with C, the
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incremental gain that D derives from prevailing declines as D suffers more
damage. The payoff to C of submitting after having been attacked m times
is (rc —mpp) — (1 —mpp/rc)sc.

It will also be assumed that the payoff to prevailing after having been
attacked m times is greater than the payoff to submitting after having been
attacked m times. This implies we + s >0andwp +s,>0. Andaslongasa
state has something left to lose, submitting will be assumed to be better than
being completely destroyed. This leaves ro — s >0 and rp, — sp > 0. Finally,
it will also be convenient to assume that the difference between winning and
losing is less than the absolute payoff tolosing. That is, rc — s¢ > w¢ + s¢c and
rp—Sp>wp+Sp.

Thinking of the game as a rather unusual auction may help to clarify its
basic structure. The challenger starts with r. dollars, and the defender
begins with r, dollars. Initially the auctioneer asks the challenger if it wants
to participate in the auction; the defender has no choice in the matter. If the
challenger does not, then there is no auction, and the challenger and
defender are left with r; and rp,. If the challenger wants to participate, then
the auction begins. The object of the auction is to coerce one’s adversary
into submitting, which in the auction is the equivalent of passing when it is
one’s turn to bid. The defender has the first bid. If it passes, the auction ends,
and the challenger receives w, and therefore ends the auction with r¢ + we.
The defender has to pay sp, and ends with r, — sp,. If the defender decides to
bid, then the auctioneer subtracts p,, from the challenger. The challenger is
then left with . — p;, and must decide whether or not to bid. If it passes, the
game ends. The defender receives wy and leaves the auction with ry + wy,
The challenger pays an additional (1—(pp/rc))sc for passing after the
defender has bid once and is left with a total of rc — pp — (1 — (pp/re))se. If,
instead, the challenger bids, p. is subtracted from the defender, leaving it
with r;, — pc. If the defender then passes, the game ends, and an additional
(1 —(pc/rp))spis subtracted from the defender, which leaves it with a total of
rp—Pc— (1 —(pc/rp))sp. The challenger receives (1—(pp/ro))we for
prevailing and ends the game with rc — pp + (1 — (pp/rc))wc. If the defender
bids a second time, then pj, will be subtracted from the challenger a second
time, leaving it with ro — 2pp. It will then be the challenger’s turn to bid. If
the challenger passes, the defender receives (1 — (p¢c/rp))wp, leaving it with
rp—pc+(1—(pc/rp)wp, and the challenger loses (1 —2(pp/rc))sc, which
gives it a total of ro—2pp— (1 —2(pp/rc))sc- If the challenger bids for a
second time, an additional p. is subtracted from the defender, leaving it
with r, —2pc. The auction continues in this way until one of the states
passes. If no state passes, then eventually one of the states runs out of
money. At that point, the auctioneer ends the auction by subtracting from the
other state whatever money it still has, and both states are left with nothing,
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This auction differs in a subtle yet crucial way from the dollar auction
that has been used to study escalation (Shubik 1971; O’Neill 1986). In the
dollar auction, two players bid for a dollar. The bidding alternates back and
forth until one of the players passes. At that point, the dollar is awarded to
the player who did not pass. The important feature of this auction,
however, is that regardless of which player wins the dollar, both players pay
the auctioneer their bids. If, for example, one player has bid seventy-five
cents and the other then passes after having previously bid fifty cents, the
first player receives the dollar and pays seventy-five cents, for a gain of
twenty-five cents, whereas the second player pays the value bid and loses
fifty cents.

Shubik (1971) and O’Neill (1986) offered the dollar auction as a model of
escalation and noted that, in practice, the bids often exceed a dollar. That is,
individual players often end up paying more than the value of winning.
Schelling explicitly appealed to a variant of the dollar auction as an analogy
for the strategy of limited retaliation. “In early days, San Franciscans, it is
said, conducted ‘duels’ by throwing gold coins one by one into the Bay until
one or the other called it quits” (Schelling 1962a, pp. 243-4).

The dollar auction, however, is a problematic analogy for the strategy of
limited retaliation. In this strategy, a state “bids” by attacking its adversary
and destroying part of it. If a state bids, it does not pay the price ofits bid; its
adversary does. This is in keeping with the game and auction described
earlier, but it does not accord well with the dollar auction. If a state bids in
the dollar auction, it, not its adversary, pays the price of the bid.
Accordingly, the auction described earlier would seem to provide a better
analogy for the strategy of limited retaliation than would the dollar
auction.

It is also interesting to compare brinkmanship and the strategy of limited
retaliation as different kinds of auctions. A comparison of the brinkman-
ship model examined in Chapter 3 and the model of limited retaliation
developed here shows them to be quite similar. At each stage in each model,
the states must choose from the same set of alternatives. They can quit,
escalate, or attack. The primary difference between these models is that in
the brinkmanship model, escalation imposes a cost not only on an
adversary but also, because the autonomous risk is shared, on the
escalating state. As escalation continues in this model, the cost of making
the next bid, that is, the autonomous risk of disaster, rises. The
brinkmanship model, then, is like an auction in which bidding is costly to
both participants and in which the cost of bidding rises as the bidding
continues. Indeed, a state’s resolve in this auction interpretation of
brinkmanship is essentially a measure of the maximum cost a stateis willing
to pay in order to make the next bid, given that if it bids, its adversary will
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then submit. In sum, escalating in the dollar auction, in the strategy of
limited retaliation, or in brinkmanship imposes direct costs on, respectively,
the escalating state, the escalating state’s adversary, or both states.

The complete-information equilibria

This section describes the sequential equilibria of the complete-
information game.! The equilibria suggest that each state would like to
have a large number of limited options, each of which would, if exercised,
inflict relatively little punishment on an adversary. Moreover, each state
would also like to have counterforce options capable of disrupting an
enemy’s attack. Surprisingly, counterforce options are still desirable even
though a state cannot use them to limit the total amount of damage that an
adversary can inflict.

The number of limited attacks that it takes for a state to leave its
adversary with nothing left to lose is crucial to the analysis of the game’s
equilibria. Recall that M, is the number of limited attacks that it takes C to
leave D with nothing more to lose. Having nothing left to lose means rj, —
M_pc=0.This gives M. = rp/pc, where, as noted earlier, rp is assumed to be
evenly divisible by p.. Similarly, M}, is the number of limited attacks that it
takes D to leave C with nothing left to lose, and Mp=r./pp.

Proposition 7.1: The complete-information game has a unique
sequential equilibrium. If Mo > My, C challenges the status quo in
this equilibrium, and D submits immediately. If M, > M, C does not
challenge the status quo.

Proof: This proposition is proved in two steps. The first is to determine
which state owns the last decision node in the game tree. Once that has been
done, the states’ strategies will be obtained through backward program-
ming. M, and M, determine which state owns the last decision node in the
game. To see this, suppose M, > M,,. Then, after each state has attacked
M, — 1 times, the challenger will have ro — (M, — 1)pp > 0, and the defender
will have rp—(Mp—1)p.>0. Substituting r./p, for My shows that the
challenger has p, left. Note that because the defender is the first to carry out
a limited attack in the game, the decision of what to do after each state has
attacked M, — 1 times belongs to the defender. But because the challenger
has only pp, left to lose, the defender will leave the challenger with nothing
left to be lost if it attacks. Thus, if the defender attacks for the Mpth time,
the challenger will be completely destroyed, and the game will end in both

! Because the game has perfect information, the set of subgame perfect equilibria is the same

as the set of sequential equilibria. See the Appendix following Chapter 8 for a discussion of
the relation between subgame perfect equilibria and sequential equilibria.
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states’ complete destruction. The last decision node in the game belongs to
the defender and is the node at which it must decide whether or not to
attack for the Mpth time if M. > Mp. (In the game in Figure 7.1, M >
Mp=4) A similar argument shows that the challenger owns the last
decision node if M, < M),

Backward programming then gives the states’ strategies. With M. > M,
the last decision node in the tree belongs to D. That is, Qp(M)) is the last
decision node in the tree. If D attacks there, the game ends, and D’s payoff
will be zero. If D submits, its payoff to quitting will be positive. More
precisely, D and C must have attacked each other M}, — 1 times for the game
to have reached Q,(Mp). Hence, D’s payoff will be (rp,—(Mp— 1)pc) x
(1 —(sp/rp))> 0. Submitting at Qp(Mp) is D’s best response.

The node immediately preceding Q,(M ), which is C’s last decision node,
is Q(Mp—1). If C launches an unlimited attack, it will receive zero. If C
submits, it will do better, obtaining a positive payoff of pp(1 —(sc/rc)) > 0.
But if C attacks, then D will quit at Q,(Mp) without inflicting any more
punishment on C. That will leave C with pp(1+(wc/rc)). Because
pp(1 +(we/rd)) > pp(1 —(sc/rc)), attacking at Qo(Mp—1) will offer C the
highest payoff.

The node immediately preceding Qo (Mp, — 1)is Qp(Mp — 1). If D launches
an unlimited attack there, its payoff will be zero. If D launches a limited
attack, C will then retaliate with a limited attack at Q (M, — 1), after which
D will submit at Qp(M}). Because it is better to submit earlier rather than
later after having endured more punishment, D will submit at Q,(Mp, —1).

Because D will submit at Qp(My, — 1), Cwillescalate at Q(Mp — 2), which
is the node immediately preceding Q,(Mp,— 1). Continuing in this way
shows that C will escalate at every Q(m) and that D will submit at every
Qp(m). In particular, C will exploit the situation at the beginning of the
game, and D will submit as soon as it is challenged.

A similar argument shows that if Mj, > M_, then C owns the last decision
node, and therefore C will quit at every 2(m), and D will escalate at every
Qp(m). Hence, at the beginning of the game there is no challenge. [ ]

Before turning to the role of counterforce options and the consequences
of having smaller, less destructive limited options, three remarks are in
order. First, Proposition 7.1 may be stated more concisely. The state with
the largest M prevails. (If M, = M/, then because D is the first to attack, C
still prevails.) Second, just as no state would ever deliberately launch an
unlimited attack in the brinkmanship model, no state ever launches an
unlimited attack here. Although each state, throughout the confrontation,
has the ability to destroy its adversary with an unlimited attack, it never
resorts to that. Of course, this should be expected in a sequential
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equilibrium, for after the nuclear revolution the threat to launch this type of
attack is inherently incredible. Finally, the equilibrium of the complete-
information game is quite insensitive to the precise specification of the
states’ payoffs. Essentially, all that is required is that the payoffs satisfy two
conditions. First, the payoff to escalating must be sufficiently high, and the
cost one must pay to escalate must be sufficiently low, that a state will
escalate if it is certain that its adversary will submit immediately thereafter.
In this model, this holds because escalating by launching a limited attack is
assumed to hurt an adversary, but not the attacking state. Interestingly, this
formal condition is quite similar to one that Kahn takes to be characteristic
of the general problem of escalation: “The value of victory is usually great
enough so that it would be worth while for either side to raise its
commitment enough to win the escalation if it were certain that the other
side would not counter the rise” (Kahn 1965, p. 7; emphasis in the original).
The second condition required of the payoffs is that the owner of the last
decision node in the tree quit. This holds in the model, because if a state
attacks at this node, it will leave its adversary with nothing left to lose, and
the adversary is assumed to retaliate by completely destroying the other
state. Given this outcome to attacking at the last decision node, the owner
of this node will prefer quitting to attacking. With these two restrictions
and complete information, then, regardless of the precise specification of
the payoffs, the game unravels, just as it did in the proof of Proposition 7.1,
and this leaves the unique sequential equilibrium defined in Proposition 7.1.
The evolution of American nuclear strategy has been characterized by a
perennial call for limited options that will be more selective and will inflict
less punishment on an adversary. There have also been frequent calls for
counterforce options that could destroy an adversary’s military capabilities
or disrupt its ability to carry out well-coordinated attacks. Secretary of
Defense McNamara wanted such options in 1962 as part of his effort to
introduce more flexibility into the war plan or the Single Integrated
Operational Plans (SIOP). These options were also at the center of the
Schlesinger doctrine in the early 1970s and continued to play an important
part in the countervailing strategy of the late 1970s and early 1980s (Davis
1976; Slocombe 1981; Ball 1982-3; Freedman 1986, 1989; Sagan 1989b).
In the model, each state would like to have a larger number of smaller,
less destructive limited options, as well as better counterforce capabilities
than its adversary. Because the state with the largest M prevails, a state is
better off if its M is larger than its adversary’s. M, which is the maximum
number of limited attacks it takes the challenger to leave the defender with
nothing more to lose, is equal to rp/pc. If M > M, the challenger prevails.
But for any fixed My, M will be greater than or equal to M, if the amount
of punishment the challenger inflicts on the defender in a limited attack, p¢,
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is sufficiently small. In this sense, then, C is better off if it has smaller, less
destructive limited options.

The challenger, it seems, would also like to have counterforce
capabilities. Again, the challenger prevails if M. > M}, and counterforce
capabilities may reduce M. With M, =r./pp, then M/, can be made less
than any fixed M by taking the amount of punishment the defender inflicts
on the challenger when the defender carries out a limited attack, pp, to be
sufficiently large. This suggests that the challenger would be better off if it
had counterforce capabilities that could disrupt the defender’s strategic
forces so that the defender had to choose between backing down or
launching larger, more destructive limited attacks. That is, the challenger
would like to have counterforce capabilities capable of increasing pp,.

An extreme example will illustrate the logic underlying this. Suppose that
the challenger launches a counterforce attack that leaves the defender with
only the two options of submitting or launching a massive, unlimited attack
against the challenger. In effect, the challenger has put the defender in the
position of having to rely on the inherently incredible doctrine of massive
retaliation. In this situation, the defender submits. In sum, counterforce
capabilities are desirable in the model, but not for the purpose of limiting
damage. Each state can always be destroyed in the model if its adversary
decides to launch an unlimited attack. Counterforce capabilities are, at
least in principle, desired for coercive bargaining purposes because they can
be used to limit an adversary’s options.

The American desire for nuclear counterforce capabilities in strategic
doctrine and strategy has been attributed to “conventionalization,” which
“is the attempt to treat nuclear bombs as though they were conventional
weapons, to apply the same ways of thinking to them that applied in the
prenuclear era” (Jervis 1984, p. 56). Conventionalization, in essence, denies
that there has been a nuclear revolution and asserts that the classical logic
of war still applies. That is, the fact that both superpowers have secure
second-strike forces has not fundamentally changed the relation between a
state’s political objectives and the use or threatened use of force that existed
before the nuclear revolution. The desire for counterforce capabilities that
has characterized American strategic doctrine may actually be due to
conventionalization. But the model suggests that the conclusion that the
nuclear revolution has deprived counterforce capabilities of any role is
problematic. In the game, each state is completely vulnerable to its
adversary throughout the confrontation. The nuclear revolution is implicit
in the model. Yet, surprisingly, counterforce capabilities continue to have a
role.

Although the equilibrium of the complete-information game has some
interesting and suggestive properties, it lacks any dynamics. In equilibrium,
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there are no crises. Either the challenger accepts the status quo or, if the
challenger disputes the status quo, the challenge is not resisted. There is
never a resisted challenge, and so there are no crises. To make the model
dynamic, the third feature of limited retaliation, which is that there is some
source of uncertainty, will be introduced into the model. Each state will be
assumed to lack complete information about its adversary.

Incomplete information

Incomplete information will be modeled in the same way that it was
modeled when longer brinkmanship crises were examined. The challenger
is unsure whether it is facing a resolute defender D’ or an irresolute defender
D. As in the brinkmanship model, what distinguishes D from D’ is that the
resolute defender D’ is wedded to the strategy of always escalating. If the
challenger disputes the status quo or launches a limited attack against I,
D’ will always retaliate by launching a limited attack against the challenger.

As before, the resolute defender may be interpreted in two ways. First, it
is, in effect, playing a strategy of tit for tat. As long as the game continues,
the resolute defender does what the challenger just did. Thus, in deciding
what to do, the challenger is uncertain whether or not its adversary will play
a strategy of tit for tat. Second, note that the resolute defender may act
irrationally. Even if attacking the challenger will leave it with nothing more
to lose, the resolute defender, being wedded to a strategy of always
attacking, will attack even though the challenger will then launch an
unlimited attack that will completely destroy the defender. As the
equilibrium strategies will show, the irresolute defender is playing on the
challenger’s fear that it is facing a resolute defender that may act
irrationally. In this sense, then, the irresolute defender is pursuing the
strategy of the rationality of the irrational.

Information is incomplete on both sides, and the game is illustrated in
Figure 7.2. The defender is also unsure whether it is facing an irresolute
challenger, C, or a resolute challenger, C’, where C’, like D', is wedded to a
strategy of always escalating. The prior probability that the challenger is
facing the resolute defender is ¢, and the prior probability that the
defender is confronting the resolute challenger is g;,, where these
probabilities are common knowledge.

Incomplete information drives escalation in the strategy of limited
retaliation just as it did in brinkmanship. If there were complete
information and the challenger was sure that it was facing the irresolute
defender, with M;> M,, then Proposition 7.1 would imply that the
challenger would dispute the status quo, and D would immediately submit.
If, however, the challenger were certain that it was facing the resolute



Figure 7.2. Limited retaliation with incomplete information on both sides.
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defender D', there would be no challenge. But with incomplete information,
the challenger is unsure whether it is facing a resolute defender or an
irresolute defender. This makes having a reputation for being resolute
valuable. But these benefits come at some cost, for an irresolute defender
must, to some extent, be willing to escalate if challenged. In the model, it is
this willingness that drives escalation and creates crises. Proposition 7.2
formally describes the dynamics.

Proposition 7.2: If ¢p. > &1 = Mpwe/[re — sc + Mp(We + 5¢)], there
are no sequential crisis equilibria, because C does not challenge the
status quo. If ep <&p but Mp=10r ¢c.>&c. =[rp—sp+ Mc(wp+ sp)l/
[2(rp—sp) + M(wp+sp)], there still are no sequential crisis equi-
libria, but now because D does not resist C’s challenge. If M}, > 2,
&p < &p,and ec. < Ec., then there exists a generically unique family of
sequential crisis equilibria. Each member of this family is indexed by
m >0, and D’s strategies for any m are

rc—Sc+ Mpsc

*1)=1—
B0 == e —sc+ Mptwe + 5]

(7.1)

=1,

eX2)=1— fc —5¢

rc—Sc+ (Mp—1)(wc+ 5¢)
Mpwc :l
X (7.2)
[MDWC —éplre—sc+ Mp(we+sc)]
If m>2, then for 2<m<m,

(Mp—(m—1))(wc+sc) [1 - e;(m):l
rc—Sc+(Mp—m)(we+sc) | ep(m)
And for m>m+1,
ep(m)=0
C’s equilibrium strategies are given by

e¥(0)=—¢< [ ’p—p :l L (7.4)

l_gcl rD—SD+Mc(WD+SD) 1—83(1)

eym+1)=1-— (7.3)

For 1<m<m,

e | (A—e¥m+1)rp—sp+ (Mc—m)wp+sp)] ]
=1+ (Me—(m— 1) + 55 | s
And for m>m,

et(m)=0
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Because all information sets are reached with positive probability,
beliefs are simply given by Bayes’ rule.

To complete the specification of the family, the range of m must be
given. Use (7.1), (7.2), and (7.3) to generate a sequence of numbers,
and let M be the first integer for which e¥(m) >0, for 0<m < M + 1,
and e}(M + 2) <0. Now let N be the maximum value of fi such that
ef(0) generated by (7.4), (7.5), and the initial condition e¥(n+1)=0
is positive. Then the range of m is 0 <m <min{M, N, Mp—2}.

Proposition 7.2 is demonstrated in Appendix 7.1, and Figure 7.3 shows
the regions in which sequential crisis equilibria exist. Given the formal
similarities between the brinkmanship and limited-retaliation models, it is
perhaps not surprising that the general patterns of escalation are also quite
similar. The challenger initially believes that it is facing an irresolute
defender with probability 1 — g,,.. If this probability is sufficiently high, the
challenger will dispute the status quo with probability (0).

A challenge shifts the onus of escalation to the defender, which then
revises its original belief about the probability of facing an irresolute
challenger, 1 —¢c, in light of a challenge actually having been made. After
this reassessment, the defender is still sufficiently confident that it is facing
an irresolute challenger that it will resist the challenge by escalating with
probability e}(1). This shifts the onus of escalation back to the challenger,

Figure 7.3. The limited-retaliation sequential crisis equilibria.
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Figure 7.4. A family of limited-retaliation equilibria.
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which updatesits belief about the likelihood of facing a resolute defender in
light of the defender’s resistance. The challenger remains confident enough
that it is facing an irresolute defender that it will escalate with probability
e#(1). This shifts the burden of deciding whether or not to escalate back to
the defender. The crisis continues in this way, with the onus of escalation
shifting back and forth, and with each state launching limited attacks
against the other, until one of the states quits.

Figure 7.4 illustrates a family of equilibria. As the confrontation
continues, each state becomes increasingly confident that its adversary is
resolute. After the initial exchanges, the states become less and less likely to
escalate as the crisis continues.? The dynamics at the beginning of the crisis
are more complex. The potential challenger may be more or less likely to

? Asshown in Appendix 7.1, e%(m) is decreasing in m for 1 <m <, and e¥(m)is decreasing in
mfor2<m<m+1.
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challenge the status quo than it is to continue to escalate if its challenge is
resisted.? Similarly, the defender may be more or less likely to resist a
challenge than it is to escalate a second time if the challenger escalates
after the defender’s initial resistance.* Nevertheless, f%(m) and B%(m) are
decreasing in m as in the brinkmanship model. Because C and D are
actually facing each other, but C and D become increasingly confident that
they are facing D’ and C’, respectively, misperception becomes worse as the
crisis goes on. Crisis bargaining here does not help to clarify matters, but
rather tends to obscure them.

The array of punishment and the dynamics of escalation

As noted earlier, the desire to have greater flexibility by having smaller, less
destructive limited options has played an important part in the evolution of
American nuclear strategy since at least the early 1960s, when Secretary of
Defense McNamara called for adoption of the doctrine of “flexible
response” and tried to introduce more flexibility into the SIOP. But what
are the consequences of having smaller, less destructive limited options for
the dynamics of escalation? Because they are smaller and more limited, are
they more likely to be used, thereby making war more likely? Or,
conversely, is war less likely because a potential challenger, knowing that
resistance is more likely, will be less likely to dispute the status quo? Asked
more generally, what are the effects of making the grain of the array of
punishment finer?

To investigate these effects, recall that M p. =rp, and Mpp, =rc, where
Pc is the amount of punishment the challenger inflicts on the defender by
exercising a limited option, and pj, is the amount of destruction imposed on
the challenger when the defender carries out a limited attack. Accordingly,
studying the consequences of decreases in p. and pj, is akin to examining
the effects of having a finer array of punishment.’

Having smaller, less destructive limited options makes the defender more
likely to escalate throughout the crisis. More formally, a smaller pp, which
entails a larger M, makes the defender more likely to escalate throughout

3 Formally, ¢#(0) may be greater or less than ef(1).

4 That is, e¥(1) may be greater or less than e}(2).

5 Although akin, these two formulations are not completely equivalent. As illustrated in
Figure 2.2, the states may initially select various levels of punishment, and a finer array of
risk means that the distance between these levels will be smaller. After the initial attack, the
confrontation continues, but this is left implicit in Figure 2.2. Conversely, the model of
limited retaliation represents the continuing confrontation explicitly, but, in order to
simplify the game, assumes that a state must inflict a single amount of punishment if it
escalates. Each formulation leaves the opposite half of the problem implicit.
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Table 7.1. The expected fraction of destruction

Expected Expected
Expected fraction of D Expected fraction of C
fraction of D destroyed fraction of C  destroyed
M destroyed given a crisis destroyed given a crisis
2 0.000000 0.000 0.000716 0.500
3 0.000179 0.105 0.000615 0.362
4 0.000265 0.122 0.000636 0.294
5 0.000312 0.125 0.000634 0.253
6 0.000308 0.116 0.000593 0223
7 0.000341 0.118 0.000596 0.206
8 0.000363 0.118 0.000594 0.192
9 0.000361 0.113 0.000572 0.180
10 0.000378 0.114 0.000572 0.172
11 0.000374 0.111 0.000554 0.164
12 0.000389 0.111 0.000556 0.159
13 0.000400 0.111 0.000557 0.154
14 0.000397 0.109 0.000544 0.149
15 0.000407 0.109 0.000546 0.146

Note: These values are calculated for the case in which M= Mp, ¢.=0.01, &p. =
001, re=rp=10, we=wp=1, and sc=s,=1.

the crisis.® Similarly, if the challenger has smaller, less destructive limited
options, it is also more likely to escalate throughout the crisis.” But the
challenger is less likely to challenge the status quo.®

It is perhaps surprising that the dynamics of the model so closely parallel
the policy debate about the effects of having smaller, less destructive limited

¢ To see this, differentiate (7.1) to obtain de¥(1)/0Mp>0. Differentiation of (7.2) or
inspection of (A7.7) gives de}(2)/0Mp>0. Solving (A7.2) for e}(3), noting that de¥(1)/
OMp >0 and de}(2)/0M >0 imply 0f&(2)/0Mp >0, and differentiating e}(3) show that
0e}(3)/0M > 0. Solving (A7.3) for e}(4) and differentiating give de}(4)/0Mp > 0.
Continuing in this way yields de}(m)/oM, >0 for m<m+ 1.
7 To see that def(m)/dp. <O or, equivalently, that de(m)/6M, >0, let m=rn in (7.5), and
differentiate to obtain def(mm)/0M. > 0. Knowing deg(m)/0 M > 0, differentiation of (7.5)
with m=m—1 gives de}(rn— 1)/0M_ > 0. Continuing in this way leaves de(m)/0M >0
for 1 <m < m. Thus, C is more likely to escalate throughout the crisis.
To see this, note that if D escalates at Qp(+1), C will then submit immediately.
Regardless of M., eX(m+1)=0. D, moreover, is indifferent between escalating or
submitting at Qp(/n+1). Applying (A7.8) at Qi+ 1) and solving for B,(m+1) give
Bp(m+1)=(rp—sp)/[rp—sp+ (Mc— m)wp + sp)]. Differentiation then shows d8(r + 1)/
0M <0. But By(m+1)=(1 —ec ) [7= 0e®()/[ec- + (1 —ec)] [F= 0€&(]- Thus, with del(m)/
OM>0 for 1 <m <, the only way that 0f,(m+ 1)/0M <0 is for de2(0)/0M.<0. C,
therefore, is less likely to challenge the status quo.
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options. In the model, having these options does make escalation more
likely. But they also make a challenge less likely. This immediately implies
that the defender is better off if the challenger has smaller, more limited
options.®

In brinkmanship, there is only one type of war: an unlimited nuclear
exchange that completely destroys the two states. In limited retaliation,
however, there are many types of war, ranging from one in which a state
escapes with little or no damage to one in which a state suffers horribly high
levels of destruction. What, then, are the effects of a more finely grained
array of punishment on the amounts of destruction that the states will
inflict on one another? Table 7.1 shows how the expected destruction of a
state varies with the destructiveness of the limited options. If, for example,
the array of punishment is rather coarse, so that each limited attack will
destroy one-third of what an adversary values (i.e., M= M}, =3), then the
expected fraction of the challenger that will be destroyed is 0.0006 in the
longest and most destructive crisis in the family of crises. The expected
fraction of the defender destroyed is 0.00018.1°

The expected damage a state will suffer in the strategy of limited
retaliation generally appears to be quite small. Animportant reason for this
is that challenges to the status quo generally seem to be unlikely. In fact, the
probability of a challenge never exceeds one chance in a hundred in the
equilibria summarized in the table!! Indeed, the maximum expected
fraction of the challenger that will be destroyed, given that there has been a
challenge, rises to 0.075, and the maximum expected fraction of the
defender that will be destroyed, given a challenge, is 0.042. Worse, the
expected fraction of the defender destroyed, given that there is a crisis, is at
least 10 percent, and for the challenger it may be as high as 50 percent.
Limited exchanges seem to be difficult to start, but once started, they may
be very destructive.

The strategy of limited retaliation links the use or threatened use of force to
states’ attempts to secure their ends through an array of limited options. In

° Because the defender uses a mixed strategy at Q,(1), it must be indifferent to escalating or
quitting. Accordingly, its payoffin the gameis rp, — [(1 — &..)e(0) + ¢ 1sp, which falls as the
probability of a challenge rises. So anything that makes a challenge less likely leaves the
defender better off.

To obtain the expression for the expected percentage of C destroyed, observe that the
probability that D will attack C m times is [[]75" e2()ef(i + 1)](1 — ef(m)e(m +1)). Thus,
the expected damage is Y71} [([]ro' e2(ed(i + 1))(1 — e(m)el(m + 1))mpy], and this
divided by r¢ gives the expected fraction of C that D will destroy. A similar expression gives
the expected fraction of D destroyed by C.

However, (7.4) shows that for any given (1), e%(0) can, in principle, be very close to 1 if the
probability of initially facing a resolute challenger, ¢, is sufficiently large.
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this approach, the sanctions are imposed deliberately. The states do not
have to be able to lose collective control. It is enough that events are not
fully under control in the sense that no state controls the actions and
reactions of another. The sanctions are also limited. Imposing a limited
sanction leaves an adversary with something left to lose, and if the threat to
destroy this can be made sufficiently credible, an adversary may come to
terms in order to preserve what has not yet been destroyed. This chapter has
examined the dynamics of limited retaliation.

The model studied here is consistent with the stylization of the nuclear
revolution. Throughout the confrontation, a state can destroy its adversary
by launching a general nuclear attack. Damage limitation is impossible. No
state can defend itself by being physically able to protect itself. If a stateis to
avoid destruction, it must do so by deterring its adversary from doing what
that adversary is physically capable of doing. Nevertheless, the model
suggests that states still will desire smaller, less destructive limited options,
as well as counterforce capabilities, but for bargaining purposes rather than
damage-limitation purposes. The effect of these options on the dynamics of
escalation is to make escalation more likely throughout the confrontation,
but also to make a challenge to the status quo less likely.

Appendix 7.1

This appendix demonstrates Proposition 7.2. The demonstration of
Proposition 7.2 is quite similar to that of Proposition 4.1. The first of three
steps is to show that if a sequential crisis equilibrium exists, it must satisfy
certain initial conditions. Then it will be shown that if a sequential crisis
equilibrium satisfies these conditions, it must be of the form described by
Proposition 7.2. Finally, ¢.. and ¢, will be restricted to ensure that a
sequential crisis equilibrium actually exists.

Turning to the first step, if a sequential crisis equilibrium exists, then two
conditions must hold. First, C must be indifferent between escalating and
submitting at Q(m), and e(m) > 0 for 0 <m <, where m is some integer.
Second, e(m) =0 for m > m. To see this, let m be the maximum integer m
such that e¥(m)>0. Clearly, such an r exists, for in a sequential crisis
equilibrium, e#(0) > 0. By construction, e(m)=0 for m > r; so it remains
only to show that if a sequential crisis equilibrium exists, then it satisfies the
first condition. To do this, assume the contrary. That is, for some m’ <m, C
strictly prefers to escalate at Qg(m’), strictly prefers to submit, or is
indifferent between them, but with e#(m’)=0. In both of the latter cases,
ef(m’)=0, and this leads to a contradiction. To reach this contradiction,
note that ef(m’) =0 implies that the defender is sure that it is facing the
resolute challenger C’ at Q(m’+1): B¥(m +1)=0. This means that
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ef(m +1)=0. But e}(m’ + 1) =0 implies that ¥’ +1)=0 and then that
ef(m’+1)=0. Continuing in this way leaves e¥(m)=0 for m>m’. In
particular, e¥(m) =0, because 2 > m’, and this is a contradiction.

Assuming that C strictly prefers to escalate at Q.(m’) also leads to a
contradiction. Without loss of generality, let m’ be the largest integer for
which C strictly prefers to escalate at Qq(m’); then,

<w>(,c_sc)
fe

< Bm')(1— el(m’ + 1»[(%)% + wC)]

c

+ [1— B X1 - bl + 1»][(@)% —sc)]

Clearly, this inequality implies that e}(m’+ 1) <1 and therefore that D’s
expected payoff at Qp(m’ + 1) is [(rp — m'pc)/rpl(rp — sp).- Now consider D’s
decision at Qp(m’). If D submiits, it obtains [(rp, —(m'— )pc)/rpl(rp — Sp). If
D escalates, then D is certain to reach Qp(m’ + 1) because e¥(m’) = 1. Thus,
the payoff to escalating at Qp(m’) is [(rp—m'pc)/rpl(rp— sp). Submission
offers the larger payoff; so e}(m’)=0. But this means g¥(m’)=0, which
implies that e¥(m')=0 is C’s best reply. This, however, contradicts the
assumption that C strictly prefers to escalate at Q(m’).

In sum, if a sequential crisis equilibrium exists, then C is indifferent
between escalating and submitting at Q(m), and e¥(m) > 0 for m < ria, where
m is some integer. If, moreover, m >, then e¥(m)=0.

The second step is to demonstrate that if a sequential crisis equilibrium
exists, then its strategies are defined by the expressions reported in
Proposition 7.2. Suppose that C is indifferent to escalating or submitting at
Qc(m), and e¥(m) > 0 for m < m; then, for 1 <m<m,

(e
fe

= BE(m)(1 — efm+ 1»[(@)% + wc)]
c

01—t —egon+ 1] ("= 2
c
(A7.1)

Recall that M, =r./pp, and solve for B (m):

_ fe—Sc 1
Bem) = (rc — S+ (Mp—m)(we + sc)> 1—eXm+1) (A72)
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But Bayes’ rule also implies

Belm)=(1 - s,,,)[ i e,,(i)][s,,, +—e) [T e»(i)]_ (A73)

i=

Substitute this expression into (A7.2), and solve for J]i%, e}(i):
[1 e3() = (ep-/(1 = epNlrc — scJL(Mp — m)(wc + sc) — ep(m + 1)
i=1

X [rc—Sc+ (Mp—m)(we +sc)1]1 71 (A74)

where (A7.4) holds for 1 <m <m. Reindex (A7.4) to obtain an expression
for []r! ek(i). Divide this into (A7.4) and solve for ef(m +1):

(Mp—(m—1))(we + s¢) (1 —ep(m)
re—Sc+ (Mp—m)we+sc) \ eplm)

efm+1)=1— ) (A7.5)
Equation (A7.5) links e§(2),...,efl(#n+ 1) recursively and is the relation
reported in Proposition 7.2. (Generically, e}(n + 1) # 0, but e(Mp) must be
zero. Thus, to avoid a contradiction, m+1 < Mp.)

Now note that because eX(m+1)=0, then pE(m+2)=0 and
e¥(m+2)=0. Indeed, B¥(m)=0 and ef(m)=0 for all m>m+ 1. Thus, to
complete the specification of D’s strategies, ef(1) and an initial condition
for (A7.4) must be specified. To determine (1), note that C’s indifference at
Q.(0) implies

re=(1—ep)(1—ep(D)rc +we)+ [1— (1 —ep)(1 —ej(1))]

x (’C P ”)(rc —50)
rc

Solving for e¥(1) leaves

_ fc—Sc+ Mpsc
(1 —ep)lr¢ —sc + Mp(we + 5¢)]
To find e}(2), set m=1 in (A7.4) and solve for e}(2) to obtain

(N1 fc—S¢ &p 1
B == T My = D + 59 [l e <e,=;(1) )] (A7)

Finally, substituting (A7.6) into (A7.7) gives the expression for e¥(2)
reported in Proposition 7.2.

In sum, (A7.5),(A7.6), and (A7.7) define e}(1) through e¥(r + 1). Equation
(A7.6) gives ef(1), which then gives e}(2) through (A7.7). This value of e}(2)
then provides the initial condition for the recursive relation (A7.5), which
specifies e}(3),...,el(m+1). For m>m+1, e}(m)=0. These are the
strategies reported in Proposition 7.2.

ex()=1 (A7.6)
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To determine C’s strategies, recall that e(0)=0 for m>m. The
expressions for e}(m) show that, generically, 1> e}(m)>0 for l<m<
m+ 1. Hence, D is indifferent between escalating and submitting at Q(m)
for 1 <m<m+ 1. This implies

(’D —(m— Dpc)("p—sp)

p

—(m—1
= Bam)(1 ez(m))[(’—”u)(rp + w,,)]

D
+1 _ﬁ;;(m)(l-eg(m))][(""rﬂ)(r,,_s,,)] (A73)
D

where m <m+ 1. Paralleling the argument used to derive D’s strategies
gives

m—1 Ecr rp—s 1
e* D= C D D ]
iI=—[0 e) (1—8C’>|:rD—'sD+(MC'—(m_1))(WD+SD) 1 —e(m)
(A7.9)
Reindexing, dividing, and then solving for e#(m), one finds

(1—et(m+ 1)[rp—sp+(Mc —m)(WD‘*'SD)]]_1
(M¢—(m—1))(wp + sp)

e¥(m)= [1 +
(A7.10)

where 1 <m<m.

Equation (A7.10) links e#(1),...,e¢(m + 1) recursively. But recall that
et(m+1)=0. With this initial condition, (A7.10) determines e¥(1),...,
et(m+1). Because e¥(m)=0 for all m>m, only e¥(0) remains to be
specified. To do so, let m=1 in (A7.9). Then

30)=( < o : AT11
0 (1"EC'>|:’D—SD+M¢:(WD+SD)]1—83(1) (A71D

To summarize the argument to this point, if a sequential crisis
equilibrium exists, the strategies must be given by the expressions derived
earlier and reported in Proposition 7.2. It remains only to ensure that a
sequential crisis equilibrium actually exists. To do this, it is enough to
constrain ¢¢. and ¢p, so that the strategies of C and D are feasible.

If D’s strategies are to be feasible, then 0 <e¥(1)<1. Imposing this
restriction on (A7.6) and solving for ¢,

Mpwc
re—Sc+ Mp(we+ s¢)

£D' < ED' =
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To ensure that e%(2) is between 0 and 1, use (A7.6) to substitute for e}(1) in
(A7.7) and then solve for ¢;,. subject to 1 <e¥(2) <1. This leaves

(Mp—1)(we + 5¢) ]
re—Sc+(Mp—1)(we +5¢)

sD,<§D,=§D,[

Note, moreover, that &, <&y

To ensure that e}(m) is feasible for m > 2, assume ¢, <&, [If &5 > &,
then e}(2) is not feasible, and so the feasibility of e}(m) for m > 2 is no longer
of any interest.] Suppose further that it can be established that e}(m) is
decreasing in m as long as m > 2. Then let M be the largest integer m for
which e¥(m + 1) > 0. Generically, e¥(M + 2) will be less than zero and thus
infeasible. If M =0, then €%(2) <0, and the feasibility of e¥(m) for m > 2 is
not of any interest. If, however, M >0, then e¥(m) for 2<m< M +1 are
feasible, for e}(2)>ef(3)>--->ef(M+1)>0>e%(M+2). In sum, if
ep <&p and ef(m) is decreasing in m, then e§(m + 1) are feasible for 1 <
m<M<Mp—1.

To see that e(m) for m > 2 is actually decreasing in m as long as e}(m) > 0,
solve (A7.5) for e}(m+ 1) and substitute this in e}(m) > e}(m + 1). Then
solve for e}(m) to obtain

(Mp—(m—1))(we+ 5¢)
fe—Sc+ (Mp—m)(we + s¢)

ep(m) < Up(m) =

This means that if e§(m) < Up(m), then e}(m) > e§(m+ 1). Now calculate
e}(m), where é§(m) is the value of e}(m) defined by (A7.5) and the initial
condition

(Mp—1)(we +5¢)

ep2)= te—Sc+ (Mp—1)(we + 5¢)
This gives
oxm) = Mo —=n = D)l +50

re—sc+ (Mp—(m—1))(we+5¢)

Inspection shows that ej(m + 1) < Up(m). Finally, differentiation of (A7.5)
gives dej(m + 1)/0e}(m) > 0 if, as is assumed, r. — sc — (We + 5¢) > 0. Putting
all of this together gives e¥(2) < ée3(2) < Up(2), where the first inequality
follows from (A7.7). Because dej(m + 1)/0ef(m) >0 and e}(2) < €3(2), then
eX(3) < e5(3). But &}(3) < Up(3); so e¥(3) < 5(3) < Up(3). Continuing in this
way yields e}(m) < Up(m), and this means that e}(m) is decreasing in m as
long as m>2 and ef(m)>0. Accordingly, D’s strategies are feasible if
m< M.

In sum, if ¢, > &, there are no sequential crisis equilibria. Equation
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(A7.1) cannot be satisfied: ¢, is too large, and the payoff to not challenging
the status quo at Q(0) is always greater than the payoff to disputing the
status quo. The probability that C is facing a resolute defender is too great,
and there is no challenge. If &, < &, <&y, then, assuming C’s strategies to
be feasible, e}(1) is given by (A7.6), and e}(m) =0 for m > 1. If ¢p. < &p., then
(A7.6) defines e}(1), (A7.7) gives e}(2), and (A7.5) yields e}(3),..., 3(m + 1),
where m< M < M, —1.

To find the restrictions on ¢ that will ensure that C’s strategies are
feasible, let e2(7 + 1) =0 be the initial condition, and use (A7.10) and (A7.11)
to determine e%(0),. .., (7). Inspection of (A7.10) shows that 1 > e¥(m) >0
for 1 <m < A. Thus, only the feasibility of e%(0) is at issue. Constrain (A7.11)
to be between 0 and 1, and then solve for e#(1):

SC' rD _‘SD
x(1), < 1— AT.12
eC( )n 1 —&c <rD—SD+ MC(WD+SD)> ( )

where the subscript 7 on e%(1) indicates that e#(1) was obtained from the
initial condition e¥(71 + 1) = 0. Now assume that (A7.12) is satisfied for some
. Then, starting the recursive relation (A7.10) at any A’ <7 [i.e., letting
ef(n’+1)=0 for any 7’ <a] will also produce a set of feasible strategies.
This follows from the observation that (A7.10) implies deZ(m)/
def(m+1)>0. Then ef('),> ef('); because e(n’+1); > e¥(’'+ 1), =0.
This, in turn, gives eg(n’ — 1), > e¥(7’ — 1);, and, in general, eX(m); > e}(m);.
Letting m = 1 shows that e¥(1); satisfies (A7.12). Now let N be the maximum
value of 7 for which e¥(1); satisfies (A7.12). Then if m< N, all of C’s
strategies are feasible. Indeed, if m < min{ M, N, M, — 2}, then both C’sand
D’s strategies are feasible.

To ensure that at least one sequential crisis equilibrium exists, Mp > 2
and M and N must be greater than or equal to zero. Taking ¢p, < &, makes
M >0. To make sure that N>0, e#(1);_, must satisfy (A7.12). But the
definition of 7 implies e}(i+1)=0. So if 7=0, e%(1)=0 must satisfy
(A7.12). Letting e%(1),=0 and solving (A7.12) for ¢.. will give

rp—sp+ Mclwp+sp)
2(rp—sp) + Mc(wp +sp)

SC' < EC' =

Thus, if & < &5 and &¢. < &, a family of sequential crisis equilibria exists,
the members of which are indexed by 7, where 0 < <min{M, N, M,— 2}.

Although the demonstration of Proposition 7.2 is now complete, it will be
useful to show that e#(m) is also decreasing in m for 1 <m <m. Use (A7.10)
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to substitute for e(m) in ef(m) — e¥(m + 1) > 0, and solve for eE(m + 1). The
result is
(M —(m—1))(wp + sp)

et(m+1)<Ucm)= rp—Sp+ (Mc— m)(wp+ 5p)

That is, as long as e¥(m) >0, ef(m+1)>0, and Ug(m)> 0, then e(m)>
e¢(m+1) if and only if ef(m + 1) < Ug(m). Note, moreover, that because
rp—Sp is assumed to be greater than wy, + s,, then as long as Ug(m)>0,
Uc(m) is decreasing in m. This means that if e#(k + 1) < U(k) for some Kk,
then e¥(k) < Uc(k — 1). This can be seen by assuming the contrary. With
e¥(k)> Uqk —1), e¥(k+1)=e¥k). This and the fact that Ugm) is
decreasing imply ef(k + 1) > e¥(k)> Uq(k — 1) > UAK). This contradicts the
assumption that e¥(k + 1) < Uc(k). Thus, e}(k) < Uc(k —1). Generalizing,
e¥(m+ 1) < U(m) for m < k. This then gives e(m) > ef(m + 1) forl < m< k.
That is, ef(m) is decreasing from e¥(1) to e(k + 1). To show that ef(m) is
decreasing in m for l <m<r+ 1, it will suffice to show that ef(m + 1) <
Uc(rn). But the definition of m implies eg(m + 1) =0. It need only be shown
now that Ug(r) > 0. The definition of U(m) shows that as long as m < M,
then Ug(m)> 0. But /1 cannot exceed M, for the definition of M, means
that there are no information sets Q(/n) for which #m > M. Hence, e(m) is
decreasing in m from e¥(1) to ef(ri +1).



CHAPTER 8

An appraisal

The nuclear revolution undercut the classical logic of war. The stylized
relation that appeared to link the use or threatened use of force to states’
attempts to secure their interests before the nuclear revolution no longer
seems to apply. Explaining how that relation has changed and the
consequences of that change is the task of nuclear deterrence theory. By
tracing the search for credibility, the preceding chapters have tried to
present a general and unifying perspective on the ways that nuclear
deterrence theory has tried to understand and explain this relation. This
perspective seeks to provide a context in which questions about the relation
between force and states’ political objectives in the nuclear age can be asked
more precisely and related more carefully and clearly to other aspects of
this relation. This chapter summarizes the previous discussion and offers an
appraisal of it.

The review begins with the nuclear revolution, the challenge it posed, and
the general approach that nuclear deterrence theory has taken toward
linking force to political objectives after the nuclear revolution. There
follows a technical summary and critique of the models and the findings
based on them. Finally, this appraisal takes a step back from the models to
discuss the problem of evidence, or rather the lack thereof, and the inherent
difficulty in assessing or evaluating nuclear deterrence theory empirically.

The stylized classical logic of war assumed that punitive and defensive
capabilities were conflated. The same military forces that a state could use
to limit the costs that an adversary could impose on it could also be used to
impose costs on its adversary, especially by taking its territory. The
conflation of these capabilities meant that greater military strength was
generally the key to greater security in the classical logic, for that conflation
implied that the stronger a state’s military forces, the stronger both its
punitive and defensive capabilities. That was likely to enhance a state’s
deterrent capacity and improve its ability to secure its political ends in two
ways. First, the greater a state’s punitive capability, the more an adversary
would have to pay if the state actually used that capability against its
adversary. Second, the greater a state’s defensive capability, the more
willing that state might be to use its punitive capability, because its better
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defensive capability would make it less vulnerable to its adversary’s
retaliation. In the classical logic, great wars fought over profound conflicts
of interest were contests of relative strength.

The series of developments culminating in the technological condition of
mutually assured destruction separated the ability to punish from the
ability to limit the punishment one might have to suffer. This undercut the
classical logic. The stylized conflation of these capabilities on which this
logic was based was no longer tenable. After the nuclear revolution,
coercing an adversary into doing a state’s bidding still required the state to
be able to put its adversary in a situation whose continuation would appear
to be more costly than would complying with the state’s demands. To do
that, the state had to be able to impose a sufficient amount of punishment
onits adversary and be able to make the threat to do so sufficiently credible.
The first requirement certainly seemed to be satisfied in a condition of
mutually assured destruction. But could the second condition be satisfied
when each state could be destroyed by its adversary’s retaliatory second
strike? That was the credibility problem posed by the nuclear revolution.

Nuclear deterrence theory has tried to solve the credibility problem with
limited options that link the use or threatened use of force to states’ efforts
to further their interests. These options span the gap between doing too
much by launching an unlimited, society-destroying nuclear attack, as in
the doctrine of massive retaliation, and doing too little by acquiescing to an
adversary.

There are, however, two approaches to solving the credibility problem in
this way. What distinguishes these approaches is the way that the distance
between doing too much and doing too little is measured. If one measures
this distance in terms of the autonomous risk of an unlimited nuclear attack
that exercising an option will generate, then the set of limited options forms
an array of risk. The strategy in this approach is based on Schelling’s
“threats that leave something to chance.” In brinkmanship, states take steps
that create a risk that they will lose collective control of events. This risk is
the primary source of coercive pressure. If, however, one measures the gap
between doing too much and doing too little in terms of the level of damage
or punishment that exercising a limited option will inflict, the set of limited
options spanning this gap constitutes an array of punishment. In the
strategy of limited retaliation, states use this array to exert coercive pressure
on each other. Each inflicts a limited amount of punishment to make the
threat of future punishment more credible, and in this way each tries to
convince its adversary that the cost of continuing the confrontation would
exceed the cost of ending it.

These two approaches try to link the use or threatened use of force to
states’ political objectives in the same general way. But at a somewhat lower
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level of generality they are primarily concerned with different issues. The
defining concern of brinkmanship is to explain how a sanction that would
never be imposed deliberately might nevertheless still be used to exert
coercive pressure. Given this concern, all the rest follows, such as the need
for events not to be fully under control in the sense that there must be some
chance that the states can lose collective control. The central concern of the
strategy of limited retaliation is different. The emphasis here moves away
from an unlimited sanction to study the dynamics of a confrontation based
on sanctions that will inflict limited amounts of punishment and will be
imposed deliberately. The challenge is to see if there is a coherent strategy in
which adversaries will try to exert coercive pressure on each other by
deliberately using their power to hurt and will do this when each is
completely vulnerable to the other. The key to the credibility problem in
this approach is that limited options, because they are limited, leave an
adversary with something more to lose, and the adversary, if sufficiently
afraid of losing what is left, may quit the confrontation rather than
retaliate. The coherence of the strategy of limited retaliation does not
depend on there being any risk of losing collective control. It is enough that
events are not fully under control only in the second sense, in that no state
can control the actions and reactions of the other.

Although these two variants focus on different concerns at this
somewhat lower level of generality, it is important to emphasize one
property they share: the central role of risk in both strategies. A
brinkmanship crisis in which states pursue their ends through the strategy
that leaves something to chance has been described as a “competition in
risk taking” (Schelling 1966, pp. 94-106, 166-8; Jervis 1984, p.130). As
emphasized throughout, brinkmanship does require a special kind of risk:
There must be some autonomous risk of a general nuclear exchange. But
the more general risk that the confrontation will end in a situation that
neither state prefers to the status quo is common to both the strategy that
leaves something to chance and the strategy of limited retaliation. A
brinkmanship crisis may end in a general nuclear exchange, and a crisis in
which the states rely on the strategy of limited relation may end only after
they have imposed such grave punishment on each other that even the state
that prevails would have preferred the status quo ante to prevailing at such
a high cost. In both strategies there is a danger of undesired and in this sense
unintended or inadvertent consequences. It is the states’ willingness to run
these risks in the hope of securing more preferred ends that drives escala-
tion. The risk of undesired and unintended consequences and inadvertent
escalation is at the heart of both approaches.

The problem of crisis stability and first-strike advantages examines the
likelihood that a crisis will escalate to an unlimited nuclear exchange when
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there is at least one situation in which a state will deliberately launch a first
strike. The concerns underlying this problem fall between those motivating
brinkmanship and the strategy of limited retaliation. Accordingly, an
examination of crisis stability and first-strike advantages in some ways
connected those two strategies. The sanction in the problem of crisis
stability is unlimited; once a state imposes it, the state can do no more toiits
adversary. Fear of future punishment no longer constrains its adversary,
and a state can anticipate having to bear the full weight of its adversary’s
retaliation. All of this is just the same as in brinkmanship. What is not the
same, but, in effect, amounts to an attempt to relax the demanding
assumption that there is no situation in which states would launch a
deliberate first strike, is that the sanction need not be imposed autonomously
when there are first-strike advantages. The states do not have to be able to
lose collective control, for the unlimited sanction may be imposed
deliberately. If the prospects of war are sufficiently high, and it is better to
strike first rather than second if there is to be a war, then attacking will
become the best of a set of dreadful alternatives. The fact that states may
impose the sanction deliberately is more in keeping with the strategy of
limited retaliation. Because of these shared features, an analysis of the
problem of crisis stability links brinkmanship and the strategy of limited
retaliation.

The models of brinkmanship, crisis stability, and limited retaliation help to
elaborate the two approaches that nuclear deterrence theory has taken to
linking force or the threat of it to states’ attempts to secure their ends. But
many different models would be consistent with the broad outlines of the
approaches based on the arrays of risk and punishment. A more detailed
critique of the specific models studied in the preceding chapters should help
to identify some of the strengths and weaknesses of those models and
perhaps suggest better, more appropriate models.

The critique begins with a brief summary of some of the specific results.
The brinkmanship models examined earlier support the intuitive notion
that the more severe the conflict of interest underlying the crisis, the more
dangerous and less stable the crisis. But the models also call into question
other intuitive conclusions. The general problem here seems to be that these
conclusions have failed to take into account the interactions between
strategies and beliefs that the models have helped to illuminate. The image
of a brinkmanship crisis as a contest of resolve appears quite problematic,
for many of the inferences this image suggests do not hold. In the models,
the state with the greatest resolve may not prevail. A state may be more, not
less, likely to escalate the greater the resolve of its adversary. A state’s
expected payoff may decrease if its resolve increases. In fact, the states’



178 Nuclear deterrence theory

strategies depend on a combination of payoffs that cannot be reduced to an
expression involving only the states’ levels of resolve. Whether or not these
particular findings weather future empirical work or the analysis of better
formal models, these findings do suggest that even very intuitive claims
about the dynamics of crises based on simple images or analogies like
brinkmanship are suspect.

The potential challenger’s stake in the status quo has also played an
unexpected role in brinkmanship bargaining. It might at first seem that
crises would be less likely if a potential challenger had a larger stake in the
status quo, because a challenge would mean putting something of more
value at risk and would therefore seem less likely. It was found that the
challenger’s having a greater stake in the status quo generally did make a
crisis less likely, but not necessarily because the challenger was less likely to
dispute the status quo; the defender might, instead, be less likely to resist a
challenge.

It was seen that the situation actually facing a state could be
distinguished from the situation a state believed itself to be facing. Indeed,
given the simple ways that incomplete information was modeled, there was
a natural measure of the degree of a state’s misperception. If, for example, a
state was actually facing a resolute adversary, then the probability
measuring the strength of that state’s belief that it was facing an irresolute
adversary was also a measure of the state’s misperception. That measure
made it possible to examine the effects of changes in the level of mis-
perception on the dynamics of escalation. The results were inconclusive.
In some circumstances, greater misperceptions made escalation more likely
and crises less stable, whereas in other circumstances, increased mis-
perception made escalation less likely and crises more stable.

Finally, the brinkmanship models have formally illustrated the problem
of selection bias that may be encountered in historical work focusing solely
on a sample of crises. For example, severe conflicts of interest will be
relatively infrequent in any sample of crises. That might be taken to indicate
that there are few severe conflicts of interest in the international system.
That, however, would be a mistake, for the models also showed that
situations in which there is a severe conflict of interest tend not to become
crises. Thus, situations with severe underlying conflicts of interests tend not
to appear in samples composed entirely of crises. A second example of the
potential effects of the selection bias inherent in studying only crises is that
such a study would suggest that the primary effect of making the grain of
the array of risk or punishment finer would be to make escalation more
likely. But such a conclusion would miss the effect that the finer grain also
makes a challenge less likely, for this effect will not be present in a sample
composed only of crises. Failing to take this bias into account may lead to
distorted conclusions.
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The investigation of the strategy of limited retaliation showed that even
after the nuclear revolution, smaller, less destructive limited options and
counterforce capabilities still may have roles to play. Although defense is
impossible, states still may desire these options and capabilities. But they
do not do so for the purpose of being physically able to limit damage to
themselves, for in the stylization of the nuclear age that cannot be done.
Rather, states desire these options and capabilities for bargaining purposes.
Clearly, the model of limited retaliation is much too simple to be anything
more than suggestive. But it does indicate that the desire for smaller, less
destructive limited options, as well as counterforce capabilities, is not
logically inconsistent with the nuclear revolution.

The limited-retaliation model has also captured remarkably well the
debate in American nuclear strategy about the effects of smaller and less
destructive limited options on the dynamics of escalation. Those options, it
was argued in the debate, would reduce stability by making escalation less
costly and therefore more likely. Conversely, it was also argued that those
options would enhance deterrence precisely because they were more likely
to be used. A potential challenger, recognizing that a challenge was more
likely to be resisted, would be less likely to mount one. The model’s
equilibria reflect these dynamics well. Having less destructive options does
make escalation more likely, but it also makes a challenge less likely. On
balance, the defender is better off the smaller and less destructive the limited
options.

Several patterns are common to the model of brinkmanship and the
model of limited retaliation. Escalation generally becomes less and less
likely the longer the confrontation lasts. As the crisis continues, each state
becomes increasingly confident that it is facing a resolute adversary. If that
adversary is actually resolute, then misperception will have increased
during the crisis. Indeed, the models indicate that even in crises that do not
end disastrously, crisis bargaining may not reduce misperceptions and may
actually exacerbate them. Changes in the grain of the arrays of risk and
punishment affect the dynamics of brinkmanship and limited retaliation
similarly. The finer the grain, the more likely the defender is to escalate
throughout the crisis. As long as the defender’s resolve is not too high, the
challenger is also more likely to escalate the finer the array, but the less
likely the challenger is to dispute the status quo. Conversely, the coarser the
grain, the less likely the challenger and defender are to escalate, but the
more likely the challenger is to dispute the status quo.

This apparent similarity, however, must be interpreted carefully. The
game trees of the brinkmanship and limited-retaliation models are much
alike. Moves alternate back and forth between the two states, and each state
must always choose one of the three options: quitting, escalating, or
launching a general nuclear attack. Moreover, the lack of complete
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information is modeled in the same way in the games. Much of the
structural similarity between the models is due to the need to have models
that are sufficiently simple that they are tractable. Therefore, it may be that
the similarity in the dynamics of brinkmanship and limited retaliation is
more a reflection of the structural similarity of these simple models than a
reflection of the fundamental similarity of the two approaches. Richer,
more elaborate models will help to decide this.

After bringing beliefs into the analysis, a reconsideration of the
conventional logic of crisis stability in that light has shown that that logic
focused too narrowly on the size of any first-strike advantages. Stability
results from a more subtle interaction of several factors. Four conditions
ensure that a crisis will be completely stable even though there are
advantages to striking first. The first condition is that there is no
autonomous risk of an unlimited attack. The states always retain collective
control of this. Second, a state can attempt to quit a crisis, and if its
adversary has not already attacked, a state’s attempt to end the crisis by
submitting will succeed. There will be no general nuclear exchange. Third,
neither superpower will launch a first strike unless it believes that the
probability that war is inevitable is greater than 4. Finally, the states fully
understand their situation. Because these conditions are sufficient to ensure
stability, their specification also serves to identify the potential sources of
instability.

The assumption that there is no autonomous risk can be relaxed. Doing
so relates the probability of a deliberate first strike to the threshold of
inevitability needed to justify an unlimited attack, the number of nuclear
superpowers, and the degree of risk of losing collective control. Stability
decreases as the threshold falls, as the number of nuclear superpowers rises,
or as the risk of losing collective control increases. In the end, this analysis
provides a firmer foundation for the conclusion of the conventional logic of
crisis stability that if the threshold of inevitability needed to justify
attacking is close to 1, then it is difficult to cross, and crises are relatively
stable.

To help point the way toward better models, it may be useful to identify
some of the specific weaknesses of the brinkmanship and limited-
retaliation models. The first is that the strategy space is too simple. The set
of alternatives from which the states must choose when deciding what to do
is too limited. If a state decides, for example, to escalate, it can do so in only
one way. In the brinkmanship models it must raise the risk of disaster by a
fixed amount, and in the limited-retaliation model it must inflict a fixed
increment of punishment. A natural extension of these models would be to
permit the states to escalate by chosing from different levels of risk or
damage.
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The quitting structure of the models is also quite artificial. The games end
as soon as a state fails to escalate. There is no passing. In the confrontation
at the brink, a state is assumed to have quit if it does not take another step
toward the brink. A state cannot simply stand its ground and force its
adversary to continue to bear the burden of escalation. There is a technical
advantage to the prohibition against passing. The states cannot be very far
off the equilibrium path anywhere in the game tree. This greatly simplifies
the analysis by avoiding many of the difficult questions about what con-
jectures a state might reasonably hold when it is off the equilibrium path.!

As advantageous as this simple quitting structure may be for some
technical reasons, it is troubling for other technical reasons, as well as for
some substantive reasons. Technically, the way that a game ends may
profoundly affect the character of the sequential equilibrium strategies. In
solving the games, many strategies can be disregarded because they are not
sequentially rational in that they rely on an inherently incredible threat at
the end of the game. For example, the strategy of always standing firm in
the complete-information model of brinkmanship could not be part of a
sequential equilibrium because it would require a state to generate an
autonomous risk of 1 at the end of the game. Because of the influence of the
way the game ends on the nature of the equilibria, poor assumptions made
about the quitting structure may distort the insights provided by the
models. More substantively, deterrence theory often has been criticized for
paying too little attention to the situation on the ground (Maxwell 1968;
Freedman 1989, p. 221). Once a confrontation has become a contest of
manipulating the risk of a general nuclear exchange or of inflicting limited
amounts of punishment, deterrence theory has generally been indifferent
“to the course of the war on the ground” (Freedman 1989, p. 221). Which
state is more likely to prevail on the battlefield is of little, if any, import. The
quitting structure of the models also leaves them open to this criticism.
Suppose a state is close to achieving it ends on the battlefield. In this
situation, this state might simply want to let the battle run its course and not
otherwise generate additional risks of disaster. In effect, this state wants to
pass and not take another step toward the brink, although, of course, this
state cannot prevent its adversary from taking additional steps. But as just
noted, the states cannot pass in the brinkmanship and limited-retaliation
models. In this way, these models also pay too little attention to the
situation on the ground.

! The general problem of what conjectures are reasonable to have when one is off the
equilibrium path has been an important concern in recent work in game theory. See, for
example, Kreps and Wilson (1982b), Rubinstein (1985), Grossman and Perry (1986), Banks
and Sobel (1987), Kreps and Ramey (1987), and Cho (1987); see also the introduction to this
problem in the Appendix following Chapter 8.
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In the models, the onus of escalation shifts back and forth until one of the
states submits or until the states are destroyed. This alternating bidding
structure is rather artificial. A more natural formulation would allow the
states to act at any time regardless of whether or not their adversaries had
just acted. Alas, if a state can also choose among several alternatives at any
moment in such a formulation, then a game of this type is also likely to be
much more difficult to analyze.

Uncertainty and the lack of complete information are also modeled quite
simply. There are only two possible types of adversaries: one resolute and
the other irresolute. One advantage of this simple formulation is that it
provides a natural measure of misperception and a means of examining the
effects of changes in the degree of misperception on the dynamics of
escalation. In a less restrictive treatment of uncertainty, however, there
would be more than two types of potential adversaries, and a state would be
assumed to have an initial probability distribution over these types.
Unfortunately, one consequence of this less confining formulation may be
the loss of a well-defined measure of misperception. It is not clear how
one would order the possible probability distributions, which might differ
in many ways, along a single dimension of greater or lesser misperception.
Without such an ordering, however, the meaning of a general increase in
misperception would not be well defined, and that would make it difficult to
study the consequences of changes in the level of misperception.

Another aspect of the simplicity with which uncertainty is modeled is the
assumption that the probabilities representing the initial level of
uncertainty are common knowledge. Each state, for example, knows that
the probability that the challenger is resolute is ¢¢., that the other states
know that it knows that the probability that the challenger is resolute is &,
that it knows that the other states know that it knows that the probability
that the challenger is resolute is &¢., and so on. Although this is a standard
modeling technique in game theory, it is nevertheless a demanding
consistency requirement.?

This strong consistency requirement does, however, provide an inter-
esting counterpoise to the way that the conventional logic of crisis stability
treats beliefs. In that logic, beliefs were completely exogenous. No formal
restrictions were placed on them. The common-knowledge assumption is at
the other extreme. It imposes very demanding consistency requirements.
Interestingly, these two extremes support the same conclusion: If first-
strike advantages are small, so that the threshold needed to justify
attacking is close to 1, then crises are relatively stable.

A final criticism begins with the brinkmanship model and ends by

2 See Myerson (1985) for a discussion of this.
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suggesting a motive for integrating the brinkmanship and limited-
retaliation models. Schelling’s threat that leaves something to chance
solved the credibility problem in principle by assuming that there was some
chance of loss of collective control that would lead directly to a general
nuclear exchange. That solution in principle, however, is difficult to
interpret or apply in practice. The models, for example, indicate that a finer
array of limited options reduces the probability that a potential challenger
will dispute the status quo. But what military forces, operations, and
actions actually raise the kind of autonomous risk on which brinkmanship
is predicated? What changes in real forces would affect the array of risk?
The answer to this question is clearer for the array of punishment, for the
military forces that correspond to the theoretical notion of a limited option
are much clearer. These are forces and operations that are capable of
destroying things of intrinsic value to an adversary. This greater clarity
gives one a better sense of what it means to have smaller and less destructive
limited options. The ambiguity surrounding the actual forces, operations,
and capabilities that correspond to the theoretical concept of a limited
option in the array of risk makes it difficult to relate the analysis of the
brinkmanship models to anything beyond these models. Thisis a significant
weakness in this approach.

The approach based on the strategy that leaves something to chance
would be stronger if it more explicitly described how states actually take a
step toward the brink. How do states use real forces to generate a risk that
the states will lose collective control over whether or not there will be a
general nuclear war? For example, did the U.S. anti-submarine-warfare
activities against Soviet submarines during the Cuban missle crisis create
this kind of risk? Or did the American attempts to force Soviet submarines
to the surface, like the assassination of the archduke in Hinsley’s
interpretation (1963, p. 296) of the July 1914 crisis, create the more general
kind of risk of further escalation that characterizes both the strategy that
leaves something to chance and the strategy of limited retaliation??

The need to specify more explicitly how a state actually generates an
autonomous risk that the crisis will go out of collective control and escalate
to a general nuclear exchange is one reason for combining the
brinkmanship and limited-retaliation models. The limited-retaliation
model makes very demanding assumptions about command and control.
These might be relaxed by assuming, instead, that as a state imposes more
and more punishment, it also begins to destroy its adversary’s command
and control capabilities. That destruction would then be the source of the
risk that the states would lose collective control that brinkmanship needs in

3 See Sagan (1985, pp. 112-18) for a discussion of the navy’s antisubmarine efforts during the
missile crisis.
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order to be logically coherent. Taking that to be the source of the autono-
mous risk, in effect, amounts to merging the arrays of risk and punishment.

The preceding critique has focused narrowly on the technical aspects of the
models. It would certainly be better to have models that would answer the
criticisms just outlined. The brinkmanship and limited-retaliation models
are, at most, a first step toward formalization of the relation between force
or the threat of it and states’ efforts to secure their ends after the nuclear
revolution. But simple and basic as these models are, they do make
predictions about, for example, the effects of changes in the states’ levels of
resolve, the relative stability of crises depending on the severity of the
underlying conflict of interest, the distribution of types of brinkmanship
crises, the consequences of having smaller, less destructive limited options,
and, more generally, the effects of changing the grain of the arrays of risk
and punishment on the dynamics of escalation. But how much confidence
can one place in these predictions? This question raises a larger issue, one
that has to do not just with the models examined here, but with nuclear
deterrence theory more broadly: the problem of evidence and the inherent
difficulty of assessing and evaluating nuclear deterrence theory empirically.

This difficulty arises in part because the most important predictions of
nuclear deterrence theory concern nuclear crises. But the superpowers have
little experience with nuclear crises, and no one wants any more. This lack
of evidence is one of the more important reasons for wanting to have a
theory of nuclear deterrence, for one of the functions of theory is to extend
understanding beyond the limits of direct empirical experience. But this
lack of evidence also makes it difficult to evaluate nuclear deterrence theory
empirically in the domain about which one cares most. Ironically, one of
the greatest obstacles to evaluating nuclear deterrence theory is also one of
the strongest reasons for wanting it.

One way to attempt to surmount this obstacle is to try to expand the set
of potential points of contact between the empirical realm and the two
approaches that nuclear deterrence theory has taken to linking force and
states’ political ends. These approaches need to be elaborated in such a way
that there will be more places at which empirical evidence can be brought to
bear to help assess these approaches and the models based on them. One
means of doing this may be to try to represent the nuclear revolution in the
game’s payoffs, rather than in the game form (i.e., in the structure of the
tree). For example, the stylization of the nuclear revolution, which is that
defense is impossible, has been built into the structure of the brinkmanship
and limited-retaliation models. Throughout the confrontation, each state
always has the ability to launch a massive nuclear attack and destroy its
adversary. It would be better to have models that would be structurally
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consistent with both the stylization of the nuclear revolution and the
classical logic of war. Which stylization would actually obtain would then
be determined by the particular values of the payoffs. The preemption game
in Figure 5.1 illustrates this. The structure of the game, that is, the game
form, can be fixed, and the game can be parameterized to be consistent with
both the stylization of the nuclear revolution and the classical logic of war,
depending on the particular payoffs. To make the game consistent with the
former, the payoffs can be defined so that there is no advantage to striking
first or, perhaps somewhat more loosely, so that the only fate worse than
striking first is being struck first. That is, the payoffs should satisfy L > F>
f> 8> W. The game can also be made to conform to the classical logic of
war by assuming, for example, that the payoff to a successful first strike is
greater than the payoff to submitting (i.e., F> L). Thus, the nuclear
revolution can be parameterized by selecting different values for the
payoffs, while the underlying structure of the game remains the same. One
can therefore trace the effects of the nuclear revolution on the game’s
equilibria and on the dynamics of escalation by varying the game’s payofTs.
Expanding the scope of the analysis by parameterizing the nuclear
revolution would mean that historical cases from before the nuclear
revolution could be brought to bear to evaluate and refine the models. And
if, in the course of that analysis, the models seemed to accord well with the
cases antedating the nuclear revolution, then one might have more
confidence in their ability to explain nuclear crises.

Although expanding the scope of the models to make them more
empirically accessible may help, evaluating them will remain difficult. One
reason for this is that so many of the models’ primitives, such as states’
beliefs and payoffs, are extremely difficult, if not impossible, to measure. It
is, however, important to emphasize that this difficulty is not limited to
formal models. The formalizations may make what has to be measured
clearer. But the measurement problem confronts any analysis, whether
formal or not, that appeals to underlying notions like beliefs and payoffs.

It remains to be seen to what extent future work can overcome the
difficulties in assessing nuclear deterrence theory empirically. In these
circumstances, how ought one to view discussions of nuclear deterrence
theory? The models and analysis presented in the preceding chapters are, at
best, sources of insight into the dynamics of nuclear confrontation. Like
any insights not buttressed by strong empirical support, the insights
suggested by this analysis must be used carefully and cautiously. Seen as
sources of insight, there is a parallel between formal modeling efforts like
this one and historical case studies. Both, if done well, can offer insights into
how things are related, how they fit together. Indeed, formal modeling
efforts and case studies are quite complementary. Models often try to refine
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and extend the insights derived from case studies by formalizing them.
Albeit at the risk of distorting the analysis in undesirable ways by making it
conform to the requirements of the analytic tools, formalizations, by
abstracting away from the details of the case, attempt to bring the essence
of the issues into sharper focus. Formalizations, if successful, make it
possible to see connections linking these issues that formerly were obscure.
These new insights may then raise new questions or suggest new avenues of
inquiry for further empirical work that in turn may give rise to new models.
This is the process of deepening insight to which this book has tried to
contribute by bringing. the essence of some issues in nuclear deterrence
theory into sharper focus and by illuminating the relations among these
issues.



APPENDIX

Some introductory notes on game theory

The mathematical analysis in the preceding chapters, for the most part,
involves nothing more than algebra. The analysis does, however, appeal to
a game-theoretic vocabulary and set of concepts that may be unfamiliar.
This Appendix introduces those concepts and vocabulary in order to give
readers with little or no background in game theory a better sense of the
tools used to analyze deterrence theory and some of the strengths and
weaknesses of those tools.

The extensive form

The brinkmanship and limited-retaliation models are examples of games in
extensive form. A game in extensive form is composed of two parts.? The
first is the game form or game tree. The second is the players’ payoffs. The
game form or tree is an abstract summary of the situation facing the
players. The tree tells the order of play, the set of alternatives from which
each player must choose when it plays, and what each player knows when it
must choose. The tree defines who moves after whom, what each player can
do, and what each player knows about what the other players have done
when it must decide what to do.

Two very simple trees are illustrated in Figure Al. In both Figure Al(a)
and A1(b) the order of play is the same. Player  moves first, and then player
IT moves. When I moves, the trees show that it can choose between two
alternatives: It can choose up, U, or down, D. Similarly, I7 has only two
alternatives: top, 7, and bottom, B. The trees also define what I7 knows
when it must decide between T and B. In Figure Al(a), I] is assumed to
know what I did, perhaps because I could watch I In Figure Al(b),
however, IT does not know what /did. This is the meaning of the dashed line
connecting II’s two decision nodes in Figure A 1(b). Of course, I may have
beliefs about whether it is at its upper or lower decision node, and more will
be said later about beliefs and their formation. At this point, it is important

! For an excellent though somewhat more technical introduction to game theory than the
one presented here, see Tirole (1988, pp. 423-59).

2 For a formal definition, see Luce and Raiffa (1957), Owen (1982), Selten (1975), or Kreps
and Wilson (1982b).
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to note that only the tree in Figure Al(b) is intended as a model of a
situation in which IT must decide what to do without knowing what I has
done. There is simply not enough information.

If a player is unable to distinguish between some of its decision nodes,
then these indistinguishable nodes constitute an information set. In Figure
Al(b), II has one information set because its two decision nodes are
indistinguishable. But in Figure Al(a), IT can distinguish between its two
decision nodes because it knows what I did when it has to decide what to do.
I1, therefore, has two information sets in this tree, each composed of a single
node. In both Figure Al(a) and Al(b), I has a single information set
consisting of a single decision node.

If, as in Figure A1(a), every information set consists of a single decision
node or singleton, so that a player at any information set knows exactly
what alternatives the other players have previously played, then the game
has perfect information. Chess is a game of perfect information. Whenever a
player must decide what to do in chess, it is completely certain of what all of
the preceding moves have been. That is not the case in the tree in Figure
Al1(b), where IT does not know what I has done.

The terminal nodes of a tree are the points at which a path through the
tree ends. In Figure A1(a) and Al(b), for example, there are four terminal
nodes, each of which follows one of the four branches that IT’s decision can
take. The terminal nodes correspond to the possible outcomes of the game.

The game tree abstractly defines the situation in which the players must
act. Each path through the tree leads to a terminal node that is associated

Figure Al. Some simple game trees.

(b)
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with some possible outcome. But to have any hope of analyzing what will
be done in this situation, more than the structure of the situation must be
described; the players’ preferences over the possible outcomes must also be
defined. This is the second part needed to complete the specification of the
game. That is, each player associates with each possible outcome a payoff or
utility that reflects its preferences over the set of possible outcomes.?

Three examples will make this description more concrete. The first is the
game of chicken. There are two players: I and II. Each player has two
alternatives: It can stand firm, F, or submit, S. The decision whether to
stand firm or submit is made in ignorance of what the other player is doing.
The game tree in Figure A2(a)illustrates this situation. The tree begins with
I'having to decide between F and S. IT must then decide between F and S.
The tree also models the assumption that neither player knows what the
other player is doing when it must decide what to do. 7 clearly cannot
determine what I7 has done when 7 is making its decision, because the
information set at which this decision is made precedes the information set
at which 7 makes its decision. Similarly, /T does not know what [ is doing
because both of II’s decision nodes are in the same information set, and, by
definition, a player cannot distinguish among the nodes in any one of its
information sets. 77 cannot tell if it is at its upper node, in which case / is
standing firm, or if it is at its lower node, in which case 7is submitting. In the
tree, both players make informationally isolated decisions; each player
must decide what to do without knowing what the other player is doing,
One natural interpretation of this informational isolation is that the tree is
a model of a situation in which decisions are made simultaneously. That is,
in the actual situation for which Figure A2(a) is a model, 7and /7 make their
decisions to stand firm or submit simultaneously. Simultaneity, in turn,
implies that no player can know what the other is doing when it must decide
what to do. In this way, simultaneity makes for informationally isolated
decisions, and that is what is modeled in the tree in Figure A2(a).

To complete the specification of the game of chicken, the players’ payoffs
or preferences over the possible outcomes of the game must be specified. If
one player stands firm and the other submits, then the player who stands
firm wins, and the other loses. If both stand firm, there is a disaster that is
worse than losing. If both submit, a compromise results that is better than
losing, but not as good as prevailing. Picking numbers to represent these
payoffs, suppose that if one player stands firm and the other submits, then
the player who stands firm receives 1, whereas the player who submits loses

3 Usually, utilities are assumed to be von Neumann-Morgenstern utilities. That is, the utility
of an uncertain event is the expected utility of the possible events. For example, the utility
of alottery that will give utility «, with probability p and utility u, with probability 1 — p is
puy +(1—plu,.
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1. If both players stand firm, both lose 5. If both submit, then each obtains
the compromise payoff of zero. Thus, the payoffs at the end of the branch
along which 7 plays F and II plays S are (1, — 1), where the first element in
the pair of payoffs is I's payoff, and the second is II’s. The complete
specification of the game is given in Figure A2(b).

The second example is the game of matching pennies. In this game, two
players act simultaneously, and each reveals one side of a penny. If both
players show heads or tails, player I wins and collects a penny from I7. If
one player shows heads and the other tails, then 77 wins and takes a penny
from I. The extensive form of this game is depicted in Figure A3. I begins by
making an informationally isolated decision between heads, H, and tails, 7,
after which II makes an informationally isolated decision between H and T.
If I and II play the same face, the payoffs are (1, —1) and if they make
different choices, the payoffs are (—1, 1).

Finally, consider a more complicated game that is a much-simplified
version of poker. In this game, one card is dealt to player 7, and another card
is dealt to II. Each player can see only the card dealt to it. Then, knowing its
card, but not its opponent’s, I must decide whether to bid a dollar, B, or
fold, F. If I folds, it loses its ante of one dollar to II. If 7 bids, I must either
bid a dollar or fold. If IT folds, I collects II’s ante of a dollar. If I7 bids, then
both players expose their cards. If both cards are of the same color, the
players divide the pot, which leaves a net gain of zero. If the colors differ,
then black beats red, and the player holding the black card collects the pot
of four dollars for a net gain of two dollars.

Figure A2. Chicken in extensive form.
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Figure A4 shows the extensive form of this simple poker game. A player
called “Nature” or N makes the first move. Assuming there to be a player
called Nature is simply a modeling device used to introduce random or
probabilistic elements into the game. For example, four combinations of
colored cards could be dealt in the game, (B, B), (B, R), (R, B), (R, R), where
the first element of the pair corresponds to the color of I’s card, and the
second element is the color of II’s card. To represent this in the game,
Nature begins the game by playing one of the four alternatives, where each
alternative corresponds to one possible deal. With a very large deck, the
probability of dealing one of these combinations will be £, and so Nature
will play each of these alternatives with probability .

After N plays, 7 must decide whether to bid or fold. When making this
decision, I knows the color of its card, but not the color of its opponent’s
card. Accordingly, I cannot distinguish between a deal of (B, B) and (B, R)
or between a deal of (R,B) and (R,R). This means that I has two
information sets, with the nodes representing the deals (B, B) and (B, R) in
one information set, and the nodes representing the deals (R, B) and (R, R)
in the other. At these information sets, I has two alternatives: bidding, B, or
folding, F. If it folds, the game ends, and the payoffs are (— 1, 1). If I bids, IT
must then decide whether to bid or fold. /7, like I, knows only the color of its
card and consequently cannot distinguish between the deals of (B, B) and
(R, B) or between the deals of (B, R) and (R, R). II, therefore, also has two
information sets, as shown in Figure A4. If IT folds, the payoffs are (1, — 1).
If IT bids, the players expose their cards and obtain the payoffs described
earlier and illustrated in Figure A4.

Figure A3. Matching pennies.
( 1 = 1 )

(1,—'1)
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Strategies and the normal form

Now that a game has been described, one can begin to discuss ways of
analyzing it. The first step is to define what is meant by a player’s behavioral
strategy. A player’s behavioral strategy is simply a complete plan for how
this player will play the game. This strategy tells what this player will do in
each contingency that might arise in the game. More formally, a player’s
behavioral strategy is a rule that specifies which alternative this player will
select at each of its information sets. If, as in the games of chicken or
matching pennies, a player has a single information set, then a player’s
behavioral strategy merely tells what this player will do at this one
information set. In matching pennies, a strategy for I'is to play H. A second
strategy for I would be to play T. In the simple poker game in Figure A4,
each player has two information sets. Accordingly, a player’s behavioral
strategy must specify what the player will do at both of its information sets.
A behavioral strategy for I is “fold if I’s card is red, and bid if the card is
black.” The instruction “fold if I's card is red” cannot be a behavioral
strategy for I, for it is not a complete plan for playing the game; it does not
specify what I is to do if it is dealt a black.

Figure A4. The extensive form of the simple poker game.
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It will be useful to distinguish between pure behavioral strategies and
mixed behavioral strategies. In a pure strategy, the rule defining a player’s
strategy specifies that the player is certain to choose a single alternative at
each of its information sets. In a mixed strategy, a player is allowed to
randomize over the alternatives from which it must choose. That is, the rule
defining a player’s mixed behavioral strategy specifies a probability
distribution over the set of alternatives at each of this player’s information
sets. This distribution gives the probability that any of the alternatives
available at a given information set will be played. In matching pennies, for
example, I has two pure strategies. It can play H for sure, or it can play T for
sure. A mixed behavioral strategy for 7in this game would be to show heads
with probability 4 and tails with probability 1. A second mixed behavioral
strategy would be to play H with probability 2 and T with probability . In
the simple poker game, a pure behavioral strategy for I would be to “bid
regardless of the color of I’s card.” A mixed behavioral strategy would be to
“bid with probability 3 and fold with probability 4 if I’s card is black, and
bid with probability 3 and fold with probability 3 if I’s card is red.”

The use of pure behavioral strategies makes it possible to define the
normal form of a game, which is more compact and sometimes more useful
in analyzing the game than the extensive form. Suppose that there are M
players in some extensive-form game. Let s; be some pure behavioral
strategy for player i. That s, s;is a rule that tells which alternative i is certain
to play at each of its information sets. Now consider the m-tuple (s;, s5,. ..,
su), where each s; in this m-tuple is a complete plan for how player i will
play the game. This means that(s,, 55, ..., S») describes what will be done at
every information set in the game. Accordingly, one can imagine giving the
plan (sq,5,,...,5y) to a referee and then having the referee play out the
game according to the players’ strategies. If, for example, the first
information set in the tree belonged to player i, then the referee would
consult s; in (s, 53,-..,5y) to see which alternative i would choose at that
information set. The referee would then follow the branch in the tree
corresponding to that alternative and go down the tree to the next
information set. If that set belonged to &, the referee would consult s, to see
what s, would have k do at that information set. In that way, the referee
could follow the plan defined by (s,,s;,...,5y) and eventually reach a
terminal node that would mark the end of the game. Put another way, the
plan (sy,5,,...,5y) defines a path through the tree, or, if Nature is making
random moves in the tree, the plan defines the probability of reaching each
possible terminal node or outcome of the game. Now recall that each player
attaches some utility to every possible outcome of the game. If, therefore, a
plan like (s,,5,,...,5y) defines the probabilities of reaching the possible
outcomes, then each player can attach an expected utility to the plan. That
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is, each player knows what its expected utility will be if the game is played
according to the plan (sq,s,,...,5y). Let Usy,s,,...,5) be the utility
player i receives if the game is played according to (sy, 55, ..., 5). Now, the
game can be described by the set of all possible plans (i.e., the set of all
possible m-tuples of pure behavioral strategies, and the utility functions
that specify the utility the players receive if the game is played according to
a specific plan). This description is the normal form of the game.

To make this description of the normal form more concrete, the
extensive-form representations of the games of chicken, matching pennies,
and poker will be translated into their normal forms. In chicken and
matching pennies, each player has two pure behavioral strategies. This
means that there are four different plans for playing the game. One way to
keep track of these plans is with a matrix, where each row corresponds to
one of player Is strategies, and each column corresponds to one of IT’s
strategies. Each cell in the matrix then corresponds to a different
combination of I’'s and II's strategies or, in other words, to a different
complete plan for playing the game. The utility each player receives if the
game is played according to a particular plan is placed in the cell associated
with that plan. The normal form for chicken is shown in Figure A5(a), and
that for matching pennies in Figure A5(b).

To translate the simple poker game into its normal form, note that / has
four pure strategies. One strategy is to bid if a black card is dealt and to fold
if a red card is dealt. Let {(B, b), (R, )} denote this strategy, where the first
element in a parenthetical pair stands for the color of the card that may be
dealt, and the second element tells what to do if this color is actually drawn;
so (B,b) means bid, b, if a black card, B, is dealt. Then the other three
strategies are {(B, b), (R, b)}, {(B,f), (R, b)}, and {(B, f), (R, f)}. Player Il also
has the same four strategies. It can bid or fold depending on whether it hasa
red or black card. Because each player has four strategies, there are sixteen
different combinations of strategies (i.e., sixteen different complete plans for

Figure AS. The normal forms of chicken and matching pennies.
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playing the game). As before, one can keep track of these different
combinations in a matrix, where each row corresponds to one of I’s
strategies, and each column corresponds to one of II’s strategies. This is
done in Figure A6.

As an example of how the payoffs are calculated, consider the cell
associated with I’s strategy of bidding if it has a black card and folding if it
has a red card, which is denoted {(B, ), (R, f)}, and with II’s strategy of
folding with a black card and bidding with a red card, which is given by
{(B,f), (R, b)}. This corresponds to the cell at the intersection of the second
row and the third column, where the payoffs are (3, —1). To derive these
payoffs, suppose that Nature deals a red card to / and a red to I7; then play
follows the branch (R, R) in the extensive form in Figure A4. Given that I is
holding a red card, its strategy is to fold. The game ends with payoffs
(—1, 1). Now suppose that Nature deals a black card to [ and a red card to
I1. Play then proceeds down the (B, R) branch. I’s strategy is to bid. Because
ITis holding a red card, it also bids. Because black beats red, the payoffs are
(2, —2). If Nature had dealt two black cards, I would have bid, but I would
have folded, leaving the players with (1, — 1). Finally, a deal of red to I and
black to IT has I folding immediately, to give the payoffs (—1, 1). Because
Nature will deal each of these combinations with probability 4, the expected

Figure A6. The simple poker game in normal form.
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payoff to I from this combination of strategies is (})(— 1)+ $)(2) + G)(1) +
&) (—1)=32. Similarly, IT’s expected payoff is G)(1)+E)(=2)+ (=D +
(4)(1)= —1. The payoffs for the other cells are calculated in the same way.

Best replies and Nash equilibria

The notion of a player’s best reply or best response is crucial to defining a
game’s Nash equilibria. Continuing to work with the normal form, suppose
that there are M players. Viewing the game from player ’s perspective, the
plans of the other players, which are denoted by s_;=(s;,55,...,8-1,
Si+1s+++,8y), give almost a complete plan for playing the game. It tells
how every player other than i will play. Then, a best reply for ito s_;isa
strategy that gives i its highest payoff given that the other players are
playing according to s_;. If, for example, II’s pure strategy is to stand firm
in the game of chicken in Figure A5(a), then I’s best reply is to submit. This
strategy leaves I with —1, whereas standing firm would give —5.
Sometimes a player has more than one best response. If I’s strategy in the
simple game of poker in Figure A6 is always to bid, that is, to play {(B, b),
(R, b)}, then IT has two best replies. Always bidding or bidding only with a
black card, that is, {(B,b), (B,b)} or {(B,b), (R, f)}, will yield IT its highest
payoff of zero given that Iis following the strategy of always bidding. (This
can be seen easily by looking across the row associated with I’s strategy of
always bidding. In this row, the highest payoff /7 can attain is zero, and any
column or strategy that gives I7 this payoffis a best reply.) In sum, a player’s
best reply to a combination of the other players’ strategies is a strategy that
will maximize this player’s payoff given that the other players are following
this combination of strategies.

A Nash equilibrium of a game is a complete plan for playing the game
such that each player’s strategy is a best reply to the other players’
strategies. That is, the combination (s%, s%,...,s¥) is a Nash equilibrium if
s¥is a best reply to s* ; for every player i. A reason for calling a combination
of strategies that has this property an equilibrium is that no player has an
incentive to change what it is doing by following some other strategy.
Player i has no incentive to deviate from s} given that the other players are
following s* ;, because s} is a best response to s*;, and, by definition, a
player’s best reply to a combination of strategies maximizes its payoff given
that the other players follow this combination of strategies. If, however, a
combination of strategies, say (s},s5,...,5y), did not satisfy the Nash
property that every player’s strategy is a best reply to the other players’
strategies, then there would be at least one player, say k, such that s would
not be a best reply to s_;. Thus, k could increase its payoff by deviating from
s, by actually playing a best reply to s'_,.. In brief, no player has an incentive
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to deviate from its strategy if and only if the strategies form a Nash
equilibrium.

The game of chicken in Figure A5(a) has three Nash equilibria. In the
first, I stands firm, and I7 submits. This combination of strategies
corresponds to the cell in the upper-right corner. Clearly, I has no incentive
to deviate from F by playing S, for I's payoff to playing S, given that I7 is
playing S, would drop from 1 to 0. Similarly, IT has no incentive to deviate
from S given that 7is playing F, for if it played F, its payoff would fall from
—1to — 5. In the second equilibrium, I7 stands firm, and 7 submits. This is
the combination at the lower left. As in the previous case, no state has an
incentive to deviate from its strategy.

The third equilibrium involves mixed strategies. Suppose that each
player will stand firm with probability 0.2 and submit with probability 0.8;
then each player’s strategy is a best response to the other’s, and therefore
this combination is a Nash equilibrium. To see that I's strategy is a best
reply to II’s, calculate I’'s expected payoff to standing firm: This is I’s payoff
if both 7and IT stand firm times the probability that 77 will stand firm plus
the payoff if 7 stands firm and I7 submits times the probability that IT will
submit. This is 0.2(— 5) + 0.8(1) = —0.2. Similarly, I’s payoff to submitting is
0.2(—1) + 0.8(0) = —0.2. This shows that if IT stands firm with probability
0.2 and submits with probability 0.8, then the payoffs to I of standing firm
and of submitting are the same. Thus, /is indifferent to its pure strategies of
standing firm or submitting. Indeed, I is indifferent among its mixed
strategies as well, for if 7 stands firm with probability p and submits with
probability 1— p, then its expected payoff will be p times the expected
payoff of standing firm, which is —0.2, plus 1 — p times the expected payoff
of submitting, which is also —0.2. This leaves p(—0.2)+ (1 — p)(—0.2)=
—0.2, regardless of the value of p. In sum, 7 is indifferent among all of its
strategies, both pure and mixed. Consequently, all of I’s strategies are best
replies to IT’s strategy of standing firm with probability 0.2 and submitting
with probability 0.8. In particular, I’s strategy of standing firm with
probability 0.2 and submitting with probability 0.8 is a best response to II’s
strategy.

Just as IT’s strategy of standing firm with probability 0.2 left 7 different
among all of its strategies, I’s strategy of standing firm with probability 0.2
leaves IT indifferent to all of its strategies. All of II's strategies are best
responses to I’s strategy. Thus, each player’s strategy is a best reply to the
other’s; so the combination of strategies forms a Nash equilibrium.

In general, a finite game, that is, a game that has finite numbers of players
and pure strategies, has at least one Nash equilibrium.* But there may

4 See Ordeshook (1986, pp. 120-37) and Tirole (1988, pp. 444-5) for a proof of the existence
of at least one Nash equilibrium in a finite game.



198 Appendix

not be an equilibrium in pure strategies; a Nash equilibrium may exist only
in mixed strategies. The matching-pennies game illustrates this. No
combination of pure strategies forms a Nash equilibrium. For example, in
the combination in which I plays H and I plays T, then, given II’s strategy
of T, I'’s best reply is to deviate from H by playing T. Although there are no
pure-strategy equilibria, there is a mixed-strategy equilibrium in which
each player plays H with probability 1. If IT follows this strategy, then I will
be indifferent between H and T and all mixed strategies. All of I’s strategies
are best replies, and, in particular, the strategy of playing H with
probability 4 is a best response. But if I follows this strategy, then II is
indifferent among all of its strategies. So II’s playing H with probability £ is
a best reply. Thus, this combination of strategies is a Nash equilibrium.

The mixed strategies illustrate an important fact that is useful in find-
ing the equilibria of the brinkmanship and limited-retaliation models in
Chapters 3 through 7. If a player is mixing over two strategies in equilib-
rium, then both of these strategies must be best replies and consequently
provide the same payoff. That is, if a player i plays a pure strategy s}
with probability p>0 and another pure strategy s? with probability
g >0, then both s} and s? must be best responses, and the utility of play-
ing s} must equal the utility of playing s?. If these strategies did not yield
the same utility, then one would be preferred to the other. That is, the
utility of playing one of the strategies, say s}, would be greater than the
utility of playing s2. This would mean that the player could increase its
payoff by deviating from the mixed strategy in which it plays s! with
probability p and s? with probability ¢ by choosing a strategy in which it
would play s} with probability p + ¢ and s? with probability zero. But, by
definition, no state can improve its payoff in equilibrium by deviating from
its equilibrium strategy. So it must be that s} and s? yield the same payoff.
Similarly, these strategies must also be best replies, for if they were not, then
the player would also be able to increase its payoff by not playing either of
them, but playing instead a best reply with probability p + 4.

The mathematical appeal of mixed strategies is clear. Without them,
many games would have no equilibrium. Allowing mixed-strategy
equilibria assures that an equilibrium exists. But the empirical meanings
and interpretations of mixed strategies and mixed-strategy equilibria are
fraught with difficulties.® To illustrate some of these, consider the more
general game of chicken in Figure A7, where the numerical payoffs in
Figure A5(a) have been replaced by variables. The payoff to standing firm if
the other player submits is w, the payoff to submitting if the other player

5 For further discussion of this and some attempts to justify mixed equilibria, see Luce and
Raiffa (1957, pp. 74-6), Harsanyi (1973), and Harsanyi and Selten (1988, pp. 14-15).
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stands firm is s, the payoff to the compromise outcome that obtains if both
players submit is ¢, and the payoff to the disaster that occurs if both stand
firm is d. The game will be one of chicken as long as the payoffs satisfy the
following relation: The payoff to prevailing is greater than the payoff to
compromising, which is greater than the payoff to submitting, which is
better than the payoff to disaster: w> ¢ > s> d for both players I and 11

Now consider the mixed equilibrium in which 7 stands firm with
probability ¢, and II stands firm with probability ¢,;. To calculate ¢,, note
that I’s expected payoff to standing firm is the payoff to its standing firm
and I’s standing firm, dj;, times the probability that I will stand firm, ¢,
plus I’s payoffif it stands firm and 7 submits, w,, times the probability that
I'will quit, 1 — ¢,. This is dy;¢; + wi;(1 — ¢,). Similarly, IT’s expected payoff
to submitting is s;;¢; + ¢;;(1 — ¢;). But now recall that because II uses a
mixed strategy in equilibrium, /7 must be indifferent between standing firm
and submitting. (If it strictly preferred one of these alternatives, then it
could improve its payoff by deviating from its mixed strategy to the
preferred pure strategy.) II’s indifference implies that the expected payoff to
standing firm equals the payoff to submitting: d; ¢, +w;(1 — ;)= 5,0, +
¢;i(1—¢,). Solving for the probability that I will stand firm gives ¢, =
Wy — i)/ [(wyy — €11) + (851 — dyp)]. Similarly, the chances that I7 will stand
firm are ¢y = (w;—c))/[(wr—¢;) + (s, — dp)].

The mixed equilibrium has some intuitively appealing properties. One
would expect a compromise to be more likely the higher the payoff to
compromise, the greater the cost of disaster, and the smaller the payoff to
prevailing. The mixed equilibrium conforms to these expectations. The
chance of a compromise outcome is the probability that both 7 and I7 will

Figure A7. A more general game of chicken.
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Figure A8. The massive-retaliation game.
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submit: (1—¢;)(1 —¢;;). This probability increases as the payoff to
compromise rises or as the payoffs to disaster and prevailing fall.®

But much about this mixed equilibrium is not especially appealing
intuitively. Note that the probability that I will stand firm, ¢;, does not
depend on I's payoffs, but on IT’s. Thus, if I’s payoff to prevailing increases,
I's strategy does not change. Rather, IT becomes more likely to stand firm;
¢, rises as w; increases. The mathematical reason for this is that in a mixed
equilibrium, I’s strategy must keep I indifferent between standing firm and
submitting. If, therefore, II’s payoffs do not change, as they do not when
only I’s payoff to prevailing rises, then I’s strategy cannot change, for
otherwise II would no longer be indifferent. Instead, II’s strategy must
change in order to keep I indifferent. A higher payoff to prevailing tends to
raise I’s expected payoff to standing firm. This, however, can be offset and
I’s indifference restored if IT becomes more likely to stand firm, for that will
make the prospect of disaster more likely if I stands firm and thus will tend
to lower I’s expected payoff to standing firm.”

Although the mathematical reasons for these interactions are clear, what,
if any, empirical interpretation to attach to them is not so clear, and the
interpretations offered in Chapters 3 through 7 must be treated cautiously.
One approach to building confidence in any finding is to see if it holds in a
wide variety of models. This is very much in keeping with the most
important objective of this volume, which is to articulate a general analytic

S o1 —¢)1— ¢yr)/0c>0; K1 — P N1 — b1y)/0d < 0; K1~ ;)1 — byy)/0w <O.
7 This argument does not apply to games with more than two players. In those games, a
player’s mixed strategy may depend on its payoffs.
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perspective on nuclear deterrence theory that will help point the way to
richer and better models.

Returning to the extensive form, a Nash equilibrium is a combination of
behavioral strategies in which each player’s behavioral strategy is a best
reply to the other players’ behavioral strategies. This, however, raises a
question. Does it matter whether one analyzes a game in terms of mixed
behavioral strategies, in which a player may randomize over the
alternatives at each of its information sets, orin terms of mixed strategies, in
which a player randomizes over complete plans? If the game is one of
perfect recall, as the games in this volume are, then these two formulations
are equivalent, and the adjective “behavioral” will generally not be used.®

Subgame perfection

The game in Figure A8(a)is a simple formulation of the doctrine of massive
retaliation when both the United States and the Soviet Union have secure
second-strike forces. The Soviet Union begins the game by deciding
whether or not to challenge the status quo. If there is no challenge, the
status quo continues, and the game ends with payoffs (0, 0). If the Soviet
Union challenges the status quo, the United States must decide what to do.
It can either carry out a massive nuclear attack or submit by acquiescing to
the Soviet challenge. If the United States attacks, the Soviet Union is
assumed to retaliate in kind. The game ends in a general nuclear exchange,
with payoffs of (— 10, — 10). If the United States submits, then the United
States suffers a loss, and the Soviets gain. The payoffs to this are taken to be
(—8,8).

The normal form of this game is illustrated in Figure A8(b). The game
has two Nash equilibria in pure strategies. In the first, the United States
plays A, which is a threat to launch a massive nuclear attack if the Soviet
Union challenges the status quo, and the Soviet Union accepts the status
quo by playing ~ C. There is no challenge in this equilibrium. In the second
pure-strategy equilibrium, the Soviet Union challenges the status quo by
playing C, and the United States acquiesces with S.

8 A game is one of perfect recall if no player ever forgets what it previously knew and did. If
one thinks of bridge as a two-player game in which each player is playing two hands, then
bridge is a game in which there is not perfect recall. When a player is playing one hand, it
cannot “remember” its other hand, which it knew when it was bidding that hand. More
formally, a game has perfect recall if for any two decision nodes x and y that are in the same
information set belonging to a player &, if x’ is a decision node preceding x thatis in one of
k’s information sets, then there must also be a node y’ that precedes y and is in the same
information set as x’, and the paths leading from x’ to x and from y’ to y must follow the
same alternatives at x’ and y". For a discussion of perfect recall and of the equivalence of
these two formulations, see Luce and Raiffa (1957, pp. 159-62) or Selten (1975).
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Although both equilibria are Nash (i.e., each state’s strategy is a best
response to the other’s strategy), the first seems implausible as a solution to
the game. The American strategy of 4 seems inherently incredible. If, in the
tree in Figure A8(a), the United States must actually follow through on its
threat by playing A, its payoff will be — 10. But if the United States submits,
it will receive — 8. Assuming that the United States will act to maximize its
payoff whenever it must actually act, then it will play S rather than A.
Accordingly, an equilibrium based on the Soviet Union’s believing that the
United States will play 4 would seem to be an unreasonable solution for the
game.®

Much work in game theory has been devoted to refining the notion of an
equilibrium by imposing additional restrictions on combinations of
strategies beyond the Nash criterion that each strategy be a best reply to the
other strategies. These restrictions are intended to exclude unreasonable
equilibria like the one just examined from the set of acceptable solutions to
the game. One of the simplest restrictions is to demand that a solution be
subgame perfect.

Before defining subgame perfection, a subgame must be described. A
subgame is piece of a game tree that is itself a well-defined game. To find a
game’s subgames, start with the game’s extensive form. Then pick any node
in the tree and examine that node and all of the nodes in the tree that come
after it. This set of nodes is informationally isolated from the rest of the tree
if no information set contains some members of this set of nodes and some
nodes in the rest of the tree. If this set of nodes is informationally isolated,
then this set of nodes forms a well-defined game beginning at the original
node and constitutes a subgame of the original game.

Consider, for example, the American decision node in the massive-
retaliation game in Figure A8(a). This decision node and its successors, of
which there are none, are informationally isolated. No information set
connects the American node with the rest of the tree. A well-defined, albeit
very simple, game begins at the American decision node. Accordingly, a
subgame begins at this node. The tree in Figure A9 provides another
example. A subgame begins at each of I's decision nodes. For the same
reasons outlined for the massive-retaliation game, a subgame begins at the
two nodes where I must choose between T"and B. A subgame begins at I's
first decision node because every game is a subgame of itself. This follows,

° It might at first seem that the United States would have an incentive to deviate from its

strategy of playing 4 and thus that the combination of strategies (4, ~C) could not be a

Nash equilibrium. But if the Soviet Union does play ~ C, then the American decision node

in the tree is never reached. Regardless of what the United States would do if this node were

reached, the United States will receive zero because the Soviet Union does not challenge
the status quo. Every American strategy is a best reply to the Soviet strategy of not

challenging the status quo. Thus, there is no incentive for the United States to deviate from
A if the Soviet Union plays ~C.
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Figure A9. Some examples of subgames.

1T

rather vacuously, from the definition of a subgame, for the first decision
node (along with all the nodes that follow it) is informationally isolated
from the rest of the tree, because there is no rest of the tree.

But a subgame does not begin at either of II's decision nodes. IT’s upper
node and its successors are informationally linked to the rest of the tree,
because one of these nodes, III's upper node, is in an information set
containing nodes in the rest of the tree, namely, III’s lower node. Thus,
a well-defined game does not begin at II’s upper node, and so a subgame
does not begin there. For similar reasons, a subgame does not begin at II'’s
lower node or at either of III’s decision nodes.

Given this description of a subgame, a subgame perfect equilibrium can be
defined. A combination of strategies forms a subgame perfect equilibrium if
the strategies form a Nash equilibrium in every subgame of the original
game. In effect, requiring an equilibrium to be subgame perfect means that
no player can threaten to play a strategy that is inherently incredible in the
sense that this player has an incentive to deviate from this strategy in some
subgame. A player cannot threaten to do something in a subgame when
doing something else in that subgame would make the player better off. The
strategy embodying such a threat would not be Nash in this subgame and
so could not be part of a subgame perfect equilibrium. In this way, focusing
on subgame perfect equilibria eliminates some unreasonable equilibria.®

10 Because every game is a subgame of itself, and a subgame perfect equilibrium is Nash in
every subgame, a subgame perfect equilibrium is also a Nash equilibrium. This means that
the set of subgame perfect equilibria is a subset of the set of Nash equilibria.
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To show that looking for subgame perfect equilibria eliminates the
unreasonable equilibrium in the massive-retaliation game, first note that
there are two subgames of this game. The first is the game itself, and the
second is the subgame beginning at the American decision node. Now
consider the strategy (4, ~C), in which the United States would attack if
the Soviet Union challenged the status quo, but the Soviet Union does not
dispute the status quo. As shown earlier, this set of strategies is a Nash
equilibrium in the original game and therefore is also Nash in the first
subgame. But this combination of strategies is not Nash in the subgame
beginning at the American node. In this very simple subgame, the United
States has an incentive to deviate from A. Playing 4 will give — 10, and
playing S will bring —8; the United States’ best reply is to submit. Because
the combination of strategies (4, ~C)is not Nash in all subgames, itis not a
subgame perfect equilibrium. Thus, looking for subgame perfect equilibria
rather than simply Nash equilibria will exclude the unreasonable
equilibrium in the massive-retaliation game.

The other equilibrium of the massive-retaliation game, (S, C)is, however,
subgame perfect. As demonstrated previously, this combination is Nash in
thefirst subgame of the massive-retaliation game. It isalsoNashinthe second
subgame. In the subgame beginning at the American node, the United
States has no incentive to deviate from its strategy of S.

In sum, analyzing a game in terms of subgame perfect equilibria rather
than solely in terms of Nash equilibria helps to eliminate some unreas-
onable Nash equilibria that seem to be based on inherently incredible
threats.

Sequential equilibria

Requiring solutions of a game to be subgame perfect excludes some
implausible equilibria. But subgame perfection is limited by the fact that
many games cannot be cut into very many subgames, because the
informational complexity of the games means that few sections of the game
tree are informationally isolated from the rest of the tree. In such games,
even subgame perfect equilibria may depend on what seem to be inherently
incredible threats.

Consider the game in Figure A10. The Soviet Union has three
alternatives at the beginning of the game. If it does not challenge the status
quo, ~C, the game ends with the status quo payofs (0, 0). The Soviet Union
may also pursue a limited strategy, L, or an unlimited strategy, U. If the
Soviet Union pursues a limited strategy and the United States then submits,
the payoffs will be (—4,4). If, however, the Soviet Union is pursuing an
unlimited strategy and the United States acquiesces, then the United States
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will pay a higher cost. Here the payoffs are (—8, 8). Whether the Soviet
Union pursues a limited or unlimited strategy, the United States can launch
a massive nuclear attack, A, which will end the game with (—10, —10).
Finally, when the United States must decide whether to attack or submit, it
does not know whether the Soviet strategy is limited or unlimited. This
means, formally, that both of the American decision nodes are in the same
information set.

The combination of strategies (4, ~C) in which the Soviet Union does
not challenge the status quo and the United States attacks if there is a
challenge is a Nash equilibrium. Given the Soviet strategy of ~C, the
American payoffis zero regardless of what it does. Every American strategy
is a best response, and, in particular, A4 is a best reply. Given the American
strategy of A, the best the Soviet Union can do is not challenge the status
quo: ~Cis the Soviet Union’s best reply. Because each player’s strategy is a
best response to the other’s strategy, (4, ~C) is a Nash equilibrium.

This combination of strategies is also subgame perfect. To see this, note
that the game in Figure A10 has only one subgame, which is the game itself.
A subgame does not begin at either American decision node, because the
part of the tree beginning at either of these nodes is not informationally
isolated from the rest of the tree. The United States’ information set links
the part of the tree beginning at one of the American decision nodes with
the rest of the tree. Because (4, ~C)is Nash in all of the game’s subgames,

Figure A10. A game with only one subgame.

(-10,-10)

(-8,8)

USSR
(-10,-10)

©,0) N (—4,4)
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which in this case amounts to being Nash only in the game itself, (4, ~C) is
subgame perfect.

Although this combination of strategies is subgame perfect, the
equilibrium does not seem reasonable. The American strategy of playing 4
seems incredible. Just as it seemed implausible that the United States would
attack in the massive-retaliation game in Figure A8(a), because if it actually
had to act it would always do better by submitting, it also seems
unreasonable for the United States to attack in the game in Figure A10.
Whether the United States is at its upper or lower node, submitting always
offers a higher payoff than attacking. Attacking at the upper node in the
information set would bring —10, and submitting would bring —8.
Attacking at the lower node would also yield — 10, but acquiescing would
be even less costly, giving —4. Accordingly, an equilibrium based on a
Soviet assumption that the United States will play 4 would seem to be an
unreasonable solution for the game.

Sequential equilibria may in part be seen as an attempt to exclude
equilibria like (4, ~C) by extending the basic idea underlying subgame
perfection.’! Subgame perfection requires that each player behave
reasonably in all subgames in the sense that no player can have an incentive
to deviate from its equilibrium strategy in any subgame. Clearly, the United
States in Figure A10 has an incentive to deviate from its strategy of A4 if it
ever actually has to act. But because a well-defined subgame does not start
at this information set, the criterion of acting reasonably in all subgames
cannot rule out this American strategy. Suppose, however, one could define
a player’s payoffs beginning at any information set, not just from a single
node at the start of a subgame. Then, just as subgame perfection requires
that no player have an incentive to deviate from its strategy in any subgame,
one might require that no player have an incentive to deviate from its
strategy at any information set given the other players’ strategies. This
requirement would then rule out an equilibrium like (4, ~C) in the game in
Figure A 10, for the United States would always have an incentive to deviate
from A. In effect, a sequential equilibrium first specifies a way of calculating
a player’s payoffs not just within a subgame but starting at any one of its
information sets. Then a sequential equilibrium demands that no player
have any incentive to deviate from its equilibrium strategy at any of its
information sets. '

To make this description of a sequential equilibrium meaningful, a way
of calculating a player’s payoffs starting from any information set must be
defined. Suppose a player wanted to calculate the expected payoff of
following a specific strategy starting from one of its information sets and

11 See Kreps and Wilson (1982b) and Kreps and Ramey (1987) for a discussion of sequential
equilibria.
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given the other players’ strategies. If the player knew where it was in this
information set, then calculating this strategy’s expected payoff would be
easy. The player could simply trace the path through the tree starting from
this node and specified by this player’s strategy and the other players’
strategies. Consider, for example, the problem confronting / in the simple
poker game in Figure A4 if it wants to determine the expected payoff to
bidding given that it has drawn a red card and that I’s strategy is to bid if it
has a black card and to fold if it has a red card. I knows that it has a red card,
but does not know if it is at the upper-right node or the lower-left node in
the information set associated with Nature dealing /a red card. If, however,
I knows that it is at the upper-right node, that is to say that Nature has
actually followed the branch (R, R), then 7 can easily calculate the expected
payoff of bidding, given II's strategy. If I bids, II’s strategy is to fold,
because ITis holding a red card. I’s expected payoffis 1. Similarly, if Tknows
that it is at the lower-left node [i.e., Nature has dealt (R, B)], then I's
expected payoff to bidding, given II’s strategy (which, if holding a black
card, is to bid), is —2. The problem in calculating the expected payoff of
following a particular strategy at a specific information set is that a player
does not know where it is in this information set. In the simple poker game,
Idoes not know whether it is at its upper-right node or lower-left node. But
suppose that a player has some beliefs about where it is in an information
set. That is, a player attaches some probability to being at a specific node
given that this player is somewhere in this information set. Then the
expected value of following a specific strategy at this information set is the
sum over all of the nodes in this information set of the probability of being
at any given node times the expected utility of following this strategy
starting from this node. I may, for example, believe, after drawing a red
card, that the probability that it is at its upper-right node in the simple
poker gameis . Thus, the expected payoff to bidding at this information set
is the probability of being at the upper-right node times the expected payoff
of bidding at this node, which is 1, plus the probability of being at the lower-
left node times the utility of bidding there. This is G)(1) + 3)(—2)=—4. In
sum, once a player’s beliefs about where it is in an information set are
specified, then this player’s expected payoff to following some strategy,
given the other players’ strategies, can be calculated.

To generalize this way of calculating the expected payoff at a player’s
information set, let i be some player in an arbitrary game. Player i is
assumed to have a system of beliefs, which is denoted by y;. For each of i’s
information sets, y; specifies the probability with which i believes that it is at
a particular node given that the play of the game has reached the
information set containing this node. More formally, y; specifies the
probability of being at each node conditional on being in the information
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set containing this node. In the simple poker game, a system of beliefs for 7
would define the probability that 7 would be at the upper-right node and the
lower-left node given that I was at the information set associated with its
holding a red card. I might, for example, believe, as before, that these
probabilities were £ and 2, respectively. I’s system of beliefs, u;, would also
have to specify what I would believe should it find itself holding a black
card. Recalling that each player is assumed to have a system of beliefs, let u
denote the set of all the players’ belief systems. In the simple poker game,
pw={pp, puy}. Accordingly, u specifies for each node in the game the
probability that the player who owns this node attaches to being at this
node given that the play of the game has reached the information set
containing this node. Now let (i, 7) be an assessment of a game, where pis a
system of beliefs and 7 is a combination of the players’ strategies that
provides a complete plan for playing the game. An assessment contains
enough information to permit the calculation of a player’s expected utility
to following a particular strategy at any one of its information sets. With =,
one can calculate any player’s expected payoff to following this strategy
starting from a specific node in this information set. Then, with u specifying
the relative likelihood of being at a particular node in this information set,
one can calculate the expected payoff to following this strategy at this
information set, as was done earlier in the poker-game example.

A sequential equilibrium can now be defined as a special type of assess-
ment. More specifically, an assessment (y,7) is a sequential equilibrium
if it satisfies two conditions. The first is that the assessment must be
sequentially rational. This means that no player has an incentive to deviate
from its strategy at any one of its informations sets given its beliefs and the
other players’ strategies. This is merely the extension of the basic idea
underlying subgame perfection.

To clarify what it means to be sequentially rational, consider the
following assessment. I’s strategy is to bid if dealt a black card and to fold
with a red card. IT’s strategy is always to bid: 7 =(n;, ;) = ({(B, ), (R, f)},
{(B, b), (R, b)}). Suppose further that I believes that if it is holding a red card,
the chance that IT’s card is black is 4, and therefore the probability that II’s
card is red is also 4. Or, equivalently, given that play has reached the
information set belonging to I at which I holds a red card, then the
probability of actually being at the lower-left node in this information set is
1. Similarly, I also believes that if it has been dealt a black card, then the
probability that IThas been dealt a red card is 4, and the chance that it has a
black card is also 4. II’s beliefs are simpler. Regardless of what its card is, I7
is certain that 7 has a red card. Momentarily setting aside the question of
whether or not these beliefs are reasonable, the assessment composed of
this system of beliefs and strategies is sequentially rational.



Some introductory notes on game theory 209

To be sequentially rational, no player can have any incentive to deviate
from its strategy given its beliefs and the other players’ strategies. II clearly
has no reason to change its strategy given its beliefs. Believing that I is
certain to be holding a red card, bidding brings 2 if II’s card is black, and 0 if
IPs card is red. Folding always brings — 1. Given IT’s beliefs, bidding is its
best reply. I also has noincentive to alter its strategy given its beliefs and II’s
strategy. Given that I7 will always bid, I's payoff to bidding if it has a black
card is O if I7actually has a black card, and 2 if II’s card is red. I believes that
the probability that IT’s card is black is 4; so I’s expected payoff to bidding is
0)3)+ (2)3) = 1. If, however, I deviates by folding with a black card, its
payoff will be — 1. If, instead, I tries a mixed strategy of bidding with
probability p, then this strategy’s payoff is the probability of bidding times
the expected payoff to bidding plus the probability of not bidding times the
payoff to that. So a mixed strategy yields p(1) + (1 — p)(— 1) =2p — 1, which
is also less than or equal to 1. Thus, / cannot improve its payoff by
deviating; bidding with a black card is I’s best reply given its beliefs. A
similar argument shows that folding with a red card is I’s best response
given its beliefs and IPs strategy. No player has any incentive to deviate
from its strategy given its beliefs and the other player’s strategy; so this
assessment is sequentially rational.

Sequential rationality is one of two conditions an assessment must
satisfy in order to be a sequential equilibrium. The second condition has to
do with the system of beliefs. Just as some Nash equilibria were excluded
because the strategies seemed unreasonable, some belief systems seem
unreasonable and will be excluded. Indeed, although the assessment just
described is sequentially rational, the beliefs underlying it do not seem
sensible. When I7 bids, it is, according to its system of beliefs, certain that I'’s
card is red. But II will bid only if I has already bid, and I, according to its
strategy, will bid only if it has a black card. Given Is strategy, IT should
believe that is holding a black card if and when IT has to decide whether or
not to bid. IT’s beliefs are incompatible with I’s strategy.

The second condition an assessment must satisfy if it is to be a sequential
equilibrium is that the belief system must be “reasonable” in the sense that it
is consistent.!> Requiring beliefs to be consistent entails a number of
subtleties and difficulties.!®> Fortunately, the games analyzed in the

12 The questions what constitute “reasonable” beliefs and, more generally, how to “refine”
Nash equilibria in order to eliminate the unreasonable ones have motivated an immense
amount of recent work in game theory. For further discussion of this, see Kreps and
Wilson (1982b), Rubinstein (1985), Grossman and Perry (1986), Banks and Sobel (1987),
Kreps and Ramey (1987), and Cho (1987).

13 See Kreps and Wilson (1982b) and Kreps and Ramey (1987) for the formal definition of a
consistent assessment and some of its subtleties.
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preceding chapters are sufficiently simple that these difficulties and
subtleties do not arise. The only important consistency criterion for the
models examined in the preceding chapters is that the system of beliefs
satisfy Bayes’ rule where this rule can be applied. An assessment like this
that is sequentially rational and satisfies Bayes’ rule where this rule applies
is a perfect Bayesian equilibrium.'* Bayes’ rule is a means of revising a prior
probability in light of some new information or evidence. In the present
context, Bayes’ rule provides a way of updating a prior probability of
reaching a given decision node in light of play having actually reached the
information set containing this node. It provides a way, for example, for ,
after being dealt a red card, to revise the belief it held before the deal that
red cards would be dealt to both it and II.

Bayesian updating of beliefs is crucial to understanding the dynamics of
the models analyzed in this volume. But before discussing Bayesian
updating in a game-theoretic context where strategic interactions must be
taken into account, it will be useful to discuss Bayesian updating in a
simpler context in which there is only one player and no strategic
interaction. Suppose that an urn can be filled with either of two possible
mixtures. The urn may contain seventy-five green marbles and twenty-five
blue ones, or it may hold twenty-five green marbles and seventy-five blue
ones. The player believes that the two mixtures are equally likely. (This
probability might be a subjective estimate; it could be based on a statistical
analysis of some previously obtained data, or, if guessing the contents of
this urn was a rather dull parlor game, then this probability might be due to
the way that the mixture was chosen, say by flipping a coin.) Now the player
is allowed to draw two marbles. Both are green. Given this new evidence,
how should the player update the probability that the mixture is 75 percent
green? Bayes’ rule provides a means of doing this.

The key to Bayes’ rule is to observe that there are two ways of thinking
about the probability that two events, say X and Y, will happen. Let
P(X ~Y) denote the probability that both X and Y will occur. In the urn
example, X is the event “two green marbles are drawn,” and Y is the event
“the mixture is 75 percent green.” One way to think about the probability
that both X'and Y will happen is that this is the same as the probability that
X will happen, given that ¥ will occur, times the probability that ¥ will
happen. The probability that X will happen given that ¥ will occur is the
conditional probability of X given Y and is denoted by P(X|Y). In the
example, P(X| Y)is the probability of drawing two green marbles given that
the mixture is 75 percent green. This is the probability that the first draw

14 Thisis the weakest notion of a perfect Bayesian equilibrium. Stronger ones are obtained by
making assumptions about what “reasonable” beliefs are where Bayes’ rule cannot be
applied.
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will be green, which is 755, times the probability that the second marble will
be green, which, because there are only ninety-nine marbles left and
seventy-four are green, is 35. The probability of drawing two greens is
therefore (755)%8) = 0.561. Letting P(Y) be the initial or prior probability of
Y, which in this example is the initial probability of a mostly green mixture
or 1, then the probability of both X and Y is equal to the chance of X
happening, given Y, times the probability of ¥ occurring, or P(XnY)=
P(X|Y)P(Y)=(0.561)}) =0.280.

But there is another way to think about the chances that both X and Y
will happen. This is also the probability that ¥ will occur, given X, times the
probability that X will happen, or P(X n Y) = P(Y|X)P(X). The conditional
probability P(Y|X)is, in the example, the probability that the mixture is 75
percent green given that both the drawn marbles are green. This, moreover,
is the updated probability that the player is trying to calculate.

To find an expression for this updated probability, bring together the two
ways of thinking about the chances that both X and ¥ will occur, to obtain
P(Y|X)P(X)=P(XnY)=P(X|Y)P(Y). Solving this for the updated
probability that the player is trying to calculate, P(Y|X), gives Bayes’ rule
for updating probabilities: P(Y|X)= P(XnY)/P(X)= P(X|Y)P(Y)/P(X).
That is, the probability of Y, given X, is the probability of X and Y divided
by the prior probability of X. Or, in the urn example, the probability of a 75
percent green mixture, given that two greens have been drawn, is the
probability of a mostly green mixture and a draw of two greens divided by
the prior probability of drawing two greens. These probabilities are readily
calculated. The former, as calculated earlier, is the probability of two
greens, given a mostly green mixture, times the prior probability of a mostly
green mixture, or (0.561)(3) = 0.280. The prior probability of drawing two
greens, P(X), is the probability of two greens, given a mostly green mixture,
times the probability of a mostly green mixture plus the probability of
drawing two greens from a mostly blue mixture times the probability of a
mostly blue mixture. This is (F5)E23) + (Z5)38(3)=0.311. Thus, the
Bayesian update of the chance that the mixture is mostly green after two
green marbles have been drawn is 0.280/0.311 =0.902. After drawing two
green marbles, the prior probability that the mixture was mostly green,
which was 4, has been updated to 0.902.

Returning now to a game-theoretic context, consider I’s beliefs in the
sequentially rational assessment described earlier for the simple poker
game. They are consistent with Bayes’ rule, as they must be in a sequential
equilibrium or in a perfect Bayesian equilibrium The prior probability of
being at any one of I's decision nodes is 4. That is, before the deal, I's
estimate or prior probability of being at a specific decision node, say the
node associated with Nature’s dealing (R, R), is 1. But after the deal, I knows
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that it is holding a red card and can then revise its beliefs to incorporate this
new information. According to Bayes’ rule, the probability of being at
(R, R), given that play has reached I’s information set associated with I’s
holding a red card, is the prior probability of being at (R, R), which is 3,
divided by the probability that the play of the game will reach this
information set. This latter probability is simply the sum of the
probabilities of reaching all of the individual nodes in this information set
or, in this case, the probability of reaching (R, R) plus the probability of
reaching (R, B), which is 1. Bayes’ rule assigns a probability of })/4 +3) =1
tobeing at (R, R), given that ' knows it is holding a red card. This is precisely
what I’s belief system in the sequentially rational assessment says that /
believes about II’s card, given that I is holding a red card. I’s beliefs are
consistent with Bayes’ rule.

Now consider IT’s beliefs. When bidding, I7 believes that Iis certain to be
holding a red card. As noted earlier, this belief seems unreasonable, given
I’s strategy, because I7 will have an opportunity to bid only if 7 bids, and 7
will bid only if its card is black. Indeed, the only thing that it seems
reasonable for I7 to believe about I’s card, given Is strategy, is that I’s card
is black. Requiring beliefs to be consistent with Bayes’ rule simply
formalizes this reasoning, and this shows that II’s beliefs do not conform to
Bayes’ rule. The sequentially rational assessment described earlier is
therefore not a sequential equilibrium.

To see that II’s beliefs are incompatible with Bayes’ rule, suppose that I7
holds a black card, and I bids. /I, therefore, is somewhere in its lower
information set in Figure A4. But where does I7 believe it is? What, for
example, is the probability that it is at the upper-left node? Or, equivalently,
what is the probability that Nature has dealt (B, B) and I has bid? The first
step in calculating this probability is to find the prior probability of
reaching this node (i.e., the probability of reaching this node as calculated
before the game begins). This is the probability that Nature will deal (B, B)
times the probability that I will bid with this deal. Nature will deal (B, B)
with probability , and I, according to its strategy, will always bid when
dealt a black card. The prior probability of reaching II’s upper-left decision
node in its lower information set is 1. Similarly, the probability of reaching
the lower-right node in this information set is the probability that Nature
will deal (R, B) and that I will bid. This is (3)(0) = 0. The updated probability
of being at II’s upper-left node, given that I has actually bid, or, in other
words, that play has actually reached the information set containing this
decision node, is then obtained by dividing the prior probability of reaching
this node by the probability of reaching this information set. This latter
probability is 4 +0; so the updated probability is (2)/(3)=1. That is, /7,
according to Bayes’ rule, is certain that it is at its upper-left decision node.
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Similarly, I7 believes that the probability that Iis holding a red card when IT
is actually bidding is 0/(3+0)=0, not 1 as in the sequentially rational
assessment. Beliefs in this assessment are not in accord with Bayes’ rule, and
this means that the assessment cannot be a sequential equilibrium.

To state the requirement that beliefs satisfy Bayes’ rule somewhat more
generally, let y be some decision node, and let 4 be the information set
containing y. Then, for any assessment (g, ), the probability of reaching y
can be calculated. Let P(y|(u, 7)) denote this probability. Similarly, the
probability of reaching A can be calculated. It is P(k|(p, %)=
Y ien P(x|(u, 7)), where x is a node in A, and the summation is taken over all
of the nodes in 4. Then, if P(h|(u, 7)) > 0, Bayes’ rule says that the prob-
ability of being at y, given that play has actually reached A, is P(y|(u, 7))/
P(h|(p, 7).

Clearly, Bayes’ rule cannot be applied if the probability of reaching an
information set is zero [i.e., if P(k|(u, 7)) =0], for trying to use the rule in
this case would entail dividing by zero. However, as long as P(k](u, 7)) > 0,
Bayes’ rule can be used, and the only consistency criterion required of
beliefs in the models in this volume is that beliefs satisfy Bayes’ rule at
information sets where this rule can be applied.!’

Games of incomplete information

The final issue to be discussed is the problem of incomplete information.!®
Players in a situation may have incomplete information about the other

!5 What distinguishes a sequential equilibrium from the weakest notion of a perfect Bayesian
equilibrium, which is the one employed here, is that a sequential equilibrium places weak
consistency restrictions on beliefs at information sets that are reached with probability
zero. To describe a consistent assessment and to specify more formally what conditions
consistent beliefs must satisfy at information sets that are reached with zero probability, let
n' be a completely mixed set of strategies for playing the game. A set of strategies is
completely mixed if each participant plays every alternative at each of its information sets
with a positive probability. That is, no alternative is played with zero probability in =’.
Because every alternative is played with positive probability, every information set 4 is
reached with positive probability. Accordingly, Bayes’ rule can be applied at every
information set in the game. Let u'(y) be the probability of being at y given that play has
reached the information set containing y, which will be denoted by #(y). Then, by Bayes’
rule, u*(y) = P(y|n')/ P(h(y)|n*). In brief, Bayes’ rule can always be used to define a system
of beliefs ' when n! is completely mixed. An assessment (g, 7) is consistent if and only if
there exists a sequence of completely mixed assessments that converges to (u,m).
Symbolically, there must exist a sequence of {(¢!, n)}2 |, where the n’ are completely mixed
and are such that lim, , (¢, ) = (¢, n). For a detailed discussion of consistency and some
of the subtleties associated with it, see Kreps and Wilson (1982b) and Kreps and Ramey
(1987).

16 Harsanyi (1967-8) originated this approach.
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players. A player may be uncertain of the other players’ payoffs or of the set
of alternatives from which the other players can choose. In crises, for
example, states often are said to be unsure of the resolve of their
adversaries. That is, a state lacks complete information about its
adversary’s willingness to run risks or about what the adversary sees as
being at stake in the crisis. Games of incomplete information are used to
model situations in which players are uncertain about some aspects of the
situations confronting them. An important feature about these games is
that players can try to learn about the other players by observing what they
do. Of course, an adversary, understanding this, also may have an incentive
to try to misrepresent its type, to try, for example, to appear to be more
resolute than it actually is. Games of incomplete information are used to
study these competing influences and their effects on the players’ strategies.

An example may be the best way to illustrate how games of incomplete
information are set up and analyzed. The example is a variant of the simple
model of massive retaliation used earlier in the discussion of subgame
perfection. In this variant, the Soviet Union is uncertain of the cost to the
United States of acquiescing to a Soviet challenge. Suppose, that is, that
when the United States is relatively invulnerable to Soviet retaliation, the
United States attempts to prevent a Soviet challenge by threatening to
retaliate massively to a Soviet provocation. In the game, the status quo
payoffs are (0,0), and the respective payoffs to the United States and the
Soviet Union will be (— 5, —10) if there is a Soviet challenge and a massive
American nuclear attack in response. (The payoff of — 5 reflects an assumed
relative American invulnerability.) The Soviet Union will also receive 5 if
the United States acquiesces to a Soviet challenge. The Soviet Union,
however, lacks complete information about the United States. In
particular, the Soviet Union is unsure if the United States attaches a high
value to what is at stake, so that submission will bring a large loss of —7, or
if the United States puts a low value on what is at stake, so that submission
will bring only a small loss of —3.

Figure A11(a) shows the tree and payoffs if the cost to giving in is high,
and Figure A11(b) depicts the tree and payoffs if the cost is low. The
problem would be easy to analyze if the Soviet Union were sure of the
American payoff to acquiescing. If the cost to giving in were known to be
high, the Soviet Union would be in the game in Figure A11(a), where the
unique subgame perfect equilibrium is for the Soviet Union not to
challenge and for the United States to attack if challenged. Similarly, if the
cost of American acquiescence were known to be low, the game in Figure
All(b) would be the relevant one. Here the unique subgame perfect
equilibrium has the Soviet Union challenging the status quo and the United
States submitting.
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The difficulty is, of course, that the Soviet Union is uncertain whether the
cost to the United States of submitting is high or low. To model this lack of
complete information, the two games in Figure A11 are combined into a
single, larger game. Suppose that the Soviet Union believes that the
probability that the United States attaches a high cost to submitting is p,
and the probability of a low costis 1 — p. Then the games in Figure A11 may
be combined to form the game in Figure A12. This game begins with
Nature making a random move. This is the modeling device used to create
the Soviet Union’s uncertainty about the American cost of submission. If
Nature takes the upper branch, which it will do with probability p, then the
rest of the tree beginning at the Soviet decision node is the same as the tree
in Figure All(a). (The prime on “U.S.” indicates that along this path
through the tree, the United States attaches a high cost to submitting and
will play accordingly.) Thus, if the Soviet Union were certain that it was at
the upper node in its information set in the game in Figure A 12, this game
would be played in exactly the same way as the game in Figure All(a).
Similarly, if Nature takes the lower branch, which it will do with probability
1 — p, then the rest of the game starting from the Soviet Union’s lower
decision node corresponds to the tree in Figure A11(b). If the Soviet Union
were certain that it was at this lower node, then the game in Figure A2
would be played just like the game in Figure A11(b). The Soviet Union,
however, does not know if it is at its upper or lower node, for they are in the
same information set. Rather, the Soviet Union forms beliefs about where it
is in its information set. Following Bayes’ rule, the Soviet Union believes

Figure A11. Massive retaliation with high and low stakes.
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that it is at its upper node with probability p and at its lower node with
probability 1 — p. In effect, the Soviet Union begins the game believing that
the probability that the United States attaches a high cost to submittingis p
and that the probability that the United States attaches a low costis 1 — p.
In this way, the larger game in Figure A12 models the Soviet Union’s lack of
complete information and beliefs about the American payoffs. This game
can then be solved for its sequential equilibria, and the equilibrium strat-
egies in this larger game will incorporate the Soviet Union’s uncertainty
about the American payoffs.

A second example of an incomplete-information game will illustrate the
interaction between beliefs and strategies. In this game, which is depicted in
Figure A13(a), a potential challenger, C, begins by deciding whether or not
to challenge the status quo. If it decides not to mount a challenge, the game
ends with continuation of the status quo. If the potential challenger
disputes the status quo, the defender, D, can either resist, R, or submit, S. If
the defender submits, the game ends. If it resists, then the challenger must
decide whether to attack, 4, or back down, S.

Figure A12. Massive retaliation with incomplete information.
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The status quo payoffs are (0, 0), where the first element of this pair is the
challenger’s payoff. If the defender submits, the challenger receives 10, and
the defender loses 10. If the defender resists and the challenger backs down,
the challenger loses 10, and the defender gains 10. If the challenger attacks,
the defender’s payoff to the ensuing war is — 15. The defender is, however,
uncertain of the challenger’s payoff to fighting. There are two possibilities.
(There could, of course, be more possibilities, but that would make the
resulting game difficult to analyze.) The challenger’s payoff to attacking
may be sufficiently low, say —15, that it will prefer backing down to
attacking if D resists the challenge. These are the payoffs in Figure A13(a).
Or the challenger’s payoff to fighting may be high enough, say —5, that it
will rather attack than submit if resisted. Figure A13(b) shows these payofTs,
where C’ denotes the more determined challenger.

As in the massive-retaliation example, the situation would be easy to
analyze if the defender were certain of the challenger’s payoffs. If, as in
Figure A13(a), the challenger’s payoff to attacking is so low that it will

Figure A13. Escalation with different payoffs to fighting.
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prefer backing down to attacking, then the defender should resist, for the
challenger will then submit. Indeed, foreseeing that it will eventually back
down, the potential challenger will not even dispute the status quo. The
unique subgame perfect equilibrium of the game in Figure A13(a) has the
potential challenger accepting the status quo, the defender resisting if
challenged, and the challenger backing down. (Remember that an
equilibrium describes what will be done at every information set even if in
equilibrium some of these information sets are not reached.)

If the defender is certain that the challenger prefers attacking to backing
down, then resistance will bring — 5, whereas submitting will cost only 10.
In this case, D will not resist, and the potential challenger will actually
challenge the status quo. The unique subgame perfect equilibrium for the
game in Figure A13(b) is for the challenger to mount a challenge, the
defender to submit, and the challenger to fight should the defender resist.

But the defender is uncertain of the challenger’s payoffs. Suppose the
prior probability of facing a challenger that prefers fighting is p, and the
probability of confronting a challenger that would rather quit is 1 — p. The
game in Figure A14 represents this situation. Once again, incomplete
information is modeled by having Nature begin the game with a random
move that leaves D uncertain about the type of its adversary.

Note, however, that what the defender believes about the challenger

Figure A14. Escalation with incomplete information.
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depends both on the defender’s prior belief and on what the challenger
does. This was not an issue in the previous example of an incomplete-
information game, because the Soviet Union moved before the United
States. Thus, the Soviet Union, which was the state that lacked complete
information about its adversary in that example, could not update its
beliefs about the United States’ payoffs based on what the United States
had actually done. This new information was not yet available. In the
current example, however, the uncertain state, D, decides what to do after
the other state has moved. Accordingly, the defender can update its prior
belief about the challenger’s willingness to fight in light of the challenger’s
decision whether or not to challenge the status quo.

To illustrate the interdependence between the challenger’s strategy and
the defender’s updated beliefs, suppose initially that both C and C’ are
certain to escalate. Intuitively, if C and C’ will behave identically, there is
nothing to be learned from seeing what the challenger actually does. The
updated probability of facing a particular type of challenger will not differ
from the prior probability of facing that type of challenger. That is what
Bayes’ rule shows. The probability of facing the determined challenger C' if
D has actually been challenged, according to Bayes’ rule, is the prior
probability of reaching the lower decision node in D’s information set
divided by the probability that play will actually reach this information set.
The prior probability of reaching the lower decision node is the prior
probability of facing the more determined challenger C’, which is the
probability that Nature will follow the lower branch times the probability
that C’ will mount a challenge. Given that the more determined challenger’s
strategy is always to mount a challenge, the prior probability of reaching D’s
lower node is p - 1 = p. The probability of actually reaching D’s information
set, that is, the probability that the potential challenger will really challenge
the status quo, is the probability that Nature will take the upper branch,
which s 1 — p, times the probability that C will challenge the status quo plus
the probability that Nature will follow the lower branch, which is p, times
the probability that C’ will challenge the status quo. This is p-1+
(1—p)-1=1. So the probability of facing C’, given the potential
challengers’ strategies and the fact that the status quo has actually been
challenged, is p. If both types of challengers will behave in the same way, the
challenger’s actual behavior reveals nothing about it, and the Bayesian
update of the probability of facing a specific type of challenger is
unchanged from the prior probability.

But suppose that the two types of challengers will behave differently.
Then, observing what has actually happened may say something about the
type of the challenger. To illustrate this, assume that the determined
challenger still will be certain to dispute the status quo, but the probability
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that the less determined challenger will dispute the status quo is 0.1. If, given
these strategies, the defender is challenged, it would seem that the chance
that the challenger is more determined rather than less is quite high. The
updated probability of facing C’ rather than C is high. Bayes’ rule again
formalizes this. The updated probability of facing C’ if there has been a
challenge is the prior probability of facing C’, which is still p, divided by the
probability of there being a challenge or, equivalently, of play actually
reaching D’s information set. This latter probability is, as before, the prior
probability of facing C’ times the probability that C’ will dispute the status
quo plus the prior probability of facing C times the probability that it will
challenge the status quo. The updated probability of facing C’, given the
potential challengers’ strategies and the fact that there has been a challenge,
is p/[p -1+ (1—p)0.1)], which is much greater than p. (If, for example,
p=0.25, then the updated probability is (0.25)/[(0.25) + (1 —0.25)(0.1)] =
0.77)

In this case, the defender has used what has actually happened in the
game to revise its beliefs about the type of its adversary. This is a common
feature of games of incomplete information. Of course, the challenger
realizes that the defender is trying to ascertain the challenger’s type by
watching what it does. This may create an incentive for the challenger to
behave differently than it otherwise would in order to misrepresent its type.
C, for example, may want to try to convince the defender that it is facing C’
and thus should not resist a challenge. These are some of the issues that
games of incomplete information and their sequential equilibria help to
illuminate.

In both examples of incomplete-information games there was one-sided
incomplete information. Only the Soviet Union was uncertain about some
aspects of the United States; the United States was completely certain of the
relevant aspects of the Soviet Union. Similarly, only the defender was
uncertain of some aspects of the situation in the second example.
Nevertheless, the same approach to modeling incomplete information may
be extended to the case in which every player is uncertain about some
aspects of the other players. Incomplete information can, in general, be
modeled by creating a game in which Nature will behave probabilistically,
so that each player will begin this game with beliefs that reflect its
uncertainty or lack of complete information about the other players. The
equilibrium strategies in this often very large and complicated game will
then reflect the players’ incomplete information and the players’ attempts
to resolve and exploit this uncertainty.
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